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Generative modelling

Generative modelling

We want to learn a density model

2D density estimation of
Stephen Curry's
shooting position

Credit: BallR
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Generative modelling

Generative modelling

Goal: Sample from a parameterized generating model
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Generative modelling

Generative adversarial networks, Goodfellow et al., 2014
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Figure credit: LOGAN, Hayes et al.
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Generative modelling

GANvolution

[Goodfellow et al., 2014] [Radford et al., 2015] [Roth et al., 2017]
University of Montreal Facebook Al Research Microsoft and ETHZ

Slide credit: Sebastian Nowozin
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Wasserstein GAN

Generative modelling

Optimization problem

argming D (pp, po)

Choice of D (GAN)
For classical GAN, we can show it is the Jensen-Shannon
divergence (for an optimal D)
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Wasserstein GAN

Generative modelling

Optimization problem

argmingD(pp, pe)

Choice of D (WGAN)

Woasserstein Distance

Intuition: Minimum effort to move probability mass from py to pp.
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Wasserstein GAN

Wasserstein distance

Primal formulation

W(pp, pe) = infyeni(pp po) Ea,y)~ry “]m - y||2}

Kantorovich-Rubinstein Dual

W (pp,po) = supjy|, =1 <]Ex~pD [f(fﬁ)] — Ezpy [f(fﬁ)])
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Wasserstein GAN

Neural network approximation

Parameterize a generator

z~p(z),x = go(z)

Estimate the distance W (pp, pg) by parameterizing f with a
neural network with parameters ¢

max 11 <E~ [/6(@)] = Eeupe [f¢<g<z>>}>

14

f is a critic, the equivalent of the discriminator in the classical
GAN
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Spectral Norm WGAN

Observation 1

The Lipschitz constant of f is the max-spectral norm of V. f

1f1lp = sup,o(Vaf(z))
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Spectral Norm WGAN

Example: For an affine layer

For an affine f, we have

_f@+h) = f(@)ll,
Ifll, =
(P8
|W(x +h)+F— Wz — k|,
Al

W hll
171l

SUP”iL”Q:l ”WEHQ =o(W)

= [Whily with ||l =1

IN
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Spectral Norm WGAN

Observation 2

lgro g2l < llgrllllg=ll.

Neural network implementation: f is a sequence of linear
operations and fixed-slope (< 1) piecewise-linear activations:

£l < T cw'™e)

layers
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Spectral Norm WGAN

Learning f

Algorithm 1 Pseudocode for training f
1: for each layer [ do
2. Estimate spectral norm for the current layer, o(WW?)
3. Normalize: W' =W!/a(W')
4. Update with SGD: W' < W' + aV;1£(W!, minibatch)
5: end for
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Spectral Norm WGAN

Learning g

Algorithm 2 Pseudocode for training g
1: while not converged do
2. Train f
3:  Update 6 for gy with SGD: 6 < 6 — a VoW (minibatch)
4: end while
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Estimating spectral norm

Estimating spectral norm

Power lteration
Efficient computation of top singular value
Will converge (with high probability)

Full SVD computed by repeated applications on successive
deflations
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Estimating spectral norm

Power lteration: How it works

Start with a random vector z

Apply W on z (and normalize): y < HVV%”

Apply W on y (and normalize): 2 + ”%717;“
Iterate until convergence of x and y

Yfinal = UL

T final = V1

U(W) ~ y}rinalwxfinal
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Estimating spectral norm

Power Iteration: Why it works

The sequence of operations amounts to
_ T
Yfinal = WW - Wi

and
finat = W WW oo Wi
We have that

k terms

——
wWw'..w=usv'veu'...veuTusv’
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Estimating spectral norm

Power Iteration: Why it works

The sequence of operations amounts to
_ T
Yfinal = WW - Wi

and
finat = W WW oo Wi

We have that

k terms

| krems I I
WWT ... W =USYV sUT-..VSIZT svT

Miyato et al. SN-GAN 18 /29



Estimating spectral norm

Power Iteration: Why it works

The sequence of operations amounts to
_ T
Yfinal = WW - Wi

and
finat = W WW oo Wi
We have that

k terms k terms

—_— ——N—
WW' ... W=U3*V" and WTWW'...W=vxktiyT
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Estimating spectral norm

Power Iteration: Why it works

We have that
ky,T .. _
US"V 'z = Za U, m—alz(gl> ulv x

and similarly

o k+1
VSHly T, = ZakHvZ T = 01+1 Z ( Z> viviTa:
01
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Estimating spectral norm

Power Iteration: Why it works

We have that
USkVTQS‘_ZO' U, a:—alz<a ) ulv x
1

and similarly

k+1

o

VSHly T, = ZakHvZ T = 01+1 g ( Z) viviTa:
01

Miyato et al. SN-GAN 21/29



Estimating spectral norm

Power Iteration: Why it works

As k gets larger,
US*V Tz — ofugv] z

VSHHY Ty — of o
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Estimating spectral norm

Power Iteration: Why it works

As k gets larger,
US*V Tz — ofugv] z

VSEHY Ty — oty @
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Estimating spectral norm

Power Iteration: Why it works

As k gets larger,
Yfinal = U1 and T fipq ~ U1
and so we have the spectral norm estimate:

T
01 R Ytina W final
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Estimating spectral norm

In practice

In practice one iteration of power iteration per critic update works

— om0 — conv3 convs
— convl  — convd  — convé
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update

Figure 9: Spectral norms of all seven convolutional layers in the standard CNN during course of the
training on CIFAR 10.
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Results

Image quality scores

Inception score FID
Method CIFAR-10  STL-0  CIFAR-I0  STL-10
Real data 11.244.12  26.08+.26 7.8 7.9
-Standard CNN-
Weight clipping 6.41+.11 7.57+.10 426 64.2
GAN-GP 6.93+.08 37.7
WGAN-GP 6.68+.06 8.42+.13 40.2 55.1
Batch Norm. 6.27+£.10 563
Layer Norm. 7.19+.12 7.61+.12 339 75.6
Weight Norm. 6.84+.07  7.16+.10 34.7 734
Orthonormal 7.40+.12 8.56+.07 29.0 46.7
(ours) SN-GANs 742408  8.28+.09 29.3 53.1
Orthonormal (2x updates) 8.67+.08 442
(ours) SN-GANSs (2x updates) 8.69+.09 47.5
(ours) SN-GANSs, Eq.(17) 7.58+.12 25.5
(ours) SN-GANSs, Eq.(17) (2x updates) 8.79+.14 432
-ResNet-’
Orthonormal, Eq.(17) 7.924+.04  872+.06  23.8+.58 42.4+.99
(ours) SN-GANSs, Eq.(17) 8.224+.05  9.10+.04 21.7+21 401450
DCGAN' 6.64+.14  7.84+.07
LR-GANs* 7.17+.07
Warde-Farley et al.* 7.72+.13 8.51+.13
WGAN-GP (ResNet) 7.86+.08
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Results

Pretty pictures: CIFAR-10

Weight Norm. |g

Spectral Norm.

(a) CIFAR-10
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Results

Pretty pictures:

WGAN-GP

Dataset

Weight Norm. |§

(b) STL-10
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Results

Conclusions

Provides a “more correct” way to implement WGANs
Convincing performance
More diverse samples

e Slow to converge if leading singular value not strongly
dominant
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