Spectral Normalization for Generative Adversarial Networks

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida

Presented by: Faruk Ahmed, Alex Zhang

March 29, 2019

Generative modelling

We want to learn a density model

Generative modelling

Goal: Sample from a parameterized generating model

 $x \sim p_{\theta}(x)$

Generative adversarial networks, Goodfellow et al., 2014

GANvolution

[Goodfellow et al., 2014] University of Montreal

[Radford et al., 2015] Facebook Al Research

[Roth et al., 2017] Microsoft and ETHZ

[Karras et al., 2018] NVIDIA

Generative modelling

Optimization problem

$$\operatorname{argmin}_{\theta} D(p_D, p_{\theta})$$

Choice of D (GAN)

For classical GAN, we can show it is the Jensen-Shannon divergence (for an optimal D)

Generative modelling

Optimization problem

$$\operatorname{argmin}_{\theta} D(p_D, p_{\theta})$$

Choice of D (WGAN)

Wasserstein Distance

Intuition: Minimum effort to move probability mass from p_{θ} to p_{D} .

Wasserstein distance

Primal formulation

$$W(p_D, p_\theta) = \inf_{\gamma \in \Pi(p_D, p_\theta)} \mathbb{E}_{(x, y) \sim \gamma} \Big[\|x - y\|_2 \Big]$$

Kantorovich-Rubinstein Dual

$$W(p_D, p_\theta) = \sup_{\|f\|_L = 1} \left(\mathbb{E}_{x \sim p_D} \Big[f(x) \Big] - \mathbb{E}_{x \sim p_\theta} \Big[f(x) \Big] \right)$$

Neural network approximation

Parameterize a generator

$$z \sim p(z), x = g_{\theta}(z)$$

Estimate the distance $W(p_D, p_\theta)$ by parameterizing f with a neural network with parameters ϕ

$$\max_{\|f\|_L = 1} \underbrace{\left(\mathbb{E}_{x \sim p_D} \left[f_{\phi}(x)\right] - \mathbb{E}_{z \sim p(z)} \left[f_{\phi}(g(z))\right]\right)}_{\ell}$$

f is a critic, the equivalent of the discriminator in the classical GAN

Observation 1

The Lipschitz constant of f is the max-spectral norm of $\nabla_x f$

$$\|f\|_L = \mathrm{sup}_x \sigma(\nabla_x f(x))$$

Example: For an affine layer

For an affine f, we have

$$\begin{split} \|f\|_L &= \frac{\|f(x+h) - f(x)\|_2}{\|h\|_2} \\ &= \frac{\|W(\mathscr{K} + h) + \mathscr{b} - \mathscr{W} \mathscr{K} - \mathscr{b}\|_2}{\|h\|_2} \\ &= \frac{\|Wh\|_2}{\|h\|_2} = \|W\hat{h}\|_2 \quad \text{with} \quad \|\hat{h}\|_2 = 1 \\ &\leq \sup_{\|\hat{h}\|_2 = 1} \|W\hat{h}\|_2 = \sigma(W) \end{split}$$

Miyato et al. SN-GAN 11/29

Observation 2

$$||g_1 \circ g_2||_L \le ||g_1||_L ||g_2||_L$$

Neural network implementation: f is a sequence of linear operations and fixed-slope (≤ 1) piecewise-linear activations:

$$\|f\|_L \leq \prod_{\mathsf{layers}} \sigma(W^{\mathsf{layer}})$$

Learning f

Algorithm 1 Pseudocode for training f

- 1: \mathbf{for} each layer l \mathbf{do}
- 2: Estimate spectral norm for the current layer, $\sigma(W^l)$
- 3: Normalize: $\bar{W}^l = W^l/\sigma(W^l)$
- 4: Update with SGD: $W^l \leftarrow W^l + \alpha \nabla_{W^l} \ell(\bar{W}^l, \text{minibatch})$
- 5: end for

Learning g

Algorithm 2 Pseudocode for training g

- 1: while not converged do
- 2: Train f
- 3: Update θ for g_{θ} with SGD: $\theta \leftarrow \theta \alpha \nabla_{\theta} W(\text{minibatch})$
- 4: end while

Estimating spectral norm

Power Iteration

Efficient computation of top singular value

Will converge (with high probability)

Full SVD computed by repeated applications on successive deflations

Power Iteration: How it works

Start with a random vector x Apply W on x (and normalize): $y \leftarrow \frac{Wx}{\|Wx\|}$ Apply W^{\top} on y (and normalize): $x \leftarrow \frac{W^{\top}y}{\|W^{\top}y\|}$ Iterate until convergence of x and y $y_{final} \approx u_1$

16 / 29

 $x_{final} \approx v_1$ $\sigma(W) \approx y_{final}^{\top} W x_{final}$

The sequence of operations amounts to

$$y_{final} = WW^{\top} \cdots Wx_{init}$$

and

$$x_{final} = W^{\top}WW^{\top}\cdots Wx_{init}$$

We have that

$$\overbrace{WW^\top \cdots W}^{k \text{ terms}} = U\Sigma V^\top V\Sigma U^\top \cdots V\Sigma U^\top U\Sigma V^\top$$

The sequence of operations amounts to

$$y_{final} = WW^{\top} \cdots Wx_{init}$$

and

$$x_{final} = W^{\top}WW^{\top}\cdots Wx_{init}$$

We have that

$$\overbrace{WW^{\top} \cdots W}^{k \text{ terms}} = US V^{\top} V \stackrel{I}{V} \Sigma U^{\top} \cdots V \Sigma U^{\top} U \stackrel{I}{V} \Sigma V^{\top}$$

The sequence of operations amounts to

$$y_{final} = WW^{\top} \cdots Wx_{init}$$

and

$$x_{final} = W^{\top}WW^{\top}\cdots Wx_{init}$$

We have that

$$\overbrace{WW^\top \cdots W}^{k \text{ terms}} = U\Sigma^k V^\top \qquad \text{and} \qquad W^\top \overbrace{WW^\top \cdots W}^{k \text{ terms}} = V\Sigma^{k+1} V^\top$$

We have that

$$US^k V^\top x = \sum_i \sigma_i^k u_i v_i^\top x = \sigma_1^k \sum_i \left(\frac{\sigma_i}{\sigma_1}\right)^k u_i v_i^\top x$$

and similarly

$$VS^{k+1}V^{\top}x = \sum_{i} \sigma_i^{k+1} v_i v_i^{\top}x = \sigma_1^{k+1} \sum_{i} \left(\frac{\sigma_i}{\sigma_1}\right)^{k+1} v_i v_i^{\top}x$$

Miyato et al. SN-GAN 20 / 29

We have that

$$US^k V^\top x = \sum_i \sigma_i^k u_i v_i^\top x = \sigma_1^k \sum_i \left(\frac{\sigma_i}{\sigma_1}\right)^k u_i v_i^\top x$$

and similarly

$$VS^{k+1}V^{\top}x = \sum_{i} \sigma_{i}^{k+1} v_{i} v_{i}^{\top}x = \sigma_{1}^{k+1} \sum_{i} \left(\frac{\sigma_{i}}{\sigma_{1}}\right)^{k+1} v_{i} v_{i}^{\top}x$$

21/29

As k gets larger,

$$US^{k}V^{\top}x \to \sigma_1^k u_1 v_1^{\top}x$$
$$VS^{k+1}V^{\top}x \to \sigma_1^{k+1} v_1 v_1^{\top}x$$

As k gets larger,

$$US^{k}V^{\top}x \to \sigma_1^k u_1 v_1^{\top}x$$
$$VS^{k+1}V^{\top}x \to \sigma_1^{k+1} v_1 v_1^{\top}x$$

As k gets larger,

$$y_{final} pprox u_1 \text{ and } x_{final} pprox v_1$$

and so we have the spectral norm estimate:

$$\sigma_1 \approx y_{final}^\top W x_{final}$$

In practice

In practice one iteration of power iteration per critic update works

Figure 9: Spectral norms of all seven convolutional layers in the standard CNN during course of the training on CIFAR 10.

Image quality scores

Method	Inception score		FID	
	CIFAR-10	STL-10	CIFAR-10	STL-10
Real data	11.24±.12	26.08±.26	7.8	7.9
-Standard CNN-				
Weight clipping	$6.41 \pm .11$	$7.57 \pm .10$	42.6	64.2
GAN-GP	$6.93 \pm .08$		37.7	
WGAN-GP	$6.68 \pm .06$	$8.42 \pm .13$	40.2	55.1
Batch Norm.	$6.27 \pm .10$		56.3	
Layer Norm.	$7.19 \pm .12$	$7.61 \pm .12$	33.9	75.6
Weight Norm.	$6.84 \pm .07$	$7.16 \pm .10$	34.7	73.4
Orthonormal	$7.40 \pm .12$	$8.56 \pm .07$	29.0	46.7
(ours) SN-GANs	$7.42 \pm .08$	$8.28 \pm .09$	29.3	53.1
Orthonormal (2x updates)		$8.67 \pm .08$		44.2
(ours) SN-GANs (2x updates)		$8.69 \pm .09$		47.5
(ours) SN-GANs, Eq.(17)	7.58±.12		25.5	
(ours) SN-GANs, Eq.(17) (2x updates)		$8.79 \pm .14$		43.2
-ResNet-5				
Orthonormal, Eq.(17)	$7.92 \pm .04$	$8.72 \pm .06$	$23.8 \pm .58$	$42.4 \pm .99$
(ours) SN-GANs, Eq.(17)	$8.22 \pm .05$	9.10 ±.04	$21.7 \pm .21$	40.1 ±.50
DCGAN [†]	6.64±.14	7.84±.07		
LR-GANs [‡]	$7.17 \pm .07$			
Warde-Farley et al.*	$7.72\pm.13$	8.51±.13		
WGAN-GP (ResNet) ^{††}	$7.86 \pm .08$			

Pretty pictures: CIFAR-10

Pretty pictures: STL-10

Conclusions

- Provides a "more correct" way to implement WGANs
- Convincing performance
- More diverse samples
- Slow to converge if leading singular value not strongly dominant