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Introduction

Applying decomposition technique to matrices, which would then be extended to
high order tensors

Unsupervised Coarse Graining

Experiment on classification task

Mixing prior

Conclusion
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High Level Idea

Provides a method to compress data originally in high dimensional space

Preserves data properties at large scale while normalizing over smallest length
scales

Main idea comes from physics

Eg. Looking at temperature of the entire system to understand state instead of
dynamics about each particle

Significantly reduces the size of feature space
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Research Significance

Computational Efficiency

Building block for many machine learning tasks

The algorithm proposed is unsupervised

Can be applied to very large datasets with a large set of features
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Main Contributions

Uses tensor networks to produce a hierarchical representation of data using low
order tensors

Unsupervised learning based on statistical properties of data

Only a single topmost layer of tensor needs to be optimized based on task

Can be used with prior estimates of weights to make learning faster
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Key Points

Compressed space is represented using a layered tree tensor network

The algorithm scales linearly with both the dimension of the input and training set
size

Uses kernel learning

The tree tensor network obtained is generalizable to various tasks
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Peek into Matrices

Consider a model f (x) = W · Φ(x), where Φ(x) is the kernel space mapping of
the training data.

The optimal weights belong to the span of the training data within feature space.

Using Representer Theorem, W :

W =

NT∑
j=1

αj Φ
T (xj ) (1)

Quadratic or worse dependence on training set size
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Dealing with scale

W =

NT∑
j=1

αj Φ
T (xj ) (2)

W resides in the span of the {ΦT (xj )}
NT
j=1

W =
∑

n
βnUT

n (3)

where UT
n spans the same space as ΦT (xj )

One way to obtain UT could be by performing SVD on {Φ(xj )}.

Φs
j =

∑
nn′

Us
nSn

n′ (V T )n′
j (4)

Truncating singular values very close to zero, UT will give the transformation from
entire feature space to the reduced parameter space
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Covariance to the Rescue!

SVD is computationally challenging for large datasets

Alternative method :

ρs′
s =

1
NT

NT∑
j=1

Φs′
j (Φj

s)T =
∑

n
Us′

n Pn(UT )n
s (5)

Thus, U diagonalizes the feature space covariance matrix ρ

Truncate directions along which ρ has a very small projection to rapidly reduce the
size of the space needed to carry out learning tasks.
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Generalization to Tensors

We define a local feature map φ : R→ Rd , and

Φ(xxx) = φ(x1) ◦ · · · ◦ φ(xN ), (6)

so that now W is a tensor of order N with dN weight parameters.

(c)

�(x) =(a)

f(x) = W

�(x)

(b)

W =
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Back to ρ

As before, the idea is to compute the eigenvectors of ρ, then discard those with
smallest eigenvalues

We think of the collection of feature vectors
{

Φ(xxx j )
}NT

j=1 as a single tensor of order

N + 1, so that ρ is formed by contracting Φ and ΦT over the index j

�s1s2···sN (xj) = �s1s2···sN
j =

s1 s2 · · · sN

j

⇢ = ��† =
1

NT

�(xj)

�†(xj)
=

1

NT

NTX

j=1
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Local Isometry

As it is not feasible to diagonalize ρ directly, we look at local isometries, which are
third-order tensors Us1s2

t satisfying
∑

s1s2
Us1s2

t U t′
s1s2

= δt′
t

=

s1 s2

t

Us1s2
t =

(a) (b)

We define U1 such that when it acts on the first two feature space indices, it
maximizes the fidelity

F = Tr[ρ] =
1

NT

∑
j

ΦT Φ (7)
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Local Isometry (Contd.)

The fidelity of the approximated ρ is

F1 =
1

NT

∑
j

ΦT U1UT
1 Φ (8)

F1 ≤ F .

The reduced covariance matrix ρ12 is
defined by tracing over all indices of ρ
other than s1 and s2, so that

F1 =
∑

s1s2s′1s′2t

(UT
1 )t

s′1s′2
ρ

s′1s′2
12 s1s2

Us1s2
1 t (9)

F1 =

j

j

1

NT

NTX

j=1

=

U1

U †
1

j

j

1

NT

NTX

j=1

⇡

=

F =
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Reduced Covariance matrix

ρ12 = U1P12UT
1 .

U1 is truncated keeping the eigenvectors
corresponding to the D largest eigenvalues
of ρ12, where the choice of D depends on
a given truncation error cutoff ε.

=
X

j

⇢12 =

s1 s2

s01 s02

s1 s2

s01 s02

⇢12 =

s1 s2

s01 s02

s1 s2

s01 s02

= P12

U12

U †
12

(a)

(b)

s03

=⇢34 =
X

j

s04

s3 s4

s03 s04

s3 s4

(c)
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Diagonalizing ρ

We use the isometry layer to coarse grain the feature vectors, and iterate to
diagonalize ρ in log2(N) steps.
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Defining the model

Having determined U , our model is:

f (x) =
∑
t1t2

wt1t2 Φ̃t1t2 (x) (10)

where
Φ̃t1t2 (x) =

∑
t1t2

U t1t2
s1s2···sN

Φs1s2···sN (x) (11)
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Experiments

The local feature map φsn (xn) is defined by

φsn=1(xn) = 1

φsn=2(xn) = xn

We use conjugate gradient to optimize the top tensorW

ε t1 t2 Accuracy on training set (%) Accuracy on test set (%)
10−3 107 151 98.75 97.44
6x10−4 328 444 99.68 98.08

Table: Results on MNIST dataset using unsupervised / supervised algorithm
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Mixed task-specific / unsupervised algorithm

Mix the feature space covariance matrix ρ with another matrix based on a specific
task:

ρµ = µρ̂W + (1− µ)ρ̂ (12)

Given a prior guess for supervised task weights:

ρ̂W =
1

Tr(W T W )
W T W , ρ̂ =

1
Tr(ρ)

ρ

µ ε t1 t2 Accuracy on training set(%) Accuracy on test set(%)
0.5 4x10−4 279 393 99.798 98.110

Table: Results on MNIST dataset using mixed task-specific / unsupervised algorithm
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Partial coarse graining: tree curtain model

Consider the weightsW as a matrix product state

µ ε Accuracy on training set(%) Accuracy on test set(%)
0.9 2x10−9 95.38 88.97

Table: Results on fashion-MNIST dataset using partial coarse graining / unsupervised algorithm

Approach Accuracy (%)
XGBoost 89.8
AlexNet 89.9
Two-layer convolutional neural network trained with Keras 87.6
GoogLeNet 93.7

Table: Results for state-of-the-art approaches without preprocessing
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Constructing a model using a tree tensor network U and a top tensorW
The algorithm scales linearly in both training set size and input space dimension

This can be reduced to sublinear using stochastic optimization techniques

Experimentation can be done with different choices of the covariance matrix ρ and
feature map

Stochastic Gradient Descent can be used for optimization of the top tensor to
improve accuracy

Instead of using tree tensor network, use MERA tensor network
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