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@ RNNs have been widely applied in many fields
@ Theoretical side of RNNs is lacking

o Natural relationship between tensor decomposition and linear neural
networks

@ Work with tensor instead for analysis



Why Depth?

@ Shown recently that depth allows neural networks to express rich
functions with relatively few parameters.

@ Theory not well understood, due to difficulty of incorporating
nonlinearities during analysis.



Basics - Data representation

@ Suppose we are given a dataset of sequential structure:
X = (X(1)7X(2), oo ,x(T))’ xt 6 RN

e Transform the dataset in a feature tensor ®(X) which is an outer
product of the feature vectors.

fy(x) = o(Ax + b)

o(X) = fH(xM) @ fH(x?) - @ f(xM)



Basics - Generalized Score function

@ To get an estimate (such as MLE), we can use a tensor W of the
same order as our feature tensor ®(X)

@ The estimate or score function can be expressed as:

L(X) = W, d(X)) = (vec(W)) T vec(d(X))



Representing the core tensor

o W g RMXmX.-Mig 3 trainable weight tensor.

@ The inner product shown in last slide is just the total sum of the
entry-wise product of ®(X) and W

@ Storing the full tensor W requires exponential amount of memory.

@ We therefore use tensor decompositions to efficiently represent this
weight tensor.

@ Rank of the decomposition determine the complexity of the
architecture.



Tensor Decomposition

o CP Decomposition:

R
W = ZA,\:Q) ®v£2) ---®V,T
r=1

ZA H ) vl

@ Tensor Train Decomp05|t|on:

Rr—1
1 2 T
W= Z Z gSO'}l £1r)2 '®g$T_)1fT
n= 1 rr—1= =1
Rr—1

Z Z H f@(x(t ng 1rT>

n=1 rr_1=1t=1



CP Decomposition and Shallow Networks

R T
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Tensor Trains and RNNs

@ ldea: Show that TT exhibits particular recurrent structure as RNN.

h(t Zg(f ( t)) h(f 1) _ Zg )[f X(t )®h (t— 1)]“]

iJ iJ

@ Combining the core tensors and weights to a single variable, we can
rewrite the above equation in a general RNN formulation:

h®) = g(h(t-D) x(0;00) h(®) ¢ R
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Generalized Outer Product

@ TTs — NNs of specific structure, simpler than the ones used in
practice:

Only multiplicative nonlinearities allowed

o Idea: Change the nonlinearity
Q@ — B¢

@ Generalized outer product, define £ as an associative and
commutative operator:
C=A®:B

Ciyeveigjroeojir = 5(-’41'1---1'/\/’ le"‘jM)
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Generalized Outer Product

@ Replace previous RNNs' outer product with new operator to get:

max(x,y,0) ReLU
&(x,y)=4¢ In(e*+¢€¥) SoftPlus
xy Multiplicative
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Generalized Shallow Network with &-nonlinearity

@ Score function:

R
£(X) = Y M (h(xP),vD) @ - ¢ (f(x(T), vl
r=1

R
= 2 MEURD) ), (), v )
r=1

@ Parameters of the network:
0 = (MR, e R {(WI}R] e RM)

@ Can do same with RNNs to get a Generalized RNN
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Great, and we are done?

@ Switching ® — ®¢ allows us to analyze more complex RNNs

@ But, makes connection between RNNs and their TTs difficult to
understand

o Weight tensor no longer exists for each and every generalized tensor
network:

L(X) = WV, (X))
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@ Cohen and Shashua (2016) introduced grid tensors:
M fixed vectors X (templates) — GT of order T and dimension M in
each mode:

FEX) i iy = L£(X), X = (x(0) x(2) .. (1))

@ Evaluate score function on every possible input combination of the
template vectors, instead of all possible input sequences.
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@ Define a feature matrix F ¢ RM*xM

@ Run representation function fy : RN — RM on each x(t) € X:
F = [fg(x(l)% fe(x(2)), . ’fg(x(/\/’))]

@ Each generalized tensor network has a corresponding grid tensor
(shown: generalized shallow network)

R
X)) =>" A (F) @ (FV®) @ - - @ (Ful™)
r=1
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Overview of the main results

Two problems need to be considered:

o Universality
Can every tensor realizes a (generalized) shallow network/RNN ?

@ Expressivity
To represent the same function, which model uses less parameters?

17/26



Universality

@ Regular case (linear outer product): Holds automatically
L(X) = (W, o(X))

@ Generalized case (Non-linear outer product): Can no longer work with
W. Instead, work with the grid tensor:

FEX) i = £(X), X = (X) x(@) ... x(ir))
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Universality

Theorem 1

Given an arbitrary tensor . € RM*XMx-xM 3nd 3 template X, let the grid

tensors for a:
o Generalized? shallow network S be: ¥(X)
o Generalized® RNN G be: M9(X)

Then we can find S and G such that:

H=T5(X) =T9X)

?All the results are based on rectifier nonlinearity
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@ Goal: compare models’ representation ability in terms of their
parameters

@ Linear case: simply compare the rank of the tensor W

o Generalized case: compare in terms of the grid tensor '“(X)
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Expressivity

Theorem 2

Given a generalized RNN of rank at most R and its grid tensor ['Y(X), its
realization of generalized shallow network can be written as:

r9(x) = rS(X) = Z)\ Fvi)) @¢ (Fv?) @ - - @¢ (FulT)

There exists 1, such that R > ;2-min(M, R)7/2;
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Expressivity

Theorem 3

Given a generalized RNN of rank R and its grid tensor 'Y (X), its
realization of generalized shallow network can be written as:

R

r9(X) = r5(X) = Y A (Ful)) @ (Fui?) @ - ¢ (Ful))
r=1

There exists QNQ, such that R =1
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Experiment on IMDB sentiment analysis
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Figure 2: Test accuracy on IMDB dataset for gen-
eralized RNNs and generalized shallow networks
with respect to the total number of parameters
(M =50,7 =100, &(z,y) = max(z,y,0)).



Experiment on Synthetic Data
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Figure 3: Distribution of lower bounds on the
rank of generalized shallow networks equiva-
lent to randomly generated generalized RNNs of
ranks 1,2. 4, 8 (M = 10, T = 6).
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Conclusion

Draw links between RNNs and TT decomposition

Introduce nontrivial nonlinearity into tensor framework

Provide theoretical analysis on universality and expressivity under
rectifier nonlinearity

@ Extend this to LSTM and attention? Other nonlinearities?
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