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Learning with Structured Data

Supervised Learning:

Learn f : X — Y from a sample {(x1,y1), -+, (xn,yn)} C X x V.
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Supervised Learning:

Learn f : X — Y from a sample {(x1,y1), -+, (xn,yn)} C X x V.

o Classical learning algorithms assume X = R9 and ) = RP.
@ How to handle input/output structured data?
» Tensor structured data: Images, videos, spatio-temporal data, ...
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Learn f : X — Y from a sample {(x1,y1), -+, (xn,yn)} C X x V.

o Classical learning algorithms assume X = R9 and ) = RP.
@ How to handle input/output structured data?

» Tensor structured data: Images, videos, spatio-temporal data, ...
» Discrete structured data: strings, trees, graphs, ...
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Learning with Structured Data

Supervised Learning:

Learn f : X — ) from a sample {(x1,y1), -+, (xn, yn)} C X x V.

o Classical learning algorithms assume X = R9 and ) = RP.
@ How to handle input/output structured data?

» Tensor structured data: Images, videos, spatio-temporal data, ...
» Discrete structured data: strings, trees, graphs, ...

@ In both cases, one can leverage linear and tensor algebra to design
learning algorithms.
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Tensors

dy M le

d2 d2

R

M E]RledQ TERd1Xd2Xd3
M € R for i € [di],j € [da] (T i) € R for i € [di],j € [do], k € [d3]
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Tensors and Machine Learning

(i) Data has a tensor structure: color image, video, multivariate time
series...

(i) Tensors as parameters of a model: polynomial regression, higher-order
RNNs, weighted automata on trees and graphs...

(iii) Tensors as tools: tensor method of moments [Anandkumar et al.,
2014], layer compression in neural networks [Novikov et al., 2015],
deep learning theoretical analysis [Cohen et al., 2015]...
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Contributions

@ Low rank regression for tensor data [NIPS'16, arXiv'17]
rain

sun

T—temp.

location

time
@ Weighted automata for learning with discrete structured data
[NIPS'17-a, AISTATS'18, JCSS'18, FoSSaCS'18]

@ Tensor Method of Moments [NIPS'17-b, CAP'14]
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Outline

© Preliminaries: Tensors and Multilinear Algebra
© Low-Rank Regression with Tensor Responses
© Weighted Automata for Learning with Structured Data

@ Conclusion and Future Lines of Research
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Tensor Networks

Matrix: My, 3rd order tensor: T jjis
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Tensor Networks

Matrix: My, 3rd order tensor: T jjis

Matrix product:

AB)II i2 ZAllkBklg
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Tensor Networks

2
1 2 1 3

Matrix: My, 3rd order tensor: T jjis

1 2
Trace:

Tr(M) =) M;

i
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Tensor Networks

LA 1

Matrix: My, 3rd order tensor: T i iis

Tensor times matrices:

(T X1 A X2 B X3 C)il,izﬂ's = Z Tk1k2k3Ai1k1 Bi2k2Ci3k3
kikaks
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Multilinear Maps

o Liner map f : R? — RP maps x to Wx = W x5 x for some
W € RP*:

- o—a
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Multilinear Maps

o Liner map f : R? — RP maps x to Wx = W x5 x for some
W € RP*:

1
‘ . 1 2 ‘i’ 1
o Multilinear map g : R% x R% — RP maps (u,v) to W x5, u x3 v for
some W € RP*dxd.

&&H?
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Example: Multilinear Maps in Higher-Order RNNs

o Recurrent Neural Network (RNN):

(X17X27X37"') = (YIaY27Y3a“ )

@ Simple RNN:

h; = g(Ux¢ + Vh,_1), y: = g(Mh,)
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Example: Multilinear Maps in Higher-Order RNNs

o Recurrent Neural Network (RNN):

(X]_,X2,X3,"') = (y17y27y3a"')

@ Simple RNN:

h; = g(Ux¢ + Vh,_1), y: = g(Mh,)

@ Second-order RNN [Giles et al., NIPS'90]:
h: = g(W x2xt x3h_1)

— order 2 multiplicative interactions: [h:]; = g (Zj,k W,-jk[xt]j[ht_l]k).
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Tensor Decomposition Techniques

@ Matrix Decomposition:

= Rank of M: smallest R such that M = UV
(with U € R™R v ¢ RR*m),
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Tensor Decomposition Techniques

@ Tucker decomposition [Tucker, 1966 / Hitchcock, 1927]:

= Multilinear rank of T smallest (Ry, R2, R3) such that
T =G x1U; xo2 Uz x3 U3
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Tensor Decomposition Techniques

@ Tucker decomposition [Tucker, 1966 / Hitchcock, 1927]:

di

= Multilinear rank of T smallest (R1, Rz, R3) such that
T =G x1 Uy x2 Uz x3U3
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Outline

@ Preliminaries: Tensors and Multilinear Algebra

© Low-Rank Regression with Tensor Responses
@ Problem Setting
@ Higher-Order Low-Rank Regression
@ Theoretical Guarantees
@ Experiments
@ Discussion

© Weighted Automata for Learning with Structured Data

@ Conclusion and Future Lines of Research
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Tensor Structured Data

o Data with tensor structure: EEG, hyperspectral images, videos, ...

location
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Problem
Learn f : R% — RIOX %% from {(x("), Y(MIIN_ where Y(") ~ f(x(M).
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Problem
Learn f : R% — ROX %% from {(x(", P(MNIN_ where Y(") ~ £(x(M).

e Multilinear Multitask Learning [Romera-Paredes et al., 2013]

f(x) € R(Restaurant Critics) x (Evaluation Criteria)

Rest. 1 Critic1  Critic 2 Critic 3

food quality 5 3 6
service quality 7 8 6.5
overall rating 5 6.5 4

Rest. 2 Critic1 Critic 2 Critic 3

food quality 7 8 6
service quality 8.5 9 9
overall rating 8 9.5 7
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Multivariate Regression

Learn f : RY — RP from samples {(x("), y(M}N_ where y(") ~ £(x(").

n=1

food quality
x— f ——| service quality
| overall rating

o Linear model: f(x) = W'x (W € R9*P)
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Learn f : RY — RP from samples {(x("), y(M}N_ where y(") ~ £(x(").

n=1

food quality
x— f ——| service quality
overall rating

o Linear model: f(x) = W'x (W € R9*P)

@ Ordinary Least Squares

W = arg min || XW — Y||2 (X € RV*d 'y ¢ RV*P)
WeRIxp
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Multivariate Regression

Learn f : RY — RP from samples {(x("), y(M}N_ where y(") ~ £(x(").

n=1

o f; — food

x— f, — service

f5'— overall

o Linear model: f(x) = W'x (W € RI*P)

@ Ordinary Least Squares

W = arg min | XW — Y||2 (X € RV*d 'y ¢ RV*P)
WeRdxP

= Equivalent to perform p independent linear regressions!
How can we capture linear dependencies in the output?
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Multivariate Regression

Learn f : RY — RP from samples {(x("),y(M)}N_ where y(") ~ £(x(").

£, —— food

7w

x—> f, —> service

||
f, — overall

o Linear model: f(x) = W'x (W € RI*P)

@ Ordinary Least Squares

W = arg min | XW — Y||2 (X € RVxd 'y ¢ RV*P)
WeRdxp

e Reduced Rank Regression (lzenman, 1975)

W = argmin [ XW — Y||2 st rank(W) < R
WERdxP
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Tensor-valued Regression

Learn f : R% — RAX% from {(x("), Y(MIN_ where Y(") ~ f(x(").

n=1
-Cz\ Vv .Q,{b
& &&c &
| W 8 10 9 |food quality
X —> f —>| 2 7 6 |service quality
| 5 9 7 | overall rating
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Tensor-valued Regression

Learn f : R% — RAX® from {(x(M, YN where Y(") ~ f(x(").

N v o ?
L
S & &

8 10 9 |food quality
X —> f —>| 2 7 6 |service quality
5 9 7 | overall rating

@ Vectorize outputs and use reduced rank regression?

— Need to capture higher order dependencies: multilinear rank
constraint.
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Tensor-valued Regression [GR, H. Kadri, NIPS'16]

Learn f : R% — RAX% from {(x(M, Y(MIN_ where Y(") ~ f(x(M).

o Y S
& di&c' &
] 8 10 9 |food quality
X—> f —>| 2 7 6 |service quality
5 9 7 | overall rating
@ Linear model: f(x) = W x1x (W € Rbxdixdz)
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Tensor-valued Regression [GR, H. Kadri, NIPS'16]

Learn f : R% — RA* from {(x(M, YMIN_ where Y7 ~ f(x(").

n=1
Nao
& &
8 10 9 |food quality
X—> f —>| 2 7 6 |service quality
5 9 7 | overall rating
@ Linear model: f(x) = W x1x (W € Rbxdixdz)

o Low-Rank Regression for Tensor Structured Response

argmin (W x1 X =Y|% st rank,, (W) < (Ro, Ri, R2)
WG]RdOXledZ
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Solving the Minimization Problem [GR, H. Kadri, NIPS'16]

Problem

argmin  |W x1 X — V|| s.t. rank (W) < (Ro, R1, R2)
WeRdoxdlxdz
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Solving the Minimization Problem [GR, H. Kadri, NIPS'16]

Problem

argmin  |[W x1 X — V|2 s.t. rank, (W) < (Ro, R1, R2)
WE]RdOXdIXdZ

is equivalent to:

Problem

arg min|| Y x1 Mo x2 My x3 My — Y||7 w.r.t. U; € R4>FRi
Uo,U1,U>

st. UU; =1 for0<i<2 M= XU (UOTxTxuo)’1 U X", ni=uu/ fori=1,2

@ Find 3 low-dimensional subspaces Uy, U1, U, such that projecting Y
along the corresponding modes is close to Y.

@ NP-hard... Solve argmin, ||V x; 11 M; — yH,% instead.
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Theoretical Guarantees [GR, H. Kadri, NIPS'16]

Problem

() argmin |[W x1 X - Y|* s.t. rank (W) < (Ro, R, R2)
WE]RdOXled2

@ HOLRR is an order 3 approximation algorithm:

Theorem

Let W* be a solution of (x) and let W be the regression tensor returned
by HOLRR. Then,

W x1 X = Y||2 <3[W* x1 X —Y|2.
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Theoretical Guarantees (cont’d) [GR, H. Kadri, NIPS'16]

Problem

() argmin |[W x1 X —Y|% s.t. rankm (W) < (Ro, Ri, R)
WeRdoxdlxdz

@ HOLRR is statistically consistent
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Theoretical Guarantees (cont'd) [GR, H. Kadri, NIPS'16]

Problem

() argmin |[W x1 X —Y|% s.t. rank (W) < (Ro, R1, R2)
We]RdOXled2

@ HOLRR is statistically consistent

@ Generalization bound for the class of functions

Fmi ={x—= W x1x : rank,; (W) = (Ro, R1, R2)}.

— VC-dimension of F, is in O (\/RoRle Iog(d1d2d3)) instead of
O (Vdidads).
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Image Reconstruction from Noisy Measurements
o W c R3x50x50 is an RGB image.
e Data is generated by Y = W x1 x + £ where x ~ N(0,1) and
€; ~N(0,1).

@ Training set of size 200.

target HOLRR (3, 1, 1) HOLRR (3, 4, 4) HOLRR (3, 8, 8)HOLRR (3, 16, 16)

e

i
~ sllld

rank = 1 rank = 2 rank =3 rank = 4
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Experiments on Real Data

0.68 - 102 -
HEl Convex relaxation ‘
0.66 - WM Higher-order partial least squares
I HOLRR
0.64 - WM K-HOLRR
" .
w 0.62 - 'g
2 S 10'-
& 0.60 - @ :
()] .
0.58 - i
0.56 - : I
. NN
METEO UK CCDS running time

Figure: Task: predict meteorological variables in different locations from their
values in the preceding 3 time steps (average over 10 runs). Output is of size
17 x 125 for CCDS and 5 x 16 x 5 for METEO-UK.
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Discussion

Multilinear extension of low/reduced-rank regression.
Approximation algorithm rather than convex relaxation.

Kernel extension — nonlinear setting.

Fast, efficient, theoretical guarantees.
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Discussion

Multilinear extension of low/reduced-rank regression.
Approximation algorithm rather than convex relaxation.

Kernel extension — nonlinear setting.

Fast, efficient, theoretical guarantees.

faster algorithms
Leverage the tensor structure = o
better sample efficiency
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Outline

@ Preliminaries: Tensors and Multilinear Algebra
© Low-Rank Regression with Tensor Responses

© Weighted Automata for Learning with Structured Data
o Weighted Automata (WA) and Spectral Learning
@ Connections betweens WAs and RNNs
@ Beyond Strings and Trees: Graph Weighted Models

@ Conclusion and Future Lines of Research
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Problem Statement

@ How can one learn with structured objects such as strings and trees?
s

N VP

7 e
N\

D N

John hit the ball

@ Intersection of Theoretical Computer Science and Machine Learning...
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Problem Statement

@ How can one learn with structured objects such as strings and trees?

kA :
—_— T : Vv NP
- C o N

Jnim |1.il l‘tl1e b.lall_

@ Intersection of Theoretical Computer Science and Machine Learning...

— Weighted Automata: robust model to represent functions defined over
structured objects (for example probability distributions).
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Problem Statement

@ How can one learn with structured objects such as strings and trees?
s

N VP

: vV NP

/N

D N

Jnim |1.il l‘tl1e b.lall_

@ Intersection of Theoretical Computer Science and Machine Learning...

— Weighted Automata: robust model to represent functions defined over
structured objects (for example probability distributions).

@ String Weighted Automata (WA): generalize Hidden Markov Models,
Predictive State Representations and closely related to RNNs.
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String Weighted Automata (WA)

e ¥ a finite alphabet (e.g. {a, b}), ¥* strings on X (e.g. abba)
o A WA computes a function f : £* - R
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String Weighted Automata (WA)

e ¥ a finite alphabet (e.g. {a, b}), ¥* strings on X (e.g. abba)
o A WA computes a function f : £* - R
o Weighted Automaton: A = (o, {A? },ex,w) where

a € R" initial weights vector
w € R" final weights vector
A% € R™" transition weights matrix for each 0 € ©
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String Weighted Automata (WA)

e ¥ a finite alphabet (e.g. {a, b}), ¥* strings on X (e.g. abba)
o A WA computes a function f : £* - R
o Weighted Automaton: A = (o, {A? },ex,w) where

a € R" initial weights vector
w € R" final weights vector
A% € R™" transition weights matrix for each 0 € ©

@ A computes a function f4 : ¥* — R defined by

fa(orog---0k) = a  APTA%2 ... A%k

9 —9
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Weighted Automata and Representation Learning

& o(x)

R’n

e A WA induces a mapping ¢ : ©* — R" (~ word embedding)
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Weighted Automata and Representation Learning

e A WA induces a mapping ¢ : ©* — R" (~ word embedding)

@ The mapping ¢ is compositional:

dp(N) =a', ¢(o1) =a A%, ¢(o100) = o ATTA%2 = ¢(01)A%2, ...
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Weighted Automata and Representation Learning

Z*

e A WA induces a mapping ¢ : ©* — R" (~ word embedding)

@ The mapping ¢ is compositional:
o) =a’, ¢(o1) = a' A", §(0102) = 'l ATA% = §(01)AT, ...

@ The output fa(x) = (¢(x),w) is linear in ¢(x).
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Spectral Learning of Weighted Automata
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Spectral Learning of Weighted Automata

e Hf € RE"™*X": Hankel matrix of f: ¥* - R

Definition: prefix p, suffix s = (H¢)p,s = f(ps)
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Spectral Learning of Weighted Automata

e Hf € RE"™*X": Hankel matrix of f: ¥* - R

Definition: prefix p, suffix s = (H¢)p,s = f(ps)

e Fundamental theorem [Carlyle and Paz, 1971; Fliess 1974]:

rank(Hf) < 0o <= f can be computed by a WA
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Spectral Learning of Weighted Automata

e Hf ¢ R="*X": Hankel matrix of f : ¥* 5 R

Definition: prefix p, suffix s = (H¢)p s = f(ps)

e Fundamental theorem [Carlyle and Paz, 1971; Fliess 1974]:

rank(Hf) < 0o <= f can be computed by a WA

@ Proof is constructive = Spectral Learning of WA:

1. Estimate a sub-block of Hf from training data
2. Low rank decomposition H =~ PS
3. Build WA A using H,P and S.

— Efficient and consistent learning algorithms for weighted automata
[Hsu et al., 2009; Bailly et al. 2009; Balle et al., 2014, ...].
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Connections betweens WAs and

RNNs
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Weighted Automata and Recurrent Neural Networks

@ Recall that the hidden state of a second-order RNN (2-RNN) is
computed by
h: = g(W x2 %t x3 ht_1)
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Weighted Automata and Recurrent Neural Networks

@ Recall that the hidden state of a second-order RNN (2-RNN) is
computed by

h: = g(W x2x¢ x3h_1)
e Similarly, the feature map of a WA (o, {A? },cx,w) can be written as

d(xo) = A X2 e, X3 ¢(x)
where

» A€ R™EX1 s defined by A, ,. = (A?)T,
> e, is the one-hot encoding of o.
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Spectral Learning of Linear 2-RNNs [ GR, T.Li, D. Precup]

@ For sequences of discrete symbols, WAs and second-order RNNs with
linear activation functions are equivalent!
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Spectral Learning of Linear 2-RNNs [ GR, T.Li, D. Precup]

@ For sequences of discrete symbols, WAs and second-order RNNs with
linear activation functions are equivalent!

= For the discrete case, the spectral learning algorithm is a consistent
learning algorithm for linear second-order RNNs.
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Spectral Learning of Linear 2-RNNs [ GR, T.Li, D. Precup]

@ For sequences of discrete symbols, WAs and second-order RNNs with
linear activation functions are equivalent!

= For the discrete case, the spectral learning algorithm is a consistent
learning algorithm for linear second-order RNNs.

@ What about sequences of continuous vectors?

— Can we extend the spectral learning algorithm to linear 2-RNNs defined
over continuous vectors?
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Spectral Learning of Linear 2-RNNs [ GR, T.Li, D. Precup]

@ For sequences of discrete symbols, WAs and second-order RNNs with
linear activation functions are equivalent!

= For the discrete case, the spectral learning algorithm is a consistent
learning algorithm for linear second-order RNNs.

@ What about sequences of continuous vectors?
— Can we extend the spectral learning algorithm to linear 2-RNNs defined
over continuous vectors?
o YES! By leveraging multilinear properties of linear RNNs and tensor
sensing techniques.
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Non-Linear Weighted Automata [T.Li, GR, D. Precup, AISTATS'18]

o WA A= (a,{A%},cx,w): linear transition maps and linear
termination function...
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Non-Linear Weighted Automata [T.Li, GR, D. Precup, AISTATS'18]

o WA A= (a,{A%},cx,w): linear transition maps and linear
termination function...
@ Non-linear Weighted Automaton: (e, {Gs}sex, F)

» « is the initial latent state
» G, : R" — R" are non-linear transition maps
» F:R"” — R is a non-linear termination function

f(0102---0k) = F(Go (- -~ Gop(Goy () - -)

(~ RNNs with one-hot encoding of the inputs)
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Non-Linear Weighted Automata [T.Li, GR, D. Precup, AISTATS'18]

o WA A= (a,{A%},cx,w): linear transition maps and linear
termination function...
@ Non-linear Weighted Automaton: (e, {Gs}sex, F)

» « is the initial latent state
» G, : R" — R" are non-linear transition maps
» F:R"” — R is a non-linear termination function

floroa---0k) = F(Go, (- -+ Gy (Goy () -+ -)
(~ RNNs with one-hot encoding of the inputs)

@ Two-stage learning algorithm:

> Learning ¢: £* — R" using an encoder-decoder network to non-linearly
decompose the Hankel matrix Hy.
» Learning G,: feed-forward neural networks.
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Non-Linear Weighted Automata [T.Li, GR, D. Precup, AISTATS'18]

@ Experiments on Penn Tree Bank data: 5,987 sentences over an

alphabet of 33 symbols.
@ Two evaluation metrics:

Table: Pautomac Score (~ perplexity) on test data.

Sample Size  SP EM RNN NL-WA
1000 9.098 4.252 4765  2.937
2000 4.995 3.723 4.6053 2.923
3000 4532 3570 4.398 2.894
4000 4235 3542 4244  2.880
ALL 4234 349 4.191 2.748

Table: Word error rate (one-step ahead prediction) on test data.

Sample Size  SP EM RNN NL-WA
1000 0.8432 0.808 0.806 0.7630
2000 0.8342 0.793 0.788 0.7332
3000 0.8195 0.781 0.736 0.7134
4000 0.8141 0.776 0.692 0.6935
ALL 0.8033 0.753 0.669 0.6831
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Beyond Strings and Trees
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A Look Back on String Weighted Automata

A Weighted Automaton A = (o, {A? },cx,w) computes a function
fa: X* — R defined by

fA(O'l(TQ s Uk) = OLTAUIAU2 < A% w

9 —9
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Beyond Strings: Weighted Tree Automata
o A weighted tree automaton (WTA) is a tuple A= (a, T, {ws }oex)

a € R" : vector of initial weights
T € R™"™"™ . tensor of transition weights

wes € R": vector of final weights associated with o € ©

o A WTA computes a function f4 : Ty — R.

fa
—
a b c d
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Graph Weighted Models [R. Bailly*, GR*, F. Denis, LATA'15/JCSS'18]

o F= {3(‘)7 h('7 ')ag('a K )}

Figure: A graph on the ranked alphabet F = {a(-), h(-,"),g(-,-,*)}.
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Graph Weighted Models [R. Bailly*, GR*, F. Denis, LATA'15/JCSS'18]

o F= {a(')7 h('7 ')ag('a K )}

Figure: A graph on the ranked alphabet F = {a(-), h(-,"),g(-,-,*)}.

e GWM: vector M? € R", matrix M € R"™" tensor M& € RM*n%n

Guillaume Rabusseau ML, Tensors & Structured Data



Graph Weighted Models [R. Bailly*, GR*, F. Denis, LATA'15/JCSS'18]

o F= {3(‘)7 h(" ')7 g('v K )}

e GWM: vector M? € R”, matrix M € R"™" tensor M8 € R %"

m(G) = > M ML ME, M

1,2 i2,i3 i3,11,ia
i1,i2,i3,ia€[n]

Guillaume Rabusseau ML, Tensors & Structured Data June 11, 2018 38 /45



Graph Weighted Models [R. Bailly*, GR*, F. Denis, LATA'15/JCSS'18]

° F = {O[(-), a('v ')a b(a )vw()}
o GWM: M% M¥ € R", M? MP e R*n

O & & & 0O
d|

fm(G) = Z M?I‘M‘?”-M’?~M‘?~M?-

i1, 2 i2,i3 3,4 a5

w
M

= o MPM?MPMA3w
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Graph Weighted Models [R. Bailly*, GR*, F. Denis, LATA'15/JCSS'18]

° F= {a(‘v ')’ b('? )}
o GWM: M2 MP ¢ R*"

_ a b a a b b
fM(G) - Z Mi17i2Ml'27i3Mi3,f4Mi4,i5Mf5,i6Mi6,i1

= Tr(M°M®M?M*MPMP)
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Learning Graph Weighted Models

o Long term objective: extend the spectral learning algorithm to
functions defined over graphs.

— learning general GWMs is very challenging.

o First step: study the problem of learning GWMs defined over simple
families of graphs (circular strings, 2D grids).

@ Minimization of GWMs over circular strings [GR, FoSSaCS'18]:

» Minimizing WA < linear algebra
» Minimizing GWMs < theory of finite dimensional algebras
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Outline

© Preliminaries: Tensors and Multilinear Algebra
© Low-Rank Regression with Tensor Responses
© Weighted Automata for Learning with Structured Data

@ Conclusion and Future Lines of Research
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Conclusion

@ Spectral methods for tensor and discrete structured data.
= Leverage fundamental algebraic properties for learning:
» Take tensor structure into account for better generalization.

> Learning for structured data with weighted automata.
> Spectral learning: efficient and consistent learning algorithms.

Multilinear algebra <> powerful models for learning with structured data.
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Future Research Directions

@ Learning with graphs.

» Develop efficient learning algorithms for graph structured data.
» Spectral learning of GWM =- consistent learning algorithm.
» Explore connections with graph neural networks (TCS insight).
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@ Learning with graphs.

» Develop efficient learning algorithms for graph structured data.
» Spectral learning of GWM =- consistent learning algorithm.
» Explore connections with graph neural networks (TCS insight).

@ Fast and scalable learning algorithms.

» Tensor networks have been successfully used in numerical analysis and
quantum physics to perform very large scale linear algebra.
» Wide range of potential applications in ML.
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Future Research Directions

@ Learning with graphs.
» Develop efficient learning algorithms for graph structured data.
» Spectral learning of GWM =- consistent learning algorithm.
» Explore connections with graph neural networks (TCS insight).

@ Fast and scalable learning algorithms.
» Tensor networks have been successfully used in numerical analysis and
quantum physics to perform very large scale linear algebra.
» Wide range of potential applications in ML.

@ Nonlinear tensor learning.
» Combine the power of tensor algebra and deep learning.
> Revisit higher-order RNN through the lens of multilinear algebra.
» Both directions, e.g. non-linear extensions of tensor decomposition
techniques / multilinear regularization in deep networks.
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Thank you for your attention.




Image Reconstruction from Noisy Measurements
o W c R3x50x50 is an RGB image.
e Data is generated by Y = W x1 x + £ where x ~ N(0,1) and
€; ~N(0,1).

@ Training set of size 200.

target HOLRR (3, 1, 1) HOLRR (3, 4, 4) HOLRR (3, 8, 8)HOLRR (3, 16, 16)

e

LRR 1

LRR 3
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Image Reconstruction from Noisy Measurements

o W € R3*70x70 is an RGB image.

target HOLRR (3, 1, 1) HOLRR (3, 4, 4) HOLRR (3, 8, 8)HOLRR (3, 16, 16)
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lzenman, A. J. (1975). Reduced-rank regression for the multivariate linear
model. Journal of Multivariate Analysis, 5(2):248-264.
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