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Université de Montréal - Mila - CIFAR CCAI chair

May 2, 2019
IACS - Stony Brook University

Guillaume Rabusseau Connecting WFAs and RNNs May 2, 2019 1 / 40



Learning with Structured Data
Supervised Learning:

Learn f : X → Y from a sample {(x1, y1), · · · , (xN , yN)} ⊂ X × Y.

Classical learning algorithms assume X = Rd and Y = Rp.
How to handle input/output structured data?

I Tensor structured data: Images, videos, spatio-temporal data, ...
I Discrete structured data: strings, trees, graphs, ...

In both cases, one can leverage linear and tensor algebra to design
learning algorithms.
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Introduction

How can one learn with structured objects such as strings and trees?

Intersection of Theoretical Computer Science and Machine Learning...

→ Weighted Automata: robust model to represent functions defined over
structured objects (and in particular probability distributions).
String Weighted Automata (WA): generalize Hidden Markov Models
Weighted Tree Automata (WTA): closely related to PCFGs
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Weighted Automata Vs. Recurrent Neural Networks

Recurrent neural networks can also deal with sequence data
⊕ Remarkably expressive models, impressive results in speech and audio

recognition
	 Less tractable than WA, limited understanding of their inner working

Connections between WA and RNN:
I Can RNN learn regular languages? [Giles et al, 1992], [Avcu et al., 2018]
I Can we extract finite state machines from RNNs? [Giles et al, 1992],

[Weiss et al., 2018], [Ayache et al., 2018]
I Can we combine FSMs with WA? [Rastogi et al., 2016], [Dyer et al., 2016]
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Overview of the Results

In this work, we answer the following questions:

To which extent Weighted Automata are linear RNNs?

We show the exact equivalence of WAs and 2nd order RNNs with
linear activation functions (linear 2-RNNs).
This leads to a natural extension of WAs for sequences of continuous
vectors.
We extend the spectral learning algorithm for WAs: First provable
learning algorithm for linear 2-RNNs.
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Weighted Automata (WA) and
Recurrent Neural Networks (RNN)
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String Weighted Automata (WA)

Σ a finite alphabet (e.g. {a, b}), Σ∗ strings on Σ (e.g. abba)
A WA computes a function f : Σ∗ → R

Weighted Automaton: A = (α, {Aσ}σ∈Σ,ω) where

α ∈ Rn initial weights vector
ω ∈ Rn final weights vector

Aσ ∈ Rn×n transition weights matrix for each σ ∈ Σ
A computes a function fA : Σ∗ → R defined by

fA(σ1σ2 · · ·σk) = α>Aσ1Aσ2 · · ·Aσkω

α Aσ1 Aσ2 · · · Aσk ω1 1 2 1 2 1 2 1 2 1
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Weighted Automata: States and Transitions

slide credits: B. Balle, X. Carreras, A. Quattoni - ENMLP’14 tutorial
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Weighted Automata and Representation Learning

Σ∗

φ(x)

x

Rn

φ

A WA induces a mapping φ : Σ∗ → Rn (∼ word embedding)

The mapping φ is compositional:

φ(λ) = α>, φ(σ1) = α>Aσ1 , φ(σ1σ2) = α>Aσ1Aσ2 = φ(σ1)Aσ2 , ...

The output fA(x) = 〈φ(x),ω〉 is linear in φ(x).
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A Small Detour through Tensors
and Tensor Networks
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Tensors

M ∈ Rd1×d2

Mij ∈ R for i ∈ [d1], j ∈ [d2]
T ∈ Rd1×d2×d3

(T ijk) ∈ R for i ∈ [d1], j ∈ [d2], k ∈ [d3]
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Tensor Networks

M1 2 T1

2

3

Matrix: Mi1i2 3rd order tensor: T i1i2i3
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Tensor Networks

M1 2 T1

2

3

Matrix: Mi1i2 3rd order tensor: T i1i2i3

Matrix product: A B
1

2 1
2

(AB)i1,i2 =
∑

k
Ai1kBki2
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Tensor Networks

M1 2 T1

2

3

Matrix: Mi1i2 3rd order tensor: T i1i2i3

Trace: M1 2

Tr(M) =
∑

i
Mii
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Tensor Networks

M1 2 T1

2

3

Matrix: Mi1i2 3rd order tensor: T i1i2i3

Tensor times matrices:

TA

B

C

1

1

1

2 1

2

2

2

3

(T ×1 A×2 B×3 C)i1,i2,i3 =
∑

k1k2k3

T k1k2k3Ai1k1Bi2k2Ci3k3
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Multilinear Maps
Liner map f : Rd → Rp maps x to Wx = W×2 x for some
W ∈ Rp×d :

x 7−→ x W
1

1 2 1

Multilinear map g : Rd1 × Rd2 → Rp maps (u, v) to W ×2 u×3 v for
some W ∈ Rp×d1×d2 :

u v 7−→
1 1

W

u

v

1

2

2

2

3
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Example: Multilinear Maps in Higher-Order RNNs

Recurrent Neural Network (RNN):

(x1, x2, x3, · · · ) 7→ (y1, y2, y3, · · · )

Simple RNN:

ht = g(Uxt + Vht−1), yt = g(Mht)

Second-order RNN [Giles et al., NIPS’90]:

ht = g(W ×2 xt ×3 ht−1)

→ order 2 multiplicative interactions: [ht ]i = g
(∑

j,k W ijk [xt ]j [ht−1]k
)

.
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Weighted Automata and Recurrent Neural Networks

The hidden state of a second-order RNN is computed by

ht = g(W ×2 xt ×3 ht−1)

h0 W

x1

W

x2

W

x3

g g g

The computation of a weighted automaton is very similar!

α Aσ1 Aσ2 Aσ3 ω
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Weighted Automata and Recurrent Neural Networks

The hidden state of a second-order RNN is computed by

ht = g(W ×2 xt ×3 ht−1)

h0 W

x1

W

x2

W

x3

g g g

The computation of a weighted automaton is very similar!

α A

eσ1

A

eσ2

A

eσ3

ω

(where A ∈ Rn×Σ×n defined by A:,σ,: = Aσ)
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Our first result: WAs ≡ linear 2-RNNs

Theorem
WAs are expressively equivalent to second-order linear RNNs for
computing functions over sequences of discrete symbols.

But 2-RNNs can compute functions over sequences of continuous
vectors (e.g., word embeddings), what about WAs?

↪→ We can extend the definitions of WAs to continuous vectors!
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Continuous WA / linear 2-RNN

Definition
A continuous WA is a tuple A = (α,A,ω) where

α ∈ Rn initial weights vector
ω ∈ Rn final weights vector

A ∈ Rn×d×n is the transition tensor.

A computes a function fA : (Rd )∗ → R defined by

αf (x1, x2, · · · , xk) = A

x1

A

x2

· · · A

xk

ω
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Our first result: WAs ≡ linear 2-RNNs

Theorem
WAs are expressively equivalent to second-order linear RNNs (linear
2-RNNs) for computing functions over sequences of discrete symbols.

But 2-RNNs can compute functions over sequences of continuous
vectors (e.g., word embeddings), what about WAs?

↪→ We can extend the definitions of WAs to continuous vectors!

Can we learn linear 2-RNNs from data?
? Over sequences of discrete symbols?
↪→ Yes: spectral learning of WA
? Over sequences of continuous vectors?
↪→ Yes: technical contribution of [AISTATS’19]
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Spectral Learning of Weighted
Automata
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Hankel matrix

Hf ∈ RΣ∗×Σ∗ : Hankel matrix of f : Σ∗ → R

Definition: prefix p, suffix s ⇒ (Hf )p,s = f (ps)



a b aa ab ...

a f (aa) f (ab) . . . . . . . . .
b f (ba) f (bb) . . . . . . . . .
aa f (aaa) f (aab) . . . . . . . . .

ab
...

...
...

...
...

...
...

...
...

... . . .


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Spectral Learning of Weighted Automata

Hf ∈ RΣ∗×Σ∗ : Hankel matrix of f : Σ∗ → R

Definition: prefix p, suffix s ⇒ (Hf )p,s = f (ps)

Fundamental theorem [Carlyle and Paz, 1971; Fliess 1974]:

rank(Hf ) <∞⇐⇒ f can be computed by a WA
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Hankel matrix and WA

slide credits: B. Balle, X. Carreras, A. Quattoni - EMNLP’14 tutorial
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Hankel matrix: spectral learning

slide credits: B. Balle, X. Carreras, A. Quattoni - EMNLP’14 tutorial
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Spectral Learning of Weighted Automata (in a nutshell)

1. Choose a set of prefixes and suffixes, P,S ⊂ Σ∗.
2. Estimate the Hankel sub-blocks H and Hσ ∈ RP×S for each σ ∈ Σ

H =


a b

a f (aa) f (ab)
b f (ba) f (bb)
aa f (aaa) f (aab)

 Hσ =


a b

a f (aσa) f (aσb)
b f (bσa) f (bσb)
aa f (aaσa) f (aaσb)


3. Perform rank n decomposition H = PS
4. WA with initial/final weights α = Pλ,:, ω = S:,λ and transition

matrices Aσ = P†HσS† is a minimal WFA for f .

→ Efficient and consistent learning algorithms for weighted automata
[Hsu et al., 2009; Bailly et al. 2009; Balle et al., 2014, ...].
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Our second result: a consistent learning algorithm for
linear 2-RNNs

Theorem
The spectral learning algorithm is a consistent learning algorithm for
probability distributions over sequences of discrete symbols computed
by second-order RNNs with linear activation functions.
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Spectral Learning of Linear
2-RNNs

Guillaume Rabusseau Connecting WFAs and RNNs May 2, 2019 29 / 40



Learning linear 2-RNNs

Problem: learn a linear 2-RNNs from training data.

If inputs are one-hot encodings, we can use the spectral learning algorithm
for WAs...
↪→ What about sequences of continuous vectors?

What would be the equivalent of the Hankel matrix for f : (Rd )∗ → R?

H ∈ R(Rd )∗×(Rd )∗ ?
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Multi-linearity of linear 2-RNNs

Observation: Linear 2-RNNs are multilinear.

f (x1, . . . ,
∑

i
αiui , . . . , xk) =

∑
i
αi f (x1, . . . ,ui , . . . , xk)

⇒ learning the restriction of f to basis vectors is enough:

f (a,b) = f

∑
i
αiei ,

∑
j
βjej

 =
∑
i ,j
αiβj f (ei , ej)

We only need to learn the function f̃ : {1, 2, · · · , d}∗ → R

f̃ : i1i2 · · · ik 7→ f (ei1 , ei2 , . . . , eik )

Idea: Use the spectral learning algorithm to learn f̃ .
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Hankel Matrix Recovery from Linear Measurements

Choosing P = S = {1, · · · , d}L, we need to estimate the Hankel matrix
H ∈ RdL×dL defined by

Hi1i2···iL,j1j2···jL = f (ei1 , , . . . , eiL , ej1 , , . . . , ejL)

↪→ How to estimate H from input-output examples?

Given an input sequence (x1, x2, · · · , x2L) and its output
y ' f (x1, x2, · · · , x2L) we have

y '
∑

i1,··· ,i2L

[x1]i1 . . . [x2L]i2Lf (ei1 , . . . , ei2L)

= (x1 ⊗ · · · ⊗ x2L)>vec(H)

⇒ Each input-output example is a linear measurement of H.
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H ∈ RdL×dL defined by

Hi1i2···iL,j1j2···jL = f (ei1 , , . . . , eiL , ej1 , , . . . , ejL)

↪→ How to estimate H from input-output examples?

Given an input sequence (x1, x2, · · · , x2L) and its output
y ' f (x1, x2, · · · , x2L) we have

y '
∑

i1,··· ,i2L
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Learning Algorithm

Input: Train datasets DL,D2L,D2L+1. Number of states n.
1: From Dl = {((x(i)

1 , x(i)
2 , · · · , x(i)

l ), y (i))}Nl
i=1 ⊂ (Rd )l × R, solve

H(l) = arg min
H

Nl∑
i=1

(
x(i)

1 ⊗ x(i)
2 ⊗ · · · ⊗ x(i)

l )>vec(H)− y (i))
)2

2: Rank n factorization and parameter estimation:

H2L
...

...
'

(SVD) P
n... S

...

A = P+ ... H2L+1 S+...

α = HL S+...

ω = HL P+...

3: return Linear 2-RNN 〈h0,A,w〉.

Guillaume Rabusseau Connecting WFAs and RNNs May 2, 2019 33 / 40



Intuition on why this works
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Our 3rd result: a provable learning algorithm for 2-RNNs

Our learning algorithm computes a consistent estimator for linear 2-RNNs:

Theorem
Let (h0,A,w) be a minimal linear 2-RNN with n hidden units
computing a function f : (Rd )∗ → R
Let L be such that rank(H(2L)) = n
Suppose the entries of x(i)

j are drawn at random and each
y (i) = f (x(i)

1 , x(i)
2 , · · · , x(i)

l ).

If Nl ≥ d l for l = L, 2L, 2L + 1, the 2-RNN returned by our algorithm
computes f with probability one.
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Experiments
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Experiment on synthetic data
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Figure: Learning a random 2-RNN from noisy data
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Experiment on real data

Figure: Wind Speed Prediction
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Conclusion
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Conclusion
We proposed a natural extension of WA to the continuous case along
with a consistent learning algorithm.

This potentially addresses the limitation of spectral learning to small
alphabets (we can now use word embeddings with WA!)
Opens up a lot of questions on the formal language theory side about
continuous WAs.
Leverage the tensor structure of the Hankel matrix: more structure
than just a low rank matrix.
Use spectral learning as an initialization to BPTT, even for non-linear
RNNs!
Extension to weighted tree automata, polynomial weighted automata,
etc.

Thank you! Questions?
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