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Learning with Structured Data

Supervised Learning:

Learn f : X — Y from a sample {(x1,y1), -+, (xn,yn)} C X x V.
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Learning with Structured Data

Supervised Learning:

Learn f : X — Y from a sample {(x1,y1), -+, (xn,yn)} C X x V.

o Classical learning algorithms assume X = R9 and ) = RP.
@ How to handle input/output structured data?
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Learning with Structured Data
Supervised Learning:

Learn f : X — Y from a sample {(x1,y1), -+, (xn,yn)} C X x V.

o Classical learning algorithms assume X = R9 and ) = RP.
@ How to handle input/output structured data?
» Tensor structured data: Images, videos, spatio-temporal data, ...
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Learning with Structured Data

Supervised Learning:

Learn f : X — Y from a sample {(x1,y1), -+, (xn,yn)} C X x V.

o Classical learning algorithms assume X = R9 and ) = RP.
@ How to handle input/output structured data?

» Tensor structured data: Images, videos, spatio-temporal data, ...
» Discrete structured data: strings, trees, graphs, ...
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Learning with Structured Data

Supervised Learning:

Learn f : X — ) from a sample {(x1,y1), -+, (xn, yn)} C X x V.

o Classical learning algorithms assume X = R9 and ) = RP.
@ How to handle input/output structured data?

» Tensor structured data: Images, videos, spatio-temporal data, ...
» Discrete structured data: strings, trees, graphs, ...

@ In both cases, one can leverage linear and tensor algebra to design
learning algorithms.
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Introduction

@ How can one learn with structured objects such as strings and trees?
s

John hit the ball

@ Intersection of Theoretical Computer Science and Machine Learning...
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@ How can one learn with structured objects such as strings and trees?
s
N VP

kA H
— T iovONP

/N

—-— C o N
Jnim |1.il l‘tl1e b.lall_

@ Intersection of Theoretical Computer Science and Machine Learning...

— Weighted Automata: robust model to represent functions defined over
structured objects (and in particular probability distributions).

Guillaume Rabusseau Connecting WFAs and RNNs May 2, 2019 4/40



Introduction

@ How can one learn with structured objects such as strings and trees?

Jnim |1.il l‘tl1e b.lall_

@ Intersection of Theoretical Computer Science and Machine Learning...

— Weighted Automata: robust model to represent functions defined over
structured objects (and in particular probability distributions).

@ String Weighted Automata (WA): generalize Hidden Markov Models
o Weighted Tree Automata (WTA): closely related to PCFGs
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Weighted Automata Vs. Recurrent Neural Networks

a0.4 — a0.1
b 0.1 b o1 b 0.1 @
@ e :
a0.2 @
b0.3

@ Recurrent neural networks can also deal with sequence data
@ Remarkably expressive models, impressive results in speech and audio
recognition
& Less tractable than WA, limited understanding of their inner working
@ Connections between WA and RNN:
» Can RNN learn regular languages? [Giles et al, 1992], [Avcu et al., 2018]
» Can we extract finite state machines from RNNs? [Giles et al, 1992],
[Weiss et al., 2018], [Ayache et al., 2018]
» Can we combine FSMs with WA? [Rastogi et al., 2016], [Dyer et al., 2016]
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Overview of the Results

In this work, we answer the following questions:

To which extent Weighted Automata are linear RNNs?
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Overview of the Results

In this work, we answer the following questions:

To which extent Weighted Automata are linear RNNs?

@ We show the exact equivalence of WAs and 2nd order RNNs with
linear activation functions (linear 2-RNNs).

@ This leads to a natural extension of WAs for sequences of continuous
vectors.

@ We extend the spectral learning algorithm for WAs: First provable
learning algorithm for linear 2-RNNs.
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Weighted Automata (WA) and
Recurrent Neural Networks (RNN)
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String Weighted Automata (WA)

e ¥ a finite alphabet (e.g. {a, b}), ¥* strings on X (e.g. abba)
o A WA computes a function f : £* - R
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String Weighted Automata (WA)

e ¥ a finite alphabet (e.g. {a, b}), ¥* strings on X (e.g. abba)
o A WA computes a function f : £* - R
o Weighted Automaton: A = (o, {A? },ex,w) where

a € R" initial weights vector
w € R" final weights vector
A% € R™" transition weights matrix for each 0 € ©
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String Weighted Automata (WA)

e ¥ a finite alphabet (e.g. {a, b}), ¥* strings on X (e.g. abba)
o A WA computes a function f : £* - R
o Weighted Automaton: A = (o, {A? },ex,w) where

a € R" initial weights vector
w € R" final weights vector
A% € R™" transition weights matrix for each 0 € ©

@ A computes a function f4 : ¥* — R defined by

fa(orog---0k) = a  APTA%2 ... A%k

9 —9
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Weighted Automata: States and Transitions

Example with 2 states and alphabet ~ = {q, b}

Operator Representation

a04 Q0.1 aQ.l
b 0.1 % i b 0.1 o = 1.0 A 0.4 0.2
0.0 0.1 0.1
0.6
—t _[o0] o _[o1 03
@ = lge ~ 101 01
a 0.2
b 0.3
f(ab) = 0.4 x 0.3 x 0.6 + 0.2 x 0.1 x 0.6 = 0.084
= o A"A® w

slide credits: B. Balle, X. Carreras, A. Quattoni - ENMLP’'14 tutorial
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Weighted Automata and Representation Learning

& o(x)

R’n

e A WA induces a mapping ¢ : ©* — R" (~ word embedding)

Guillaume Rabusseau Connecting WFAs and RNNs



Weighted Automata and Representation Learning

e A WA induces a mapping ¢ : ©* — R" (~ word embedding)

@ The mapping ¢ is compositional:

dp(N) =a', ¢(o1) =a A%, ¢(o100) = o ATTA%2 = ¢(01)A%2, ...
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Weighted Automata and Representation Learning

Z*

e A WA induces a mapping ¢ : ©* — R" (~ word embedding)

@ The mapping ¢ is compositional:
o) =a’, ¢(o1) = a' A", §(0102) = 'l ATA% = §(01)AT, ...

@ The output fa(x) = (¢(x),w) is linear in ¢(x).
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String Weighted Automata (WA)

e ¥ a finite alphabet (e.g. {a, b}), ¥* strings on X (e.g. abba)
o A WA computes a function f : £* - R
o Weighted Automaton: A = (a, {A? },ex,w) where

a € R" initial weights vector
w € R" final weights vector
A% € R™" transition weights matrix for each 0 € ©

@ A computes a function f4 : ¥* — R defined by

fa(orog---0ok) = al APTA%2 ... A%k

9 —9I
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A Small Detour through Tensors
and Tensor Networks
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Tensors

dy M le

d2 d2

R

M E]RledQ TERd1Xd2Xd3
M € R for i € [di],j € [da] (T i) € R for i € [di],j € [do], k € [d3]
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Tensor Networks

Matrix: My, 3rd order tensor: T jjis
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Tensor Networks

Matrix: My, 3rd order tensor: T jjis

Matrix product:

AB)II i2 ZAllkBklg
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Tensor Networks

2
1 2 1 3

Matrix: My, 3rd order tensor: T jjis

1
Trace: ;

2
Tr(M) =) M;

i
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Tensor Networks

LA 1

Matrix: My, 3rd order tensor: T i iis

Tensor times matrices:

(T X1 A X2 B X3 C)il,izﬂ's = Z Tk1k2k3Ai1k1 Bi2k2Ci3k3
kikaks
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Multilinear Maps

o Liner map f : R? — RP maps x to Wx = W x5 x for some
W € RP*:

- o—a
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Multilinear Maps

o Liner map f : R? — RP maps x to Wx = W x5 x for some
W € RP*:

1
‘ . 1 2 ‘i’ 1
o Multilinear map g : R% x R% — RP maps (u,v) to W x5, u x3 v for
some W € RP*dxd.

&&H?
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Example: Multilinear Maps in Higher-Order RNNs

o Recurrent Neural Network (RNN):

(X17X27X37"') = (YIaY27Y3a“ )

@ Simple RNN:

h; = g(Ux¢ + Vh,_1), y: = g(Mh,)

Guillaume Rabusseau Connecting WFAs and RNNs May 2, 2019 16 / 40



Example: Multilinear Maps in Higher-Order RNNs

o Recurrent Neural Network (RNN):

(X]_,X2,X3,"') = (y17y27y3a"')

@ Simple RNN:

h; = g(Ux¢ + Vh,_1), y: = g(Mh,)

@ Second-order RNN [Giles et al., NIPS'90]:
h: = g(W x2xt x3h_1)

— order 2 multiplicative interactions: [h:]; = g (Zj,k W,-jk[xt]j[ht_l]k).
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Weighted Automata and Recurrent Neural Networks

@ The hidden state of a second-order RNN is computed by

h: = g(W X2 Xt X3 ht—l)
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Weighted Automata and Recurrent Neural Networks

@ The hidden state of a second-order RNN is computed by

h: = g(W X2 Xt X3 ht—l)

@ The computation of a weighted automaton is very similar!

909099
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Weighted Automata and Recurrent Neural Networks

@ The hidden state of a second-order RNN is computed by

ht = g(W Xo Xt X3 ht_]_)

@ The computation of a weighted automaton is very similar!

(where A € R™E%" defined by A. ,. = A%)
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Our first result: WAs = linear 2-RNNs

Theorem

WASs are expressively equivalent to second-order linear RNNSs for
computing functions over sequences of discrete symbols.
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Our first result: WAs = linear 2-RNNs

Theorem

WASs are expressively equivalent to second-order linear RNNSs for
computing functions over sequences of discrete symbols.

@ But 2-RNNs can compute functions over sequences of continuous
vectors (e.g., word embeddings), what about WAs?

< We can extend the definitions of WAs to continuous vectors!
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Continuous WA / linear 2-RNN
Definition
A continuous WA is a tuple A = (a, A, w) where

a € R" initial weights vector
w € R" final weights vector

A € R"™d%n s the transition tensor.

A computes a function f : (RY)* — R defined by

f(x1,X0, - ,Xk) = Q—g—g—_g_q
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Our first result: WAs = linear 2-RNNs

Theorem

WAs are expressively equivalent to second-order linear RNNs (linear
2-RNNs) for computing functions over sequences of discrete symbols.

@ But 2-RNNs can compute functions over sequences of continuous
vectors (e.g., word embeddings), what about WAs?

— We can extend the definitions of WAs to continuous vectors!
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Our first result: WAs = linear 2-RNNs

Theorem

WAs are expressively equivalent to second-order linear RNNs (linear
2-RNNs) for computing functions over sequences of discrete symbols.

@ But 2-RNNs can compute functions over sequences of continuous
vectors (e.g., word embeddings), what about WAs?
— We can extend the definitions of WAs to continuous vectors!
@ Can we learn linear 2-RNNs from data?

* Over sequences of discrete symbols?
< Yes: spectral learning of WA
* Qver sequences of continuous vectors?
< Yes: technical contribution of [AISTATS'19]
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Spectral Learning of Weighted
Automata
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Hankel matrix

o Hf € R¥*%": Hankel matrix of f : £* - R

Definition: prefix p, suffix s = (H¢)ps = f(ps)

a b aa ab
a [ f(aa) f(ab)
b f(ba) f(bb)
aa | f(aaa) f(aab)

ab

Guillaume Rabusseau Connecting WFAs and RNNs May 2, 2019 23/40



Spectral Learning of Weighted Automata

o Hf € R¥**": Hankel matrix of f : £* - R

Definition: prefix p, suffix s = (H¢)ps = f(ps)

e Fundamental theorem [Carlyle and Paz, 1971; Fliess 1974]:

rank(H¢) < co <= f can be computed by a WA
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Hankel matrix and WA

Theorem (Fliess ‘74)
The rank of a real Hankel matrix H equals the minimal number of states of a WFA recognizing
the weighted language of H

A(pl T Pest 'St’) = ”TA,D; o 'A[)1A51 o 'Asiuﬁ

slide credits: B. Balle, X. Carreras, A. Quattoni - EMNLP'14 tutorial
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Hankel matrix: spectral learning

Ha(p,s) = A(pas)

A(pr - prasy--sp) = o Ay - Ay AAg - Ag, B

slide credits: B. Balle, X. Carreras, A. Quattoni - EMNLP'14 tutorial
Guillaume Rabusseau Connecting WFAs and RNNs



Spectral Learning of Weighted Automata (in a nutshell)

1. Choose a set of prefixes and suffixes, P,S C ¥*.

2. Estimate the Hankel sub-blocks H and H? € RP*S for each 0 € ¥
a b a b
a f(aa) f(ab) a f(aca) f(aocb)
H= » | f(ba) f(bb) H? = » | f(boa) f(bob)
aa | f(aaa) f(aab) aa | f(aaca) f(aaobh)

3. Perform rank n decomposition H = PS

4. WA with initial /final weights o = P, ., w = S. ) and transition
matrices A° = PTH?ST is a minimal WFA for f.

— Efficient and consistent learning algorithms for weighted automata
[Hsu et al., 2009; Bailly et al. 2009; Balle et al., 2014, ...].
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Our second result: a consistent learning algorithm for
linear 2-RNNs
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Our second result: a consistent learning algorithm for
linear 2-RNNs

Theorem

The spectral learning algorithm is a consistent learning algorithm for
probability distributions over sequences of discrete symbols computed
by second-order RNNs with linear activation functions.
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Spectral Learning of Linear

2-RNNs
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Learning linear 2-RNNs

Problem: learn a linear 2-RNNs from training data.
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Learning linear 2-RNNs

Problem: learn a linear 2-RNNs from training data.

If inputs are one-hot encodings, we can use the spectral learning algorithm
for WAs...

— What about sequences of continuous vectors?
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Learning linear 2-RNNs

Problem: learn a linear 2-RNNs from training data.

If inputs are one-hot encodings, we can use the spectral learning algorithm
for WAs...
— What about sequences of continuous vectors?

What would be the equivalent of the Hankel matrix for f : (RY)* — R?

H c R(Rd)*X(Rd)* ?
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Multi-linearity of linear 2-RNNs

Observation: Linear 2-RNNs are multilinear.

f(xl,...,Za,-u,-,...,xk) :Za;f(xl,...,u;,...,xk)
i i
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Multi-linearity of linear 2-RNNs

Observation: Linear 2-RNNs are multilinear.

f(xl,...,Za,-u,-,...,xk) = Za,-f(xl,...,u,-,...,xk)
i i
= learning the restriction of f to basis vectors is enough:

fla,b)=f | ajei, Y Biej | =D aifif(eie))
i J iJ
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Multi-linearity of linear 2-RNNs

Observation: Linear 2-RNNs are multilinear.

f(xl,...,Zoc,-u,-,...,xk) = Za,-f(xl,...,u,-,...,xk)
i i
= learning the restriction of f to basis vectors is enough:
fla,b)=f | ajei, Y Biej | =D aifif(eie))
i j i

We only need to learn the function f : {1,2,--- ,d}* =R

f:i1i2---ik»—>f(e,-l,e,-z,...,e,-k)

Idea: Use the spectral learning algorithm to learn f.
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Hankel Matrix Recovery from Linear Measurements

Choosing P =S = {1,--- ,d}}, we need to estimate the Hankel matrix
H € RY"*9" defined by

Hl'll'z"'l'L,jlj'Q"'jL = f(e,-l, AP ,e,-L,ejl, g ,ejL)

— How to estimate H from input-output examples?
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Hankel Matrix Recovery from Linear Measurements

Choosing P =S = {1,--- ,d}}, we need to estimate the Hankel matrix
H € RY"*9" defined by

Hl'll'z"'l'L,ju'Q"'jL = f(e,-l, AP ,e,-L,ejl, g ,ejL)

— How to estimate H from input-output examples?

Given an input sequence (xi, X, - -

- ,Xz1) and its output
y =~ f(x1,X2,- -+ ,X21) we have

y= . Z [Xl]i1 R [X2L]i2Lf(ei17"'ael'2L)

i1y siaL

=x1®--® XQL)TVGC(H)

= Each input-output example is a linear measurement of H.
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Learning Algorithm

Input: Train datasets Dy, Do, Doy 1. Number of states n.
1. From Dy = {((x{, %, - .. ,xf')),y("))}f\il C (RY) x R, solve

Ny . . . N2
H") = arg min Z (x:(l') ® xg') ®:® XSI))TVGC(H) - y(’)))
H =1

2: Rank n factorization and parameter estimation:

9 -e0@De- O @:?-

3: return Linear 2-RNN (hg, A, w).

Guillaume Rabusseau Connecting WFAs and RNNs May 2, 2019
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Intuition on why this works

f(x1,%2,X3,%4) =

HO - Q_q_q_q_q_q_g
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Our 3rd result: a provable learning algorithm for 2-RNNs

Our learning algorithm computes a consistent estimator for linear 2-RNNs:

Theorem
o Let (ho, A,w) be a minimal linear 2-RNN with n hidden units
computing a function f : (R9)* — R
o Let L be such that rank(H2D) = n

@ Suppose the entries of x\) are drawn at random and each

(

, P J
y@ = £ K0 X)),

If Ny > d' for I =L, 2L, 2L + 1, the 2-RNN returned by our algorithm

computes f with probability one.
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Experiments
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Experiment on synthetic data

02=0.0 02=0.1 0%2=1.0
o -
10 10!
1073 - 10!
[}
§ . 100
10-6
-1
109 10
0- 1072 - 10° -
102 10° 10 102 10° 10t 102 10° 10*

Training Size

Figure: Learning a random 2-RNN from noisy data
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== TIHT(R =5)

=@= IHT(R=5)

=== LeastSquares(R = 5)
== TIHT+SGD(R =5)
=44~ LSTM_tanh(R = 20)
=8~ NuclearNorm(R =5)

May 2, 2019 37/40



Experiment on real data

Table 1: One-hour-ahead Speed Prediction Performance Comparisons

Method ‘ TIHT TIHT+SGD 1CBESSIOn y\prviA RNN  Persistence
Automata
RMSE | 0.573 0.519 0.500 0.496  0.606 0.508
MAPE | 21.35 18.79 18.58 18.74  24.48 18.61
MAE | 0.412 0.376 0.363 0.361  0.471 0.367

Table 2: Three-hour-ahead Speed Prediction Performance Comparisons

Method ‘ TIHT TIHT+SGD 1OSTSION 4\ piMA RNN  Persistence
Automata

RMSE | 0868 0.854 0.872 0882 1002 0.893

MAPE | 3398  31.70 3252 33165 37.24  33.29

MAE 0.632 0.624 0.632 0.642 0.764 0.649

Figure: Wind Speed Prediction
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Conclusion
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Conclusion

@ We proposed a natural extension of WA to the continuous case along
with a consistent learning algorithm.
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Conclusion

@ We proposed a natural extension of WA to the continuous case along
with a consistent learning algorithm.

@ This potentially addresses the limitation of spectral learning to small
alphabets (we can now use word embeddings with WA!)

@ Opens up a lot of questions on the formal language theory side about
continuous WAs.

@ Leverage the tensor structure of the Hankel matrix: more structure
than just a low rank matrix.

@ Use spectral learning as an initialization to BPTT, even for non-linear
RNNs!

@ Extension to weighted tree automata, polynomial weighted automata,
etc.

Guillaume Rabusseau Connecting WFAs and RNNs May 2, 2019 40 /40



Conclusion

@ We proposed a natural extension of WA to the continuous case along
with a consistent learning algorithm.

@ This potentially addresses the limitation of spectral learning to small
alphabets (we can now use word embeddings with WA!)

@ Opens up a lot of questions on the formal language theory side about
continuous WAs.

@ Leverage the tensor structure of the Hankel matrix: more structure
than just a low rank matrix.

@ Use spectral learning as an initialization to BPTT, even for non-linear
RNNs!

@ Extension to weighted tree automata, polynomial weighted automata,
etc.

Thank you! Questions?
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