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Introduction

@ Tensor network (TN) methods provide efficient ways to deal with very
high dimensional data
e [Stoudenmire and Schwab, 2016], [Novikov et al., 2016]:
» TN can be used to parameterize linear models in exponentially large

spaces
» Optimization techniques from quantum physics can be used to

optimize these models
@ In this talk we focus on TN methods for structured data:
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Introduction

Roadmap of the talk:
@ Show how uniform TN can be used to represent functions over
sequences (and trees)
@ Present connections with classical models:
uniform MPS = Weighted Automata / HMMs = linear 2nd order RNNs
@ Present the spectral learning algorithm ([Bailly et al., 2009],[Hsu et
al., 2009]) through the lens of tensor networks.
@ Show how the spectral algorithm provides a way to convert MPS
models to uniform MPS models.

@ Most of the talk is based on our paper
Li, Tianyu, Doina Precup, and Guillaume Rabusseau.
Connecting Weighted Automata, Tensor Networks and RNNSs through Spectral Learning.
arXiv preprint arXiv:2010.10029 (2020).
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Tensor Networks

‘ Degree of a node = order of tensor‘

d do
m (: :) n d d3

AS Rd M c Ran 7" c Rd1Xd2Xd3

‘ Edge = contraction ‘

n T, _
@_@ u'v=) i U

Inner product:

Guillaume Rabusseau November 14, 2020

4/30



Tensor Networks

‘ Degree of a node = order of tensor‘

d do
m (: :) n d d3

AS Rd M c Ran 7" c Rd1Xd2Xd3

‘ Edge = contraction ‘

Trace of an n x n matrix:
n
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Tensor Networks

‘ Degree of a node = order of tensor‘

d do
nl(::) n d d3

S Rd M c Ran 7" c Rdlxdzxdg,

‘ Edge = contraction ‘

Tensor times matrices:

(T x1 A x2 B x3C)jy 55 = Z Z Z T kikoks Ay Biok, Cis

ki=1 ko=1 k3=1
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Tensor Networks

‘ Degree of a node = order of tensor‘

d do
nl(::) n d d3

S Rd M c Ran 7" c Rdlxdzxdg,

‘ Edge = contraction ‘

Hyperedge = contraction between more than 2 indices:

d
27:1 u;v,w;
@ @
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Tensor Decomposition Techniques

Tensors can quickly get huge
Simple solution: decompose a tensor into product of small factors

Tensor decomposition = compressed representation of tensors

Lots of different ways to decompose a tensor:

@Wé—é—é—é

Tucker Tensor Train
Tensor Ring Hierarchical Tucker PEPS
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Tensor Train (TT) / Matrix Product States (MPS)

o TT [Oseledets, 2011] / MPS [Fannes et al., 1992] decomposition:

S L )
\ljdz \[ﬁ3 da

d1 d2 d3 d4 dl
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Tensor Train (TT) / Matrix Product States (MPS)

o TT [Oseledets, 2011] / MPS [Fannes et al., 1992] decomposition:

S L )
\[jz \l/dz. da

d1 d2 d3 d4 dl

o If the ranks are all the same (R; = R, = --- = R), can represent a
vector of size 2" with O (nR?) parameters!
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Outline

@ Tensor Network Models for Sequences
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Tensor Train / Matrix Product States
G)—G)—G—C)
di do d3 da

o |3 Jda

@ We can parameterize linear classification models with MPS:

f(X) = sign((W, X)) = sign \"
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di do d3 da

o |3 Jda

@ We can parameterize linear classification models with MPS:

f(X) = sign((W, X)) = sign @@

&)
@ We can also model probability distributions with MPS [Han et al.,
2018]:
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Tensor Train / Matrix Product States

G)—G)—G9—Gy
di do d3 da

o |3 Jda

@ We can parameterize linear classification models with MPS:

f(X) = sign((W, X)) = sign ()

&)

@ We can also model probability distributions with MPS [Han et al.,
2018]:

B() : o B(H) = ()
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MPS for sequence modeling

@ We can also use MPS to model functions and distributions over fixed
length sequences:

R R R R R R 2
P(X17X2,X3,X4) = @ @ @ @ or ]P(X]_,X2,X3,X4) = < @ @ )
QNONONCQ) : : : :
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MPS for sequence modeling

@ We can also use MPS to model functions and distributions over fixed
length sequences:

R R R R R R 2
P(X17X2,X3,X4) = @ @ @ @ or ]P(X]_,XQ,X3,X4) = < @ @ >

— How to model distributions over variable length sequences?
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Uniform MPS

e uniform MPS (uMPS) decomposition = MPS with same core at

each site:
= (@ADAD—AD—AD—w
d|d|d|d d d d d
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Uniform MPS

e uniform MPS (uMPS) decomposition = MPS with same core at
each site:

R A

o With uMPS, we can model functions and distributions over variable
length sequences:

/e/e/e/e/e /e/e/e
P(x1,%2,X3,X4) = ,P(x1,%2) = i o,
@ @ @ @ D
/e/e/e/e/e/e/e
P(Xl,XQ,X3,X4,X5,X6)
@ @ @ @ @ @
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Connections between uMPS and other models

o A uMPS is given by a tuple (a € R", A € R"™9X" ¢ ¢ R") and
maps any sequence of vectors X1, - - - ,Xx € RY to a scalar:
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Connections between uMPS and other models

e A uMPS is given by a tuple (o € R",. A € R™9*" (, ¢ R") and
maps any sequence of vectors X1, - - - ,Xx € RY to a scalar:

:nnn nn
ONO &)

f(X17X27”' y Xk

@ If the inputs are one-hot encoding, uMPS = Weighted Automata
(generalization of HMMs)

@ Linear second order RNNs = uMPS

@ For a thorough discussion of connections between uMPS, stochastic

processes and automata, see
Srinivasan, S., Adhikary, S., Miller, J., Rabusseau, G. and Boots, B.
Quantum Tensor Networks, Stochastic Processes, and Weighted Automata
arXiv preprint arXiv:2010.10653 (2020).
< Similar to the analysis of [Glassner et al., 2019] for uniform TN
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Outline

© A Spectral Learning Algorithm for Uniform MPS Models
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Hankel matrix

@ We consider the case where inputs are sequences of discrete symbols:

» Y a finite alphabet of size d (e.g. {a, b})
> Y * strings on X (e.g. abba)
» A uMPS computes a function f: X* — R:

f(01-~-c7k): Q

o1 02 Ok
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@ We consider the case where inputs are sequences of discrete symbols:

» Y a finite alphabet of size d (e.g. {a, b})
> Y * strings on X (e.g. abba)
» A uMPS computes a function f: X* — R:

= d d d

e Hf € RE"™*X": Hankel matrix of f: ¥* - R

» Definition: prefix p, suffix s = (Hf)ps = f(ps)
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aa | f(aaa) f(aab)
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Spectral Learning of uMPS

e Hf € RE"™*X": Hankel matrix of f: ¥* - R

Definition: prefix p, suffix s = (H¢)p s = f(ps)

e Fundamental theorem [Carlyle and Paz, 1971; Fliess 1974]:

rank(Hf) < 0o <= f can be computed by a uMPS
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Spectral Learning of uMPS

e Hf € RE"™*X": Hankel matrix of f: ¥* - R

Definition: prefix p, suffix s = (H¢)p s = f(ps)

e Fundamental theorem [Carlyle and Paz, 1971; Fliess 1974]:
rank(Hf) < 0o <= f can be computed by a uMPS

< Proof is constructive! From a low rank factorization of Hf we can
recover a uMPS computing f...
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Spectral Learning of uMPS (in a nutshell)
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Spectral Learning of uMPS (in a nutshell)

1. Choose a set of prefixes and suffixes, P,S C X*.
2. Estimate the Hankel sub-blocks hp € R”, hs € R®, Hp s € RP*S,
Hpss € RP*%xS defined by
(hp)y = f(u), (hs)y =f(v), (Hps)uv = f(uv) and (Hp s 5)uov = f(uov)
3. Recover uMPS parameters (e, A, w):

Hps P S
T S n S
+0= ~ 00—

o hs st w Pt hp
n _ S n n . n P
O - oo -0 - +0—-0

PI Hpss

—(P——(D—(F—.—
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Spectral Learning of uMPS (in a nutshell)

1. Choose a set of prefixes and suffixes, P, S C £*.

2. Estimate the Hankel sub-blocks hp € R”, hs € RS, Hps € RPxS,
Hp s s € RP¥EXS defined by
(hp)y = f(u), (hs)y =f(v), (Hps)uv = f(uv) and (Hpx.8)uoy = F(uov)
3. Recover uMPS parameters (e, A, w):

Hps P S
T S n S
o= = Loe-

a hs sf w Pt hp
n _ S n n _n P
O - oo 0 - £0—0

PI Hpss

4?7%—?—%

— Efficient and consistent learning algorithms for uMPS /weighted
automata [Hsu et al., 2009; Bailly et al. 2009; Balle et al., 2014, ...].
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Spectral Learning: when does it work?
Theorem (Exact case)

If the set of prefixes and suffixes P,S C ¥* are such that

rank(Hp s) = rank(H¢) < oo

then the spectral learning algorithm returns a uMPS computing f.
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Spectral Learning: when does it work?

Theorem (Exact case)
If the set of prefixes and suffixes P,S C ¥* are such that

rank(Hp s) = rank(H¢) < oo

then the spectral learning algorithm returns a uMPS computing f.

Suppose f is computed by a uMPS. By a continuity argument, if we are
glven noisy estimates

Hps=Hps+&ps, Hprs=Hpsrs+E&pss. ... wehave

fF=f

lim
l€r sll=0, llép 5 sll—0

where f is the estimator returned by the spectral method.
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Spectral Learning: when does it work?

Theorem (Exact case)
If the set of prefixes and suffixes P,S C ¥* are such that

rank(Hp s) = rank(H¢) < oo

then the spectral learning algorithm returns a uMPS computing f.

Suppose f is computed by a uMPS. By a continuity argument, if we are
glven noisy estimates

Hps=Hps+&ps, Hprs=Hpsrs+E&pss. ... wehave

lim fF=f
l€r sll=0, llép 5 sll—0
where f is the estimator returned by the spectral method.

— When f is a probability distribution, we get an unbiased and
consistent estimator! [c.f. work of B. Balle]
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A closer look at the Hankel matrix of a uMPS

@ Let f: * — R be the function computed by a uMPS (a, A, w).
o Define the ¢th order Hankel tensor H(£) € REXExxE py

%%)70-27..‘701 = f(0'10'2 P o-e)
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A closer look at the Hankel matrix of a uMPS

@ Let f: * — R be the function computed by a uMPS (a, A, w).
o Define the ¢th order Hankel tensor H(£) € REXExxE py

nnn nn
%%)70_27,“70-[ = f(UIUZ P o-e) = d d d (1)

o1 a2 Ok

forall o1, ---0p €
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A closer look at the Hankel matrix of a uMPS

@ Let f: * — R be the function computed by a uMPS (a, A, w).
o Define the ¢th order Hankel tensor H(£) € REXExxE py

0 n e n @ n_...n @ n Q
7‘[:(7@1),02,~~,Ue = f(0102 T O'Z) = d d ! (1)
o1 a2 Ok

forall o1,---0p €L
@ For each /¢, the tensor H© has low uniform MPS rank:

dld-|d = d d d
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Outline

© Spectral Learning = MPS to Uniform MPS Conversion Algorithm
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A closer look at the Hankel matrix of a uMPS

e For each ¢, the tensor #() (defined by H?,, .. 5, = F(0102- - 04)) has low
uniform MPS rank:

h A A
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A closer look at the Hankel matrix of a uMPS

e For each ¢, the tensor H() (defined by H?,, .. 5, = F(0102- - 04)) has low
uniform MPS rank:

an___ nn
dld - |d = d d d (3)

o It follows that the Hankel matrix Hf € R>"*>" can be decomposed in
sub-blocks of low uMPS rank:

a b aa ab
a f(aa) f(ab)
b f(ba) f(bb)
Hf = * f(faa) f(a.ab)

ab



A closer look at the Hankel matrix of a uMPS

e For each ¢, the tensor #() (defined by H?,, .. 5, = F(0102- - 04)) has low

uniform MPS rank:

dld-|d = d d

o It follows that the Hankel matrix Hf € R* %>’
sub-blocks of low uMPS rank:

a b
a f(aa) f(ab)
b | f(ba) f(bb)
H, — f(a.aa) f(a‘ab)

ab

aa

ab

/’711
d

(3)

can be decomposed in

a b |aa ab ba bb ‘ aaa aab ...
a2 (3) (4)
b Hsos Hyr ‘ Hyiss
aa
ab | @) @ ©)
ba ’HZZX}Z ’HZZXIQ ’HZ?x)?
bb
aaa (4
aab Hyies
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Back to the spectral learning algorithm

@ In the spectral algorithm, we need to estimate

(hp)y = f(u), (hs)y =f(v), (Hp.s)uv = f(uv) and (Hp5.s)uov = f(uov)
for some sets of prefixes and suffixes P,S C X*.
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(hp)y = f(u), (hs)y =f(v), (Hp.s)uv = f(uv) and (Hp5.s)uov = f(uov)
for some sets of prefixes and suffixes P,S C X*.

o If we choose P =S = X¢ we have

hp =hs = %(zez), Hps = Hgfi):z and (Hpxs) = ngzf:é)xzf

< All the quantities we need to estimate are matricization of low uMPS
rank tensors!
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Back to the spectral learning algorithm

@ In the spectral algorithm, we need to estimate
(hp)u = f(u), (hg)v = f(v), (HP,S)u,v = f(uv) and (7{73,):73),,707\, = f(UUV)
for some sets of prefixes and suffixes P, S C X*.

o If we choose P =S = X¢ we have

hp =hs = ’H(zgz?, Hps = %gfizz and (Hpxs) = %gf;ré)xzf

< All the quantities we need to estimate are matricization of low uMPS
rank tensors!
@ This leads to an efficient learning algorithm:
» Estimate 2, 1) 1+ directly in the MPS/TT format
» Use the spectral algorithm to convert the MPS decomposition into a
uniform MPS model.
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Spectral Learning = Conversion from MPS to uMPS

@ Let f: ¥* — R be a function for which we have access to an MPS
decomposition of the Hankel tensors H.(©), #(20) 34(2(+1),
— f can be a probability distribution, or the wave function of a quantum system.
@ Spectral learning algorithm = efficient way to recover a uMPS
computing f from the 3 Hankel tensors
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Spectral Learning = Conversion from MPS to uMPS

@ Let f: ¥* — R be a function for which we have access to an MPS
decomposition of the Hankel tensors H.(©), #(20) 34(2(+1),
— f can be a probability distribution, or the wave function of a quantum system.
@ Spectral learning algorithm = efficient way to recover a uMPS
computing f from the 3 Hankel tensors

< From ?-L(Z),?-L(%),H(MH), we can compute the value of f on
sequences of arbitrary length!
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Output: uMPS (a, A, w) computing f
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Ay o Al A By -+ By-1By o Gy G

Input: 1= G- -0 H = -0~ G W= G 09

Output: uMPS (a, A, w) computing f
1. Left-orthonormalisation of By, -, By (first half of #(29)
Bi B - B1 B Uy s Ui

¢G040 -
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Al Ay - Al A Bi By - By-1By G o Gy G

Input: 10 = G- -0 H = -G G W= G-

Output: uMPS (e, A, w) computing f
1. Left-orthonormalisation of By,--- , By (first half of ’H(%))
B By - B B

¢G040 -

2. Right-orthonormalisation of By, -
U/

, By (second halfof #H(29)

Bit1Bi2 -+ Ba—1 By

T ee-

Div1Vig1 Viga - Va1 Vo
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Al Ay - Al A Bi By - By-1By G o Gy G

Input: 10 = G- -0 H = -G G W= G-

Output: uMPS (e, A, w) computing f
1. Left-orthonormalisation of By, - - - ,Bg (ﬁrst half of ’H(M))
B By - B B

¢G040 -

2. Right-orthonormalisation of By, -

, By (second halfof #H(29)

Bi+1 B2 -+ Baj—1 By UN\Di41 Vig1 Viga -+ Vo1 Vy
3. Computation of the uMPS parameters:
Al Ay o Al A AL Ay - A/ 1 A
- Vom1 Vo U Uy - Ul—l U DNV
- G G Ci1 - G Guar
Ui U -+ U DNV Ua DN -+ Vi Vg

Guillaume Rabusseau November 14, 2020 23/30



Theoretical guarantees for MPS to uMPS conversion

Theorem (Exact case)

If ¢ is such that rank(HZ, _,) = rank(H¢) < oo, then the MPS to uMPS
conversion algorithm returns a uMPS computing f : ¥* — R.
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Theoretical guarantees for MPS to uMPS conversion

Theorem (Exact case)

If ¢ is such that rank(HZ, _,) = rank(H¢) < oo, then the MPS to uMPS
conversion algorithm returns a uMPS computing f : ¥* — R.

@ Similarly to the spectral learning algorithm, the guarantees can be
extended to the approximate setting.

o Works also with the Born rule (|f(o102---0k)

N

=P(o102- - 0k)).
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Theoretical guarantees for MPS to uMPS conversion

Theorem (Exact case)

If ¢ is such that rank(HZ, _,) = rank(H¢) < oo, then the MPS to uMPS
conversion algorithm returns a uMPS computing f : ¥* — R.

@ Similarly to the spectral learning algorithm, the guarantees can be
extended to the approximate setting.

@ Works also with the Born rule (|f(g102---0k)> = P(o102 - - - 0k)).
=- Provable algorithm to convert MPS to uMPS!

» Any equivalent algorithm in quantum physics literature?
» Any use in quantum physics?

Guillaume Rabusseau
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Outline

@ Beyond Sequences: Tensor Network Models for Trees
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Beyond Strings: Weighted Tree Automata
o A weighted tree automaton (WTA) is a tuple A= (a, T, {ws }rex)

a € R": vector of initial weights
T € R™™M . tensor of transition weights

wes € R": vector of final weights associated with o € &

o A WTA computes a function f4 : Ty — R.

Guillaume Rabusseau November 14, 2020 26 /30



Learning Weighted Tree Automaton

@ WTA and other models:

> Probabilistic WTA = Probabilistic Context Free Grammars
» WTA = Linear Recursive Tensor Neural Network (Socher et al., 2010)
» Similarly to sequences, WTA = Uniform Tree Tensor Networks
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Learning Weighted Tree Automaton

@ WTA and other models:

> Probabilistic WTA = Probabilistic Context Free Grammars
» WTA = Linear Recursive Tensor Neural Network (Socher et al., 2010)
» Similarly to sequences, WTA = Uniform Tree Tensor Networks
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@ WTA and other models:

> Probabilistic WTA = Probabilistic Context Free Grammars
» WTA = Linear Recursive Tensor Neural Network (Socher et al., 2010)
» Similarly to sequences, WTA = Uniform Tree Tensor Networks

@ The spectral learning algorithm works also for trees (Bailly, Habrard
and Denis, 2010)

— Spectral Learning = Efficient way to convert tree TN to uniform tree
TN!
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Discussion

@ Lots of connections between quantum TN, probabilistic models,
formal languages, machine learning, ...

o Connections between MPS and weighted automata:

» Provable learning algorithm from formal languages / probabilistic
models viewed through the lens of TN

> Learning = MPS to uMPS conversion algorithm. (Any use in physics?)

» Connections can also be leveraged for versatile sampling techniques for
uMPS models, see
Jacob Miller, Guillaume Rabusseau, and John Terilla. Tensor Networks for Language Modeling.

arXiv preprint arXiv:2003.01039 (2020).
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Discussion

@ Lots of connections between quantum TN, probabilistic models,
formal languages, machine learning, ...
o Connections between MPS and weighted automata:
» Provable learning algorithm from formal languages / probabilistic
models viewed through the lens of TN
> Learning = MPS to uMPS conversion algorithm. (Any use in physics?)
» Connections can also be leveraged for versatile sampling techniques for
uMPS models, see
Jacob Miller, Guillaume Rabusseau, and John Terilla. Tensor Networks for Language Modeling.
arXiv preprint arXiv:2003.01039 (2020).
o Next steps:

» Similar connections and algorithms can be derived for models on trees

» What about graphs? (e.g. potential connections between TN and
GNN)
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Thank you! Questions?
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