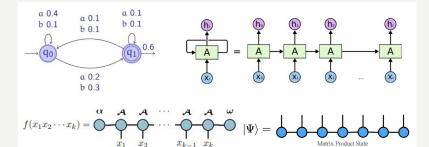

Tensor Networks, Machine Earning & Quantum

Guillaume Rabusseau, DIRO

What are Tensor Networks?

- Efficient parameterization of quantum states with low entanglement
- Set of tools to decompose tensors in small interacting blocks (and manipulate them)
- A useful framework to analyze and simulate quantum circuits

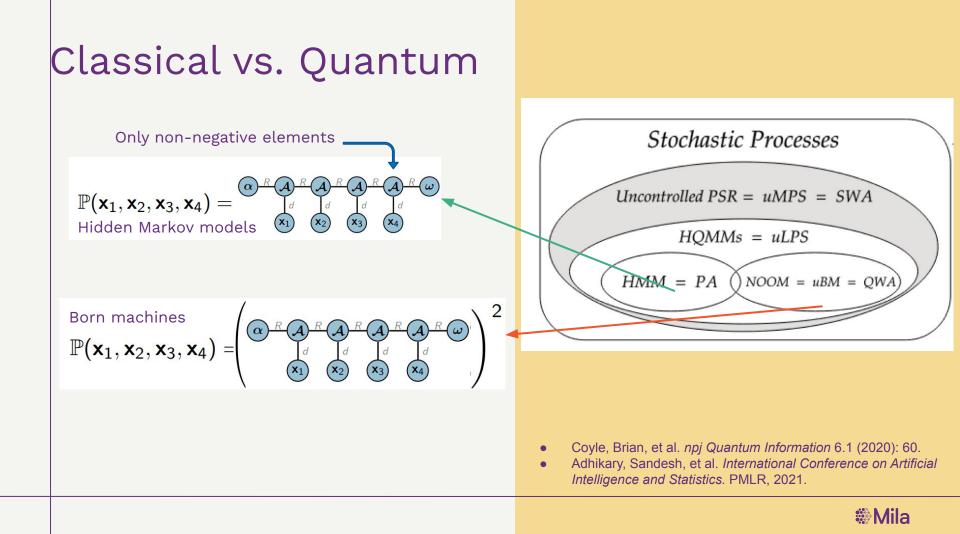


Previous work Building Bridges

Connecting Weighted Automata, Tensor Networks and Recurrent Neural Networks through Spectral Learning

Tianyu Li $\,\cdot\,$ Doina Precup $\,\cdot\,$ Guillaume Rabusseau

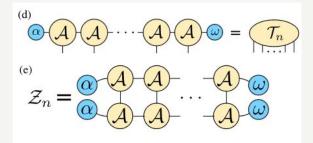

Quantum Tensor Networks, Stochastic Processes, and Weighted Automata


Siddarth Srinivasan* School of Computer Science and Engineering University of Washington sidsrini@cs.washington.edu

Sandesh Adhikary* School of Computer Science and Engineering University of Washington adhikary@cs.washington.edu

Jacob Miller Mila & DIRO Université de Montréal jmjacobmiller@gmail.com Guillaume Rabusseau CCAI chair - Mila & DIRO Université de Montréal grabus@iro.umontreal.ca

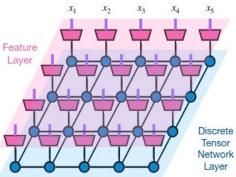
Byron Boots School of Computer Science and Engineering University of Washington bboots@cs.washington.edu



Previous work Quantum Inspired / Tensor Network ML models

Tensor Networks for Probabilistic Sequence Modeling

Jacob Miller Mila and DIRO Université de Montréal jmjacobmiller@gmail.com Guillaume Rabusseau CCAI chair - Mila and DIRO Université de Montréal grabus@iro.umontreal.ca


John Terilla CUNY and Tunnel City University of New York jterilla@gc.cuny.edu

Generative Learning of Continuous Data by Tensor Networks

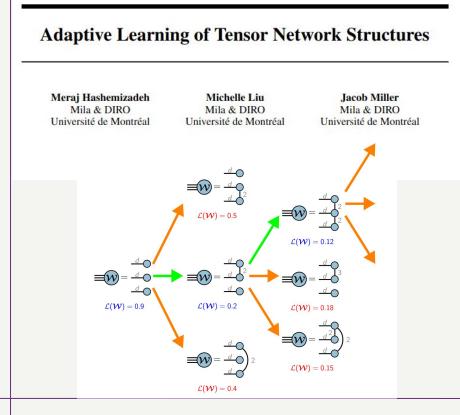
Alex Meiburg,^{1,2,3} Jing Chen,¹ Jacob Miller,^{1,*} Raphaëlle Tihon,⁴ Guillaume Rabusseau,^{4,5} and Alejandro Perdomo-Ortiz⁶

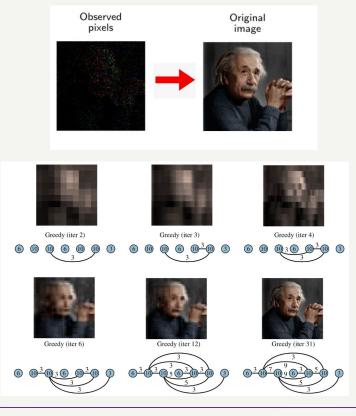
¹Zapata AI, Boston, USA ²Perimeter Institute for Theoretical Physics, Waterloo, Canada ³Institute for Quantum Computing, University of Waterloo ⁴Mila and DIRO, Université de Montréal, Montréal, Canada ⁵CIFAR AI Chair ⁶Zapata AI, Toronto, Canada (Dated: November 1, 2023)

Previous work Learning Theory & Tensor Networks

Lower and Upper Bounds on the VC-Dimension of Tensor Network Models

Behnoush Khavari DIRO & Mila Université de Montréal behnoush.khavari@umontreal.ca Guillaume Rabusseau DIRO & Mila, CIFAR AI Chair Université de Montréal grabus@iro.umontreal.ca

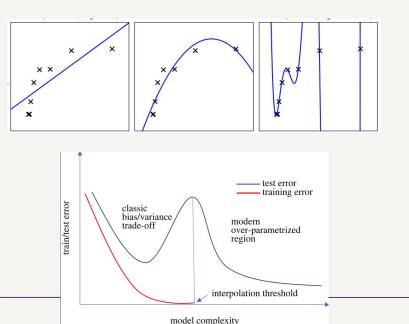

-	-
	Z

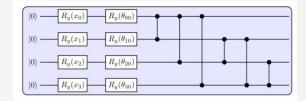

W

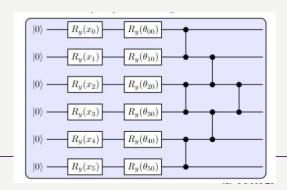
	rank one	СР	Tucker	TT / TR
Decomposition	$\overset{d}{\mathbf{b}} \overset{d}{\mathbf{b}} \cdots \overset{d}{\mathbf{b}} \overset{d}{\mathbf{b}}$	d d d d d d d d d	d d d d d d d d d d	
Lower Bound	(d-1)p	rd $(r \le d^{p-1})$	r^p $(r \le d)$	$r^2d (r\leq d^{\lfloor\frac{p-1}{2}\rfloor},p\geq 3)$
(condition)				$\frac{p(r^2d{-}1)}{3} (r=d, {}^p/_3 \in \mathbb{N})$
Upper bound	$2dp\log(12p)$	$2prd\log(12p)$	$2(r^p \!+\! prd)\log(24p)$	$2pr^2d\log(12p)$

 $f(\mathbf{x})$

Previous work Towards Adaptive Tensor Network Structures

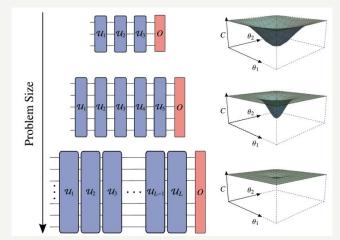


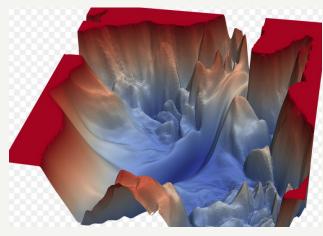



₩Mila

Current interests Limits and promises of Quantum ML (QML) through the lens of Tensor Networks

- Inductive biases and bias-variance trade-off in QML.
- Which quantum circuits can't be simulated by Tensor Networks? How are they relevant to ML?



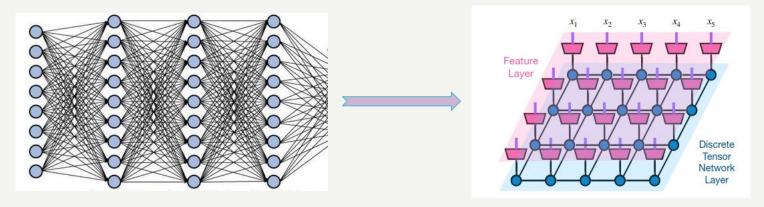


Current interests QML and Learning Theory

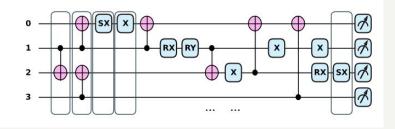
- Generalization bounds for QML.
- What is the role of the optimization algorithm in the generalization capabilities of QML models?
- Benefits of depth in Quantum circuits for ML.
- Difficulties of optimizing quantum circuits.

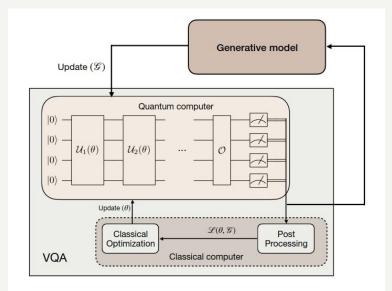
Current interests

Probabilistic Sequence Modeling on Quantum Hardware


- Going beyond Quantum-Inspired models
 - \circ Tractable Operation with Tensor Networks \Rightarrow Tractable on Quantum Hardware
- Interconnected questions:
 - Which distributions can be **expressed** on quantum computers?
 - Which distributions can be **learned** on quantum computers?
 - Once a distribution is encoded as a quantum state, which complex inference tasks can we perform?
- Beyond sequences: When/How can quantum computing help model complex distributions over structured data?

Current interests Explainability of ML models


- Explainability and analysis of deep learning (DL) models through tensor networks and entanglement entropy
 - Particular interest in graph models
- Distilling DL models into tensor networks for efficient inference
- Analyzing DL models using TN (how much entanglement can DL models capture?)



Current interests Learning Quantum Circuit Designs

- Can we learn/select quantum circuits adaptively from data/experiments?
- The space of quantum circuits is combinatorial in nature... GFlowNets!

Enhancing Variational Quantum Algorithms: Effective Quantum Ansatz Design Using GFlowNets

Research Group

Post-doc

• Jun Dai

PhD students

- Maude Lizaire
- Beheshteh Tolouei Rakhshan
- Andy Huang (co-supervised with Reihaneh Rabbany)
- Farzaneh Heidari (co-supervised with Jian Tang)
- Marawan Abdel Hameed
- Alireza Dizaji

MSc students

- Omar Chikhar (co-supervised with Stefanos Kourtis)
- Michaël Rizvi-Martel
- Soroush Omranpour (co-supervised with Reihaneh Rabbany)

Undergrad students

Interns

Visiting researcher

• Slimane Thabet (PhD, LIP6, France)

Farzaneh Heidari (PhD)

TN to explain graph learning models

Probabilistic Modeling on Quantum Hardware GFlowNets for Quantum Design

Past students

• Tianyu Li (PhD, now researcher at Samsung)

Jun Dai (postdoc)

- Jacob Miller (postdoc, now at Zapata Computing)
- Meraj Hashemizadeh (MSc)
- Behnoush Khavari (MSc)