Recognizable Series on Hypergraphs

Raphaël Bailly ¹ François Denis ² Guillaume Rabusseau ²

¹Université de Technologie de Compiègne

²LIF, CNRS, Aix-Marseille Université

LATA'2015

March 5, 2015

Outline

Objective and Method

2 Graph Weighted Model

3 Main Results

4 Towards Learning GWMs

5 Conclusion

- Grammatical Inference: estimate probability distributions on string/trees from samples
- $\,\hookrightarrow\,$ Lot of works rely on the notion of <code>recognizable/rational series</code>:

- Grammatical Inference: estimate probability distributions on string/trees from samples
- $\,\hookrightarrow\,$ Lot of works rely on the notion of <code>recognizable/rational series</code>:

A string series $r: \Sigma^* \to \mathbb{R}$ is recognizable

 \Leftrightarrow There exists a finite weighted automaton computing r

- Grammatical Inference: estimate probability distributions on string/trees from samples
- \hookrightarrow Lot of works rely on the notion of <code>recognizable/rational series</code>:

A string series $r: \Sigma^* \to \mathbb{R}$ is recognizable

- \Leftrightarrow There exists a finite weighted automaton computing r
- $\Leftrightarrow r \text{ has a linear representation } \langle \iota \in \mathbb{R}^d, \tau \in \mathbb{R}^d, \{\mathsf{M}_{\sigma} \in \mathbb{R}^{d \times d}\}_{\sigma \in \Sigma} \rangle$

$$r(w) = \iota^{ op} \mathsf{M}_{w_1} \mathsf{M}_{w_2} \cdots \mathsf{M}_{w_n} au$$
 for all $w \in \Sigma^*$

- Grammatical Inference: estimate probability distributions on string/trees from samples
- \hookrightarrow Lot of works rely on the notion of *recognizable/rational series*:

A string series $r: \Sigma^* \to \mathbb{R}$ is recognizable

- \Leftrightarrow There exists a finite weighted automaton computing r
- $\Leftrightarrow r \text{ has a linear representation } \langle \iota \in \mathbb{R}^d, \tau \in \mathbb{R}^d, \{\mathsf{M}_{\sigma} \in \mathbb{R}^{d \times d}\}_{\sigma \in \Sigma} \rangle$

$$r(w) = \iota^{ op} \mathsf{M}_{w_1} \mathsf{M}_{w_2} \cdots \mathsf{M}_{w_n} au$$
 for all $w \in \Sigma^*$

Objective

Extend the notion of recognizable series to graphs and hypergraphs.

 \hookrightarrow by directly aiming for an algebraic characterization similar to linear representations of string/tree series.

Outline

Objective and Method

2 Graph Weighted Model

3 Main Results

4 Towards Learning GWMs

5 Conclusion

Graphs

A graph $G = (V, E, \ell)$ on a ranked alphabet $\mathcal{F} = (\Sigma, \sharp)$

- Vertices V,
- Labeling function $\ell: V \to \Sigma$,
- Set of ports $P = \{(v, j) : v \in V, 1 \le j \le \sharp \ell(v)\},\$
- Edges $E \subset P \times P$ (partition of P).

Figure : A graph on the ranked alphabet $\mathcal{F} = \{a(\cdot), f(\cdot, \cdot), g(\cdot, \cdot, \cdot)\}$.

$$V = \{1, 2, 3, 4\}, \ \ell(1) = I(2) = f, \ \ell(3) = g, \ \ell(4) = a, \\ E = \{\{(1, 1), (3, 2)\}, \{(1, 2), (2, 1)\}, \{(2, 2), (3, 1)\}, \{(3, 3), (4, 1)\}\}$$

Tensors

Tensor $\mathfrak{T} \in \bigotimes^k \mathbb{R}^d = \mathbb{R}^d \otimes \cdots \otimes \mathbb{R}^d \simeq$ Multi-array $(\mathfrak{T}_{i_1 \dots i_k}) \in \mathbb{R}^{d \times \dots \times d}$. Let $\mathbf{e}_1, \dots, \mathbf{e}_d$ be the canonical basis of $V = \mathbb{R}^d$, \mathfrak{T} can be expressed as

$$\mathfrak{T} = \sum_{i_1,...,i_k \in [d]} \mathfrak{T}_{i_1...i_k} \mathbf{e}_{i_1} \otimes \cdots \otimes \mathbf{e}_{i_k}$$

•
$$k = 1$$
: vector \mathbf{v}_i $(1 \le i \le d)$

•
$$k = 2$$
: matrix $\mathbf{M}_{i_1 i_2}$ $(1 \le i_1, i_2 \le d)$

• k = 3: higher order tensor $\mathfrak{T}_{i_1i_2i_3}$ $(1 \le i_1, i_2, i_3 \le d)$

• A graph G on the ranked alphabet $\mathcal{F} = \{g(\cdot, \cdot, \cdot), f(\cdot, \cdot), a(\cdot)\}$:

• A graph G on the ranked alphabet $\mathcal{F} = \{g(\cdot, \cdot, \cdot), f(\cdot, \cdot), a(\cdot)\}$:

• Graph Weighted Model: $\langle d, \{\mathfrak{T}^x \in \bigotimes^{\#x} \mathbb{R}^d\}_{x \in \mathcal{F}} \rangle$.

• A graph G on the ranked alphabet $\mathcal{F} = \{g(\cdot, \cdot, \cdot), f(\cdot, \cdot), a(\cdot)\}$:

- Graph Weighted Model: $\langle d, \{\mathfrak{T}^x \in \bigotimes^{\#x} \mathbb{R}^d\}_{x \in \mathcal{F}} \rangle$.
- Computation of a GWM:
 - **1** Tensor product of all tensors associated to vertices in *G*:

$$\mathfrak{T}^f_{i_1i_2}\mathfrak{T}^f_{i_3i_4}\mathfrak{T}^g_{i_5i_6i_7}\mathfrak{T}^a_{i_8}$$

• A graph G on the ranked alphabet $\mathcal{F} = \{g(\cdot, \cdot, \cdot), f(\cdot, \cdot), a(\cdot)\}$:

- Graph Weighted Model: $\langle d, \{\mathfrak{T}^x \in \bigotimes^{\#x} \mathbb{R}^d\}_{x \in \mathcal{F}} \rangle$.
- Computation of a GWM:
 - **1** Tensor product of all tensors associated to vertices in *G*:

$$\mathfrak{T}^f_{\underline{i_1}i_2}\mathfrak{T}^f_{\underline{i_3}i_4}\mathfrak{T}^g_{\underline{i_5}\underline{i_6}i_7}\mathfrak{T}^a_{i_8}$$

$$\sum_{i_1} \mathfrak{T}^f_{i_1 i_2} \mathfrak{T}^f_{i_3 i_4} \mathfrak{T}^g_{i_5 i_1 i_7} \mathfrak{T}^a_{i_8}$$

• A graph G on the ranked alphabet $\mathcal{F} = \{g(\cdot, \cdot, \cdot), f(\cdot, \cdot), a(\cdot)\}$:

- Graph Weighted Model: $\langle d, \{\mathfrak{T}^x \in \bigotimes^{\#x} \mathbb{R}^d\}_{x \in \mathcal{F}} \rangle$.
- Computation of a GWM:
 - **1** Tensor product of all tensors associated to vertices in *G*:

$$\mathfrak{T}^f_{i_1i_2}\mathfrak{T}^f_{i_3i_4}\mathfrak{T}^g_{i_5i_6i_7}\mathfrak{T}^a_{i_8}$$

$$\sum_{i_1i_2} \mathfrak{T}^f_{i_1i_2} \mathfrak{T}^f_{i_2i_4} \mathfrak{T}^g_{i_5i_1i_7} \mathfrak{T}^a_{i_8}$$

• A graph G on the ranked alphabet $\mathcal{F} = \{g(\cdot, \cdot, \cdot), f(\cdot, \cdot), a(\cdot)\}$:

- Graph Weighted Model: $\langle d, \{\mathfrak{T}^x \in \bigotimes^{\#x} \mathbb{R}^d\}_{x \in \mathcal{F}} \rangle$.
- Computation of a GWM:
 - **1** Tensor product of all tensors associated to vertices in *G*:

$$\mathfrak{T}^f_{i_1i_2}\mathfrak{T}^f_{i_3i_4}\mathfrak{T}^g_{i_5i_6i_7}\mathfrak{T}^a_{i_8}$$

$$\sum_{i_1i_2i_4} \mathfrak{T}^f_{i_1i_2} \mathfrak{T}^f_{i_2i_4} \mathfrak{T}^g_{i_4i_1i_7} \mathfrak{T}^a_{i_8}$$

• A graph G on the ranked alphabet $\mathcal{F} = \{g(\cdot, \cdot, \cdot), f(\cdot, \cdot), a(\cdot)\}$:

- Graph Weighted Model: $\langle d, \{\mathfrak{T}^x \in \bigotimes^{\#x} \mathbb{R}^d\}_{x \in \mathcal{F}} \rangle$.
- Computation of a GWM:
 - **1** Tensor product of all tensors associated to vertices in *G*:

$$\mathfrak{T}^f_{i_1i_2}\mathfrak{T}^f_{i_3i_4}\mathfrak{T}^g_{i_5i_6i_7}\mathfrak{T}^a_{i_8}$$

$$\sum_{i_1i_2i_4i_7} \mathfrak{I}^f_{i_1i_2} \mathfrak{I}^f_{i_2i_4} \mathfrak{I}^g_{i_4i_1i_7} \mathfrak{I}^a_{i_7}$$

• A graph G on the ranked alphabet $\mathcal{F} = \{g(\cdot, \cdot, \cdot), f(\cdot, \cdot), a(\cdot)\}$:

- Graph Weighted Model: $\langle d, \{\mathfrak{T}^x \in \bigotimes^{\#x} \mathbb{R}^d\}_{x \in \mathcal{F}} \rangle$.
- Computation of a GWM:
 - **1** Tensor product of all tensors associated to vertices in *G*:

$$\mathfrak{T}^{f}_{i_{1}i_{2}}\mathfrak{T}^{f}_{i_{3}i_{4}}\mathfrak{T}^{g}_{i_{5}i_{6}i_{7}}\mathfrak{T}^{a}_{i_{8}}$$

$$r(G) = \sum_{i_1 i_2 i_4 i_7} \mathfrak{T}^f_{i_1 i_2} \mathfrak{T}^f_{i_2 i_4} \mathfrak{T}^g_{i_4 i_1 i_7} \mathfrak{T}^a_{i_7}$$

- $\mathcal{F} = \{\iota(\cdot), \tau(\cdot), \mathsf{a}(\cdot, \cdot), \mathsf{b}(\cdot, \cdot), \mathsf{c}(\cdot, \cdot)\}, \text{ GWM } \{\iota, \mathsf{M}^{\mathsf{a}}, \mathsf{M}^{\mathsf{b}}, \mathsf{M}^{\mathsf{c}}, \tau\}$ $\mathcal{G} = \underbrace{\iota}^{1} \underbrace{1}_{a} \underbrace{2}_{a} \underbrace{1}_{a} \underbrace{1}_{a} \underbrace{1}_{a} \underbrace{2}_{a} \underbrace{1}_{a} \underbrace{1}$

 - $r(G) = \sum_{i_1 i_3 i_5 i_7} \iota_{i_1} \mathsf{M}^{a}_{i_1 i_3} \mathsf{M}^{b}_{i_3 i_5} \mathsf{M}^{c}_{i_5 i_7} \tau_{i_7} = \iota^\top \mathsf{M}^{a} \mathsf{M}^{b} \mathsf{M}^{c} \tau$

- $\mathcal{F} = \{\iota(\cdot), \tau(\cdot), \mathsf{a}(\cdot, \cdot), \mathsf{b}(\cdot, \cdot), \mathsf{c}(\cdot, \cdot)\}, \text{ GWM } \{\iota, \mathsf{M}^{\mathsf{a}}, \mathsf{M}^{\mathsf{b}}, \mathsf{M}^{\mathsf{c}}, \tau\}$ $\mathcal{G} = \underbrace{\iota}^{1} \underbrace{1}_{a} \underbrace{2}_{a} \underbrace{1}_{a} \underbrace{1}_{a} \underbrace{1}_{a} \underbrace{2}_{a} \underbrace{1}_{a} \underbrace{1}$

•
$$\mathcal{F} = \{a(\cdot, \cdot), b(\cdot, \cdot), c(\cdot, \cdot)\}, G =$$

- $\mathcal{F} = \{\iota(\cdot), \tau(\cdot), a(\cdot, \cdot), b(\cdot, \cdot), c(\cdot, \cdot)\}, \text{ GWM } \{\iota, \mathbf{M}^a, \mathbf{M}^b, \mathbf{M}^c, \tau\}$ $\mathcal{G} = \underbrace{\iota}^{1} \underbrace{1}_{a} \underbrace{2}_{a} \underbrace{1}_{b} \underbrace{2}_{a} \underbrace{1}_{c} \underbrace{2}_{a} \underbrace{1}_{c} \underbrace$

•
$$\mathcal{F} = \{a(\cdot, \cdot), b(\cdot, \cdot), c(\cdot, \cdot)\}, G =$$

•
$$\mathbf{M}_{i_1 i_2}^{c} \mathbf{M}_{i_3 i_4}^{c} \mathbf{M}_{i_5 i_6}^{c}$$

• $r(G) = \sum_{i_2 i_4 i_6} \mathbf{M}_{i_6 i_2}^{a} \mathbf{M}_{i_2 i_4}^{b} \mathbf{M}_{i_4 i_6}^{c} = Tr(\mathbf{M}^{a} \mathbf{M}^{b} \mathbf{M}^{c})$

Recognizable graph series

A series $r : \mathcal{G}_{\mathcal{F}} \to \mathbb{R}$ is recognizable iff it can be computed by a GWM.

Recognizable graph series

A series $r : \mathcal{G}_{\mathcal{F}} \to \mathbb{R}$ is recognizable iff it can be computed by a GWM.

• Beyond strings: circular strings, 2D words/pictures...

Recognizable graph series

A series $r : \mathcal{G}_{\mathcal{F}} \to \mathbb{R}$ is recognizable iff it can be computed by a GWM.

• Crosswords: Let r_h and r_v be two recognizable string series on Σ^*

 \mapsto $r_h(ac)r_h(db)r_v(ad)r_v(cb)$

Outline

Objective and Method

2 Graph Weighted Model

3 Main Results

4 Towards Learning GWMs

5 Conclusion

Main results (1)

Proposition

GWMs are a direct generalization of linear representation of string/tree series.

Proposition

- The sum of two recognizable series is recognizable
- The Hadamard product of two recognizable series is recognizable

A main question:

Are series with finite support recognizable?

Recognizability of Finite Support Series

• Given a graph \widehat{G} , is there a GWM s.t. r(G) = 1 if $G = \widehat{G}$ and 0 otherwise?

Recognizability of Finite Support Series

- Given a graph \widehat{G} , is there a GWM s.t. r(G) = 1 if $G = \widehat{G}$ and 0 otherwise?
- Simple counter-example:
 - Circular strings on $\mathcal{F} = \{a(\cdot, \cdot)\}$, GWM $r : \langle d, \{\mathbf{M}_a \in \mathbb{R}^{d \times d}\} \rangle$.

•
$$r(G_{a^n}) = Tr(\mathbf{M}_a^n)$$
 for all n .

• If $\widehat{G} = G_a$, we want $Tr(\mathbf{M}_a) = 1$ and $Tr(\mathbf{M}_a^n) = 0$ for all $n \ge 2$.

Recognizability of Finite Support Series

- Given a graph \widehat{G} , is there a GWM s.t. r(G) = 1 if $G = \widehat{G}$ and 0 otherwise?
- Simple counter-example:
 - Circular strings on $\mathcal{F} = \{a(\cdot, \cdot)\}$, GWM $r : \langle d, \{\mathbf{M}_a \in \mathbb{R}^{d \times d}\} \rangle$.

•
$$r(G_{a^n}) = Tr(\mathbf{M}_a^n)$$
 for all n .

• If $\widehat{G} = G_a$, we want $Tr(\mathbf{M}_a) = 1$ and $Tr(\mathbf{M}_a^n) = 0$ for all $n \ge 2$.

Lemma

Let
$$\mathbf{M} \in \mathbb{R}^{d imes d}$$
. If $Tr(\mathbf{M}^n) = 0$ for all $n \geq 2$, then $Tr(\mathbf{M}) = 0$.

Tilings

Figure : A graph G

Tilings

Figure : Graph G_2 with 3 connected components isomorphic to G.

Figure : Graph G_3 . Tiling made of three copies of the graph G.

Figure : Graph G_3 . Tiling made of three copies of the graph G.

For any graph \widehat{G} , if $r(\widehat{G}) \neq 0$ then there exists a tiling G of \widehat{G} s.t. $r(G) \neq 0$.

Main results (2)

Theorem

Given a graph \widehat{G} , there exists a recognizable series r such that $r(G) \neq 0$ if and only if G is a tiling of \widehat{G} .

Corollary

For any family of graph which does not allow tilings, graph series with finite support are recognizable.

Family of *rooted graphs* over \mathcal{F} : there exists $a_0 \in \Sigma$ s.t. for any $G \in \mathcal{F}$, there exists exactly one vertex $v \in V_G$ such that $\ell(v) = a_0$.

Outline

Objective and Method

- 2 Graph Weighted Model
- 3 Main Results
- Towards Learning GWMs

5 Conclusion

Ongoing Work: Learning GWMs

• Let $r: \langle d, \{\mathfrak{T}^x \in \bigotimes^{\#x} \mathbb{R}^d\}_{x \in \mathcal{F}} \rangle$ be a GWM.

Given $(G_1, r(G_1)), (G_2, r(G_2)), \dots$, can we recover the tensors $\{\mathfrak{T}^x \in \bigotimes^{\#x} \mathbb{R}^d\}_{x \in \mathcal{F}}$?

Ongoing Work: Learning GWMs

• Let $r: \langle d, \{\mathfrak{T}^x \in \bigotimes^{\#x} \mathbb{R}^d\}_{x \in \mathcal{F}} \rangle$ be a GWM.

Given $(G_1, r(G_1)), (G_2, r(G_2)), \dots$, can we recover the tensors $\{\mathfrak{T}^x \in \bigotimes^{\#x} \mathbb{R}^d\}_{x \in \mathcal{F}}$?

- Spectral learning for recognizable series on strings.
 - ▶ Low-rank factorization of Hankel matrix $\mathbf{H} \in \mathbb{R}^{\Sigma^* \times \Sigma^*}$, $\mathbf{H}_{u,v} = r(uv)$.

Ongoing Work: Learning GWMs

• Let $r : \langle d, \{\mathfrak{T}^x \in \bigotimes^{\#x} \mathbb{R}^d\}_{x \in \mathcal{F}} \rangle$ be a GWM.

Given $(G_1, r(G_1)), (G_2, r(G_2)), \dots$, can we recover the tensors $\{\mathfrak{T}^x \in \bigotimes^{\#x} \mathbb{R}^d\}_{x \in \mathcal{F}}$?

- Spectral learning for recognizable series on strings.
 - ▶ Low-rank factorization of Hankel matrix $\mathbf{H} \in \mathbb{R}^{\Sigma^* \times \Sigma^*}$, $\mathbf{H}_{u,v} = r(uv)$.
- Learning GWMs
 - Graph cuts:

$$r\begin{pmatrix} 1 & 2 & 0 & 3 & -1 & 0 \\ 2 & 2 & 1 & 0 \\ 2 & 2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 0 & 1 & 0 \\ 2 & 2 & 0 & 1 & 0 \\ 2 & 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \\$$

- $\bullet \text{ Hankel Matrices/Tensors in } \mathbb{R}^{\mathcal{G}_{\mathcal{F},2}\times\mathcal{G}_{\mathcal{F},2}}, \mathbb{R}^{\mathcal{F}_1\times\mathcal{G}_{\mathcal{F},1}}, \mathbb{R}^{\mathcal{F}_2\times\mathcal{F}_1\times\mathcal{G}_{\mathcal{F},3}}, \dots$
- $\rightarrow\,$ Preliminary results show that low-rank factorizations of the Hankel tensors can be used to recover the GWM parameters (circular strings and 2D-words).

Outline

Objective and Method

- 2 Graph Weighted Model
- 3 Main Results
- 4 Towards Learning GWMs

Conclusion

- We proposed a definition of recognizable series on graphs (and hypergraphs).
- Direct generalization of recognizable series on strings and trees.
- Characterization of the recognizability of finite support series.

Conclusion

- We proposed a definition of recognizable series on graphs (and hypergraphs).
- Direct generalization of recognizable series on strings and trees.
- Characterization of the recognizability of finite support series.
- Generalization of the spectral method for hypergraph recognizable series?
- A bridge between graphical models and recognizable series?
- Algorithms to compute/approximate/learn (e.g. message passing).

Conclusion

- We proposed a definition of recognizable series on graphs (and hypergraphs).
- Direct generalization of recognizable series on strings and trees.
- Characterization of the recognizability of finite support series.
- Generalization of the spectral method for hypergraph recognizable series?
- A bridge between graphical models and recognizable series?
- Algorithms to compute/approximate/learn (e.g. message passing).

Thank you for your attention.

Hypergraphs

A hypergraph $G = (V, E, \ell)$ on a ranked alphabet $\mathcal{F} = (\Sigma, \sharp)$

- V set of vertices,
- $\ell: V \to \Sigma$ labeling function,
- $P = \{(v,j) : v \in V, 1 \le j \le \sharp \ell(v)\}$ set of ports of G,
- $E = (h_k)_{1 \le k \le n_E}$ a partition of P set of hyper-edges of G.

Hypergraphs

A hypergraph $G = (V, E, \ell)$ on a ranked alphabet $\mathcal{F} = (\Sigma, \sharp)$

- V set of vertices,
- $\ell: V \to \Sigma$ labeling function,
- $P = \{(v,j) : v \in V, 1 \le j \le \sharp \ell(v)\}$ set of ports of G,
- $E = (h_k)_{1 \le k \le n_E}$ a partition of P set of hyper-edges of G.

Hypergraphs

 $E = \left\{h_1: \{(1,1), (3,3)\}, h_2: \{(1,2), (2,1), (3,2)\}, h_3: \{(1,3), (2,2)\}, h_4: \{(3,1)\}\right\}$

A hypergraph $G = (V, E, \ell)$ on a ranked alphabet $\mathcal{F} = (\Sigma, \sharp)$

- V set of vertices,
- $\ell: V \to \Sigma$ labeling function,
- $P = \{(v,j) : v \in V, 1 \le j \le \sharp \ell(v)\}$ set of ports of G,
- $E = (h_k)_{1 \le k \le n_E}$ a partition of P set of hyper-edges of G.

Hypergraph Weighted Model

$$\langle \mathcal{F}, d, \{\mathfrak{I}^x\}_{x \in \Sigma}, \odot, \boldsymbol{\beta} \rangle$$

where

- \mathcal{F} is a ranked alphabet,
- $d \in \mathbb{N}_+$ is the dimension of the representation, $V = \mathbb{R}^d$,
- $\mathfrak{T}^x \in V^{\otimes \sharp x}$, tensor associated with symbol x
- $\odot: V \times V \rightarrow V$ is a symmetric associative product
- β is a linear form on V.

Example of reduction operators:

- \odot_{id} is defined by $\mathbf{e}_i \odot_{id} \mathbf{e}_j = \delta_{ij} \mathbf{e}_i$,
- β_1 is defined by $\beta_1(\mathbf{e}_i) = 1$ for $1 \le i \le d$.

HWM: Computation

HWM ⟨F, d, {A, B}, ⊙, β⟩
① Tensor product of all tensors associated to vertices

$$\sum_{i_1\cdots i_8} \mathcal{A}_{i_1i_2i_3} \mathcal{A}_{i_4i_5i_6} \mathcal{B}_{i_7,i_8} \mathbf{e}_{i_1} \otimes \cdots \otimes \mathbf{e}_{i_8}$$

2 Reduction with \odot directed by the hyperedges

$$\sum_{i_1\cdots i_8} \mathcal{A}_{i_1i_2i_3} \mathcal{A}_{i_4i_5i_6} \mathcal{B}_{i_7,i_8} (\mathbf{e}_{i_1} \odot \mathbf{e}_{i_6}) \otimes (\mathbf{e}_{i_2} \odot \mathbf{e}_{i_5} \odot \mathbf{e}_{i_7}) \otimes (\mathbf{e}_{i_3} \odot \mathbf{e}_{i_8}) \otimes \mathbf{e}_{i_4}$$

③ Contraction with β

$$\sum_{i_1\cdots i_8} \mathcal{A}_{i_1i_2i_3} \mathcal{A}_{i_4i_5i_6} \mathcal{B}_{i_7,i_8} \beta^\top (\mathbf{e}_{i_1} \odot \mathbf{e}_{i_6}) \beta^\top (\mathbf{e}_{i_2} \odot \mathbf{e}_{i_5} \odot \mathbf{e}_{i_7}) \beta^\top (\mathbf{e}_{i_3} \odot \mathbf{e}_{i_8}) \beta^\top \mathbf{e}_{i_4}$$