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Objective and Method

Grammatical Inference: estimate probability distributions on
string/trees from samples

↪→ Lot of works rely on the notion of recognizable/rational series:
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⇔ There exists a finite weighted automaton computing r
⇔ r has a linear representation 〈ι ∈ Rd , τ ∈ Rd , {Mσ ∈ Rd×d}σ∈Σ〉

r(w) = ι>Mw1Mw2 · · ·Mwnτ for all w ∈ Σ∗

Objective

Extend the notion of recognizable series to graphs and hypergraphs.

↪→ by directly aiming for an algebraic characterization similar to linear
representations of string/tree series.
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Graphs
A graph G = (V ,E , `) on a ranked alphabet F = (Σ, ])

Vertices V ,

Labeling function ` : V → Σ,

Set of ports P = {(v , j) : v ∈ V , 1 ≤ j ≤ ]`(v)},
Edges E ⊂ P × P (partition of P) .

f 1

2

f1
2

g
1

2 3 a1

Figure : A graph on the ranked alphabet F = {a(·), f (·, ·), g(·, ·, ·)}.

V = {1, 2, 3, 4}, `(1) = l(2) = f , `(3) = g , `(4) = a,
E =

{
{(1, 1), (3, 2)}, {(1, 2), (2, 1)}, {(2, 2), (3, 1)}, {(3, 3), (4, 1)}

}
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Tensors

Tensor T ∈
⊗k Rd = Rd ⊗ · · · ⊗ Rd ' Multi-array (T i1...ik ) ∈ Rd×···×d .

Let e1, . . . , ed be the canonical basis of V = Rd , T can be expressed as

T =
∑

i1,...,ik∈[d ]

T i1...ikei1 ⊗ · · · ⊗ eik

k = 1: vector vi (1 ≤ i ≤ d)

k = 2: matrix Mi1i2 (1 ≤ i1, i2 ≤ d)

k = 3: higher order tensor T i1i2i3 (1 ≤ i1, i2, i3 ≤ d)
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Graph Weighted Models (GWM)

A graph G on the ranked alphabet F = {g(·, ·, ·), f (·, ·), a(·)}:

f 1

2

f1
2

g
1

2 3 a1

Graph Weighted Model: 〈d , {Tx ∈
⊗#x Rd}x∈F 〉.

Computation of a GWM:

1 Tensor product of all tensors associated to vertices in G :2 Contractions directed by the edges of G :
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GWM: Examples

F = {ι(·), τ(·), a(·, ·), b(·, ·), c(·, ·)}, GWM {ι,Ma,Mb,Mc , τ}

G = ι 1 a1 2
b

1 2 c1 2 τ1

1 ιi1M
a
i2i3

Mb
i4i5

Mc
i6i7

τ i8

2 r(G ) =
∑
i1i3i5i7

ιi1M
a
i1i3M

b
i3i5M

c
i5i7τ i7 = ι>MaMbMcτ

F = {a(·, ·), b(·, ·), c(·, ·)}, G =

a

1
2

b
1

2

c
2 1

1 Ma
i1i2

Mb
i3i4

Mc
i5i6

2 r(G ) =
∑
i2i4i6

Ma
i6i2M

b
i2i4M

c
i4i6 = Tr(MaMbMc)
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Recognizable graph series

A series r : GF → R is recognizable iff it can be computed by a GWM.
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Recognizable graph series

A series r : GF → R is recognizable iff it can be computed by a GWM.

Beyond strings: circular strings, 2D words/pictures...
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Recognizable graph series

A series r : GF → R is recognizable iff it can be computed by a GWM.

Crosswords: Let rh and rv be two recognizable string series on Σ∗

a
4

3

1
2 c

4

3

1
2

d
4

3

1
2

b
4

3

1
2

α

α

α α

α
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α α

7→ rh(ac)rh(db)rv (ad)rv (cb)
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Main results (1)

Proposition

GWMs are a direct generalization of linear representation of string/tree
series.

Proposition

The sum of two recognizable series is recognizable

The Hadamard product of two recognizable series is recognizable

A main question:

Are series with finite support recognizable?
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Recognizability of Finite Support Series

Given a graph Ĝ , is there a GWM s.t. r(G ) = 1 if G = Ĝ and 0
otherwise?

Simple counter-example:
I Circular strings on F = {a(·, ·)}, GWM r : 〈d , {Ma ∈ Rd×d}〉.
I r(Gan) = Tr(Mn

a) for all n.

I If Ĝ = Ga, we want Tr(Ma) = 1 and Tr(Mn
a) = 0 for all n ≥ 2.

Lemma

Let M ∈ Rd×d . If Tr(Mn) = 0 for all n ≥ 2, then Tr(M) = 0.
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Tilings
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Figure : A graph G
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Figure : Graph G2 with 3 connected components isomorphic to G .
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Figure : Graph G3. Tiling made of three copies of the graph G .
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Tilings
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2 3 a1

Figure : Graph G3. Tiling made of three copies of the graph G .

For any graph Ĝ , if r(Ĝ ) 6= 0 then there exists a tiling G of Ĝ s.t.
r(G ) 6= 0.
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Main results (2)

Theorem

Given a graph Ĝ , there exists a recognizable series r such that r(G ) 6= 0 if
and only if G is a tiling of Ĝ .

Corollary

For any family of graph which does not allow tilings, graph series with
finite support are recognizable.

Family of rooted graphs over F : there exists a0 ∈ Σ s.t. for any G ∈ F ,
there exists exactly one vertex v ∈ VG such that `(v) = a0.
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Ongoing Work: Learning GWMs

Let r : 〈d , {Tx ∈
⊗#x Rd}x∈F 〉 be a GWM.

Given (G1, r(G1)), (G2, r(G2)), · · · , can we recover the tensors
{Tx ∈

⊗#x Rd}x∈F?

Spectral learning for recognizable series on strings.
I Low-rank factorization of Hankel matrix H ∈ RΣ∗×Σ∗ , Hu,v = r(uv).

Learning GWMs
I Graph cuts:

I Hankel Matrices/Tensors in RGF,2×GF,2 , RF1×GF,1 , RF2×F1×GF,3 , ...

→ Preliminary results show that low-rank factorizations of the Hankel
tensors can be used to recover the GWM parameters (circular strings
and 2D-words).
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Conclusion

We proposed a definition of recognizable series on graphs (and
hypergraphs).

Direct generalization of recognizable series on strings and trees.

Characterization of the recognizability of finite support series.

Generalization of the spectral method for hypergraph recognizable
series?

A bridge between graphical models and recognizable series?

Algorithms to compute/approximate/learn (e.g. message passing).

Thank you for your attention.
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Hypergraphs
a1

1

2

3
b2

1

2

a3

3 2
1

h1 h2

h3

h4

F =
{
(a, 3), (b, 2)

}
V =

{
1, 2, 3

}
`(1) = `(3) = a, `(2) = b

A hypergraph G = (V ,E , `) on a ranked alphabet F = (Σ, ])

V set of vertices,

` : V → Σ labeling function,

P = {(v , j) : v ∈ V , 1 ≤ j ≤ ]`(v)} set of ports of G ,

E = (hk)1≤k≤nE a partition of P set of hyper-edges of G .
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(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)

}
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Hypergraphs
a1

1
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3
b2

1

2

a3

3 2
1

h1 h2

h3

h4

E =
{
h1 :

{
(1, 1), (3, 3)

}
, h2 :

{
(1, 2), (2, 1), (3, 2)

}
, h3 :

{
(1, 3), (2, 2)

}
, h4 :

{
(3, 1)

}}
A hypergraph G = (V ,E , `) on a ranked alphabet F = (Σ, ])

V set of vertices,

` : V → Σ labeling function,

P = {(v , j) : v ∈ V , 1 ≤ j ≤ ]`(v)} set of ports of G ,

E = (hk)1≤k≤nE a partition of P set of hyper-edges of G .
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Hypergraph Weighted Model

〈F , d , {Tx}x∈Σ,�,β〉

where

F is a ranked alphabet,

d ∈ N+ is the dimension of the representation, V = Rd ,

Tx ∈ V⊗]x , tensor associated with symbol x

� : V × V → V is a symmetric associative product

β is a linear form on V .

Example of reduction operators:

�id is defined by ei �id ej = δijei ,

β1 is defined by β1(ei ) = 1 for 1 ≤ i ≤ d .
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HWM: Computation

a1
1

2

3
b2

1

2

a3

3 2
1

h1 h2

h3

h4

HWM 〈F , d , {A,B},�,β〉
1 Tensor product of all tensors associated to vertices∑

i1···i8

Ai1i2i3Ai4i5i6Bi7,i8ei1 ⊗ · · · ⊗ ei8

2 Reduction with � directed by the hyperedges∑
i1···i8

Ai1i2i3Ai4i5i6Bi7,i8 (ei1 � ei6 )⊗ (ei2 � ei5 � ei7 )⊗ (ei3 � ei8 )⊗ ei4

3 Contraction with β∑
i1···i8

Ai1i2i3Ai4i5i6Bi7,i8β
>(ei1 � ei6 )β>(ei2 � ei5 � ei7 )β>(ei3 � ei8 )β>ei4
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