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What I will talk about today is based on joint work with Tianyu Li,
Bogdan Mazoure and Doina Precup:

Li, T., Mazoure, B., Precup, D., Rabusseau, G. (2020, June).
Efficient Planning under Partial Observability with Unnormalized Q
Functions and Spectral Learning. In AISTATS 2020.
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Reinforcement Learning
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Fully Observable Environment
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Partially Observable Environment
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General Approaches
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General Approach for Partially Observable Environment
1. Learning:

I Learn the function F to estimate the belief states given a history
sequence h.

I Learn a reward model (mapping belief states to rewards / Q-value)
2. Planning: Policy acting optimally w.r.t. belief states estimator &

reward model

Examples:
The family of predictive state representations (PSRs) [(Littman and Sutton,

2002; Singh et al., 2003, 2004; Boots et al., 2011)]

I Separate the reward information from the belief estimation
I Inefficient state representation for planning
I Potentially sample inefficient and time consuming

Deep Q-Learning [(Mnih et al., 2013; Hausknecht and Stone, 2015)]

I No theoretical guarantees
I Partial observability is often ignored (e.g. state = last 10 observations)
I Sample inefficient
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Our Contribution

Propose an algorithm that incorporate reward information into the
belief estimation
Sample efficient
Consistent algorithm (spectral learning)
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Partially Observable Markov Decision Processes
(POMDPs)
A POMDP is a tuple 〈S,A,O,P,R,O,b0〉 where
S: set of states (finite);
A: set of actions (finite);
O: set of observations (finite);

P ∈ RS×A×S : Transition tensor Psas′ = P(St+1 = s ′|St = s,At = a);
R ∈ RS×A: Reward matrix Rsa = R(s, a);
O ∈ RS×A×O: Emission tensor Osao = P(Ot = o|St = s,At = a);
b0 ∈ RS : Initial state distribution.

Goal
Find a policy π : H → A maximizing the expected discounted return

V (π) = E

∑
t≥0

γtR(st , at)

∣∣∣∣∣∣π,b0


where H = (A×O)∗ is the set of all histories and γ is a discount factor.
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Background
Weighted Finite Automata
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String Weighted Automata (WA)

Notations:
I Σ: a finite alphabet (e.g. {a, b})
I Σ∗: strings on Σ (e.g. abba, ab, λ, ...)
I λ: the empty string.

Recall: a Deterministic Finite Automaton (DFA) recognizes a
language (subset of Σ∗).

↪→ a DFA computes a function f : Σ∗ → {>,⊥}.
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Weighted Automata: States and Weighted Transitions

image credits: B. Balle, X. Carreras, A. Quattoni - ENMLP’14 tutorial
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String Weighted Automata (WA)
Σ a finite alphabet (e.g. {a, b}), Σ∗ strings on Σ (e.g. abba)
A WA computes a function f : Σ∗ → R

Weighted Automaton: A = (α, {Aσ}σ∈Σ,ω) where

α ∈ Rn initial weights vector
ω ∈ Rn final weights vector

Aσ ∈ Rn×n transition weights matrix for each σ ∈ Σ
A computes a function fA : Σ∗ → R defined by

fA(σ1σ2 · · ·σk) = α>Aσ1Aσ2 · · ·Aσkω = α>Aσ1σ2···σkω

Theorem ((Singh et al., 2004))
For any POMDP, there exists a WFA A computing the trajectory
probabilities. I.e., such that fA(h) = P(h) for all h ∈ H, where
H = (A×O)∗ is the set of all histories.
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Hankel matrix
I Σ a finite alphabet of size d (e.g. {a, b})
I Σ∗ strings on Σ (e.g. abba)
I A WFA computes a function f : Σ∗ → R:

f (σ1 · · ·σk) = α>Aσ1Aσ2 · · ·Aσkω

Hf ∈ RΣ∗×Σ∗ : Hankel matrix of f : Σ∗ → R

I Definition: prefix p, suffix s ⇒ (Hf )p,s = f (ps)



λ a b aa ab bb ...

λ f (λ) f (a) f (b) f (aa) f (ab) . . . . . .
a f (a) f (aa) f (ab) f (aaa) f (aab) . . . . . .
b f (b) f (ba) f (bb) f (baa) f (bab) . . . . . .
aa f (aa) f (aaa) f (aab) f (aaaa) f (aaab) . . . . . .

ab
...

...
...

...
...

...
...

...
...

...
...

...
...

... . . .


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Hankel matrix

We consider the case where inputs are sequences of discrete symbols:
I Σ a finite alphabet of size d (e.g. {a, b})
I Σ∗ strings on Σ (e.g. abba)
I A WFA computes a function f : Σ∗ → R:

f (σ1 · · ·σk) = α>Aσ1Aσ2 · · ·Aσkω

Hf ∈ RΣ∗×Σ∗ : Hankel matrix of f : Σ∗ → R
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...
...

...
...

...
...

...
...

...
...

...
...

... . . .


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Spectral Learning of WFA

Hf ∈ RΣ∗×Σ∗ : Hankel matrix of f : Σ∗ → R

Definition: prefix p, suffix s ⇒ (Hf )p,s = f (ps)

Fundamental theorem [Carlyle and Paz, 1971; Fliess 1974]:

rank(Hf ) <∞⇐⇒ f can be computed by a WFA

↪→ Proof is constructive! From a low rank factorization of Hf we can
recover a WFA computing f ...
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Hankel matrix and WA

slide credits: B. Balle
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Hankel matrices

In addition to the Hankel matrix

H =



a b aa ab ...

a f (aa) f (ab) . . . . . . . . .
b f (ba) f (bb) . . . . . . . . .
aa f (aaa) f (aab) . . . . . . . . .

ab
...

...
...

...
...

...
...

...
...

... . . .


For each σ ∈ Σ we also define

Hσ =



a b aa ab ...

a f (aσa) f (aσb) . . . . . . . . .
b f (bσa) f (bσb) . . . . . . . . .
aa f (aaσa) f (aaσb) . . . . . . . . .

ab
...

...
...

...
...

...
...

...
...

... . . .


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Hankel matrix: spectral learning

slide credits: B. Balle
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Spectral Learning of Weighted Automata (in a nutshell)

1. Choose a set of prefixes and suffixes, P,S ⊂ Σ∗.
2. Estimate the Hankel sub-blocks H and Hσ ∈ RP×S for each σ ∈ Σ

H =


a b

a f (aa) f (ab)
b f (ba) f (bb)
aa f (aaa) f (aab)

 Hσ =


a b

a f (aσa) f (aσb)
b f (bσa) f (bσb)
aa f (aaσa) f (aaσb)



3. Perform rank n decomposition H = PS
4. WA with initial/final weights α = Pλ,:, ω = S:,λ and transition

matrices Aσ = P†HσS† is a minimal WFA for f .

→ Efficient and consistent learning algorithms for weighted automata
[Hsu et al., 2009; Bailly et al. 2009; Balle et al., 2014, ...].
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Spectral Learning: when does it work?

Theorem (Exact case)
If the set of prefixes and suffixes P,S ⊂ Σ∗ are such that

rank(HP,S) = rank(Hf ) <∞

then the spectral learning algorithm returns a WFA computing f .

By a continuity argument, one can show that the result approximately
holds when we are given noisy estimates of the Hankel matrices.

↪→ When f is a probability distribution, we get an unbiased and
consistent estimator! [c.f. work of B. Balle]
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Learning and Planning in POMDP
with WFA
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Learning and Planning with WFA: Previous Approaches

Previous approaches based on spectral learning relies on 2 stages:
1. Learn a model of the POMDP dynamics

I Learn a WFA computing P(h) from sampled trajectories
I Spectral learning → Consistent estimator of the POMDP’s dynamics

2. Plan in the learned POMDP
I Learn a reward model (e.g. Q function) and plan accordingly
I Point-based Value Iteration (Pineau et al., 2003) or Fitted-Q (Ernst

et al., 2005)

Drawbacks:
Reward and dynamics are decoupled in the learning process
Sample inefficient (parts of the learned dynamics may be useless for
planning)
Planning is computationally costly

Our approach: directly learn a reward model from trajectories
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Learning and planning with the Q function

Q function: Given policy π, the value of taking action at after history ht is

Qπ(ht , at) = E[rt + γrt+1 + γ2rt+2 + · · · |ht , aτ = π(hτ ), τ > t]

Policy improvement: Acting greedily w.r.t. Qπ results in a better policy π̃,
i.e., V (π̃) ≥ V (π).

Policy iteration: Alternate between policy evaluation and improvement

π0
evaluate−−−−−→ Qπ0 improve−−−−→ π1

evaluate−−−−−→ Qπ1 improve−−−−→ · · · → π∗

Main Contribution
We design a consistent learning algorithm to perform policy evaluation and
improvement from sampled trajectories.
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Goal
Given a policy π, we want to act greedily w.r.t. the Q-function. I.e., for
any history h we want find the action a s.t.

a = arg max
a∈A

Qπ(h, a)

Let R̃(h) =
∑

s∈S P(s|h)R(s) be the expected immediate reward after
history h. We have

Qπ(h, a) = E(rt + γrt+1 + · · ·+ γ i rt+i + · · · |ha)
=
∑
z∈H

∑
o∈O

γ|z|R̃(haoz)P(haoz |ha)

=
∑

o∈O
∑

z∈H γ
|z|R̃(haoz)P(haoz)
P(ha)

=
∑

o∈O
∑

z∈H γ
|z|R̃(haoz)P(haoz)/π(a|h)

P(h) := Q̃π(h, a)
P(h)
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Lemma
Given a policy π, let Q̃π be the un-normalized Q-function defined by

Q̃π(h, a) =
∑
o∈O

∑
z∈H

γ|z|R̃(haoz)P(haoz)/π(a|h)

where R̃(h) =
∑

s∈S P(s|h)R(s) is the expected immediate reward.
Then, Qπ(h, a) = Q̃π(h,a)

P(h) for all h ∈ H, a ∈ A.

Goal
Given a policy π, we want to act greedily w.r.t. the Q-function. I.e., for
any history h we want find the action a s.t.

a = arg max
a∈A

Qπ(h, a)= arg max
a

Q̃π(h, a)
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Goal
Given a policy π, we want to compute the un-normalized Q-function

Q̃π(h, a) =
∑
o∈O

∑
z∈H

γ|z|R̃(haoz)P(haoz)/π(a|h)

Main idea:
1. Recover a WFA computing the function h 7→ R̃(h)P(h) from data
2. Use this WFA to compute Q̃π using the following result:

Let A = (α, {Aσ}σ∈Σ,ω) be a WFA and 0 < γ < 1 such
that ρ(γ

∑
σ∈Σ) < 1. Then,∑

x∈Σ∗
γ|x |fA(x) =

∑
x∈Σ∗

γ|x |α>Axω = α>(I− γ
∑
σ∈Σ

Aσ)−1ω
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Main Results

Theorem
For any POMDP, there exists a WFA A computing the function
h 7→ R̃(h)P(h).

Theorem
Let the WFA B = 〈β, {Bao | (a, o) ∈ A×O}, τ 〉 be a WFA computing
the function h 7→ R̃(h)P(h).
Then, for any policy π, the UQF for a history h ∈ H and an action a ∈ A
can be computed by:

Q̃π(h, a) = 1
π(a|h)β

>Bh
(∑

o∈O
Bao

)I− γ
∑

(a′,o′)∈A×O
Ba′o′

−1

τ
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Spectral Learning Algorithm for the UQF
1. Collect trajectories from the policy π
2. Estimate WFA B = 〈β, {Bao | (a, o) ∈ A×O}, τ 〉 computing the

function R̃(h)P(h) from data (spectral learning algorithm).
3. Construct the WFA A with initial weight vector α = β, transition

matrices Aao = Bao and final weight vector

ω =

I− γ
∑
σ∈Σ

Bσ

−1

τ

4. For any h ∈ Σ∗, a ∈ A, the UQF is computed by:

Q̃Π(h, a) = 1
π(a|h)

∑
o∈O

α>AhAaoω

5. Return the policy:

π : h 7→ arg max
a∈A

Q̃Π(h, a)
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Experimental Results
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Grid World Navigation

Figure: Experiments on three grid world tasks. The agent only receives knowledge
about the number of the surrounding walls in four direction .
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S-PocMan Domain (Hamilton et al., 2014)
Pacman is unaware of the maze structure.
Receives a 4-bit observation describing the wall configuration at its
current location.
Receives a 4-bit observation indicating whether a ghost is visible via
direct line of sight

Figure: S-PocMan domain
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S-PocMan Domain

Method
Fitted-Q
Iterations Time (s) Returns

UQF - 2 -92
400 489 -101CPSR 100 116 -109
50 60 -150
10 15 -200

Table: Training time for one policy iteration and averaged accumulated
discounted rewards on S-PocMan trained on 500 trajectories.
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Conclusion and Future Work
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Conclusion and Future Work

We proposed a sample efficient and consistent learning and planning
algorithm for POMDP
Our approach integrates planning and learning in one step
The resulting learning algorithm comes with theoretical guarantees
(e.g., it is consistent)

Future Work:
Extending the approach to continuous
actions/observations (Rabusseau et al., 2018)
Scale up the approach to larger problems leveraging connections with
tensor networks

I Li, T., Precup, D., Rabusseau, G. Connecting Weighted Automata,
Tensor Networks and Recurrent Neural Networks through Spectral
Learning. arXiv preprint arXiv:2010.10029 (2020).
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Thanks for listening!
Questions?
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