Simulating Weighted Automata with Transformers (Over both sequences and trees!)

Michael Rizvi 13 $\,$ Maude Lizaire 13 $\,$ Clara Lacroce 23 $\,$ Guillaume Rabusseau 13

¹Université de Montréal ²McGill University ³Mila

TAUDos, June 2024

1 Introduction/Motivation

- 2 Transformers
- 3 WFA Refresher
- 4 Theoretical Results for WFAs
- **5** WTA Refresher
- 6 Theoretical Results for WTAs
- Experiments
- 8 Conclusion

1 Introduction/Motivation

- 2 Transformers
- 3 WFA Refresher
- 4 Theoretical Results for WFAs
- 5 WTA Refresher
- 6 Theoretical Results for WTAs
- Experiments
- 8 Conclusion

• **Objective:** show sequential reasoning capacities of Transformer architecture

- 4 ∃ ▶

- **Objective:** show sequential reasoning capacities of Transformer architecture
- Result on the expressivity of the architecture not learnability!

- **Objective:** show sequential reasoning capacities of Transformer architecture
- Result on the expressivity of the architecture not learnability!
- Take the lense of simulation

What do we mean by simulation?

- Simulation = showing steps
- Previous results by Liu et al. introduce this idea for DFA
- For some DFA \mathcal{A} over Σ :
 - Input: $w \in \Sigma^*$
 - Output: sequence of visited states

Example of a DFA for multiples of 3 on $\Sigma=\{0,1\}$

- Liu et al. showed transformers can simulate DFA up to length T with O log T layers (even O(1) in some cases!)
- Notion of shortcuts: shallow transformers w.r.t. T
- General idea of the theorem
 - Input: a DFA and some sequence length T
 - Output: a transformer which can simulate the inner working of DFA for any word of length ${\cal T}$
- Can we do this for more complex models?

Introduction/Motivation

- 2 Transformers
- 3 WFA Refresher
- 4 Theoretical Results for WFAs
- 5 WTA Refresher
- 6 Theoretical Results for WTAs
- Experiments
- 8 Conclusion

Transformer architecture in our construction is similar to the **encoder in the original transformer architecture**.

イロト イポト イヨト イヨト

The model is defined as follows

- Input: $X \in \mathbb{R}^{T \times d}$ where T is sequence length and d is embedding dimension
- Self-attention block:

$$f(\mathbf{X}) = \operatorname{softmax}(\mathbf{X}\mathbf{W}_Q\mathbf{W}_K^{\top}\mathbf{X}^{\top})\mathbf{X}\mathbf{W}_V,$$

Attention layer f_{attn}: h copies of f, concatenate the outputs
Feedforward layer f_{mlp}: Simple feedforward MLP
Full L-layer model, with f_{tf} : ℝ^{T×d} → ℝ^{T×d} :

$$f_{\mathsf{tf}} = f_{\mathsf{mlp}}^{(L)} \circ f_{\mathsf{attn}}^{(L)} \circ f_{\mathsf{mlp}}^{(L-1)} \circ f_{\mathsf{attn}}^{(L-1)} \circ \ldots \circ f_{\mathsf{mlp}}^{(1)} \circ f_{\mathsf{attn}}^{(1)}.$$

Introduction/Motivation

- 2 Transformers
- 3 WFA Refresher
- 4 Theoretical Results for WFAs
- 5 WTA Refresher
- 6 Theoretical Results for WTAs
- D Experiments
- 8 Conclusion

• Weighted Finite Automata (WFA) generalize DFAs by **computing a function** over some word *w* (instead of simply accepting/rejecting)

Weighted Finite Automata

- A weighted finite automaton (WFA) of *n* states over Σ is a tuple $\mathcal{A} = \langle \boldsymbol{\alpha}, \{\mathbf{A}^{\sigma}\}_{\sigma \in \Sigma}, \boldsymbol{\beta} \rangle$, where
 - $\pmb{lpha},\,\pmb{eta}\in\mathbb{R}^n$: initial/final weights
 - $\mathbf{A}^{\sigma} \in \mathbb{R}^{n \times n}$: transition matrix for each $\sigma \in \Sigma$

Weighted Finite Automata

A weighted finite automaton (WFA) of n states over Σ is a tuple $\mathcal{A} = \langle \alpha, \{\mathbf{A}^{\sigma}\}_{\sigma \in \Sigma}, \beta \rangle$, where

• $\pmb{lpha},\,\pmb{eta}\in\mathbb{R}^n$: initial/final weights

• $\mathbf{A}^{\sigma} \in \mathbb{R}^{n \times n}$: transition matrix for each $\sigma \in \Sigma$

WFA \mathcal{A} computes a function $f_{\mathcal{A}}: \Sigma^* \to \mathbb{R}$:

$$f_{\mathcal{A}}(x) = f_{\mathcal{A}}(x_1 \cdots x_t) = \alpha^{\top} \mathbf{A}^{x_1} \cdots \mathbf{A}^{x_t} \beta = \alpha^{\top} \mathbf{A}^x \beta$$

Weighted Finite Automata

A weighted finite automaton (WFA) of n states over Σ is a tuple $\mathcal{A} = \langle \alpha, \{\mathbf{A}^{\sigma}\}_{\sigma \in \Sigma}, \beta \rangle$, where

• $\alpha, \, eta \in \mathbb{R}^n$: initial/final weights

• $\mathbf{A}^{\sigma} \in \mathbb{R}^{n \times n}$: transition matrix for each $\sigma \in \Sigma$

WFA \mathcal{A} computes a function $f_{\mathcal{A}}: \Sigma^* \to \mathbb{R}$:

$$f_{\mathcal{A}}(x) = f_{\mathcal{A}}(x_1 \cdots x_t) = lpha^{ op} \mathbf{A}^{x_1} \cdots \mathbf{A}^{x_t} eta = lpha^{ op} \mathbf{A}^x eta$$

Example Consider the following WFA with **2** states on $\Sigma = \{a, b\}$

- Introduction/Motivation
- 2 Transformers
- 3 WFA Refresher
- 4 Theoretical Results for WFAs
- 5 WTA Refresher
- 6 Theoretical Results for WTAs
- Experiments
- 8 Conclusion

Exact Simulation

Given a WFA \mathcal{A} over some alphabet Σ , a function $f : \Sigma^T \to \mathbb{R}^{T \times n}$ exactly simulates \mathcal{A} at length T if, for all $x \in \Sigma^T$ as input, we have $f(x) = \mathcal{A}(x)$, where $\mathcal{A}(x) = (\alpha^T, \alpha^T \mathbf{A}^{x_1}, \dots, \alpha^T \mathbf{A}^{x_{1:T}})^T$.

Exact Simulation

Given a WFA \mathcal{A} over some alphabet Σ , a function $f : \Sigma^T \to \mathbb{R}^{T \times n}$ exactly simulates \mathcal{A} at length T if, for all $x \in \Sigma^T$ as input, we have $f(x) = \mathcal{A}(x)$, where $\mathcal{A}(x) = (\alpha^T, \alpha^T \mathbf{A}^{x_1}, \dots, \alpha^T \mathbf{A}^{x_{1:T}})^T$.

Approximate Simulation

Given a WFA \mathcal{A} over some alphabet Σ , a function $f : \Sigma^T \to \mathbb{R}^{T \times n}$ approximately simulates \mathcal{A} at length T with precision $\epsilon > 0$ if for all $x \in \Sigma^T$, we have $\|f(x) - \mathcal{A}(x)\|_F < \epsilon$. First Theorem: exact simulation:

Theorem 1

Theorem 1 Transformers using bilinear layers in place of an MLP and hard attention can *exactly* simulate all WFAs with *n* states at length *T*, with depth $\mathcal{O}(\log T)$, embedding dimension $\mathcal{O}(n^2)$, attention width $\mathcal{O}(n^2)$, MLP width $\mathcal{O}(n^2)$ and $\mathcal{O}(1)$ attention heads.

First Theorem: exact simulation:

Theorem 1

Theorem 1 Transformers using bilinear layers in place of an MLP and hard attention can *exactly* simulate all WFAs with *n* states at length *T*, with depth $\mathcal{O}(\log T)$, embedding dimension $\mathcal{O}(n^2)$, attention width $\mathcal{O}(n^2)$, MLP width $\mathcal{O}(n^2)$ and $\mathcal{O}(1)$ attention heads.

Second Theorem: approximate simulation

Theorem 2

Transformers can *approximately* simulate all WFAs with *n* states at length T, up to arbitrary precision $\epsilon > 0$, with depth $\mathcal{O}(\log T)$, embedding dimension $\mathcal{O}(n^2)$, attention width $\mathcal{O}(n^2)$, MLP width $\mathcal{O}(n^4)$ and $\mathcal{O}(1)$ attention heads.

Second Theorem: approximate simulation

Theorem 2

Transformers can approximately simulate all WFAs with *n* states at length *T*, up to arbitrary precision $\epsilon > 0$, with depth $\mathcal{O}(\log T)$, embedding dimension $\mathcal{O}(n^2)$, attention width $\mathcal{O}(n^2)$, MLP width $\mathcal{O}(n^4)$ and $\mathcal{O}(1)$ attention heads.

Remark

Notice how in Theorem 2, the size of the construction **does not** depend on ϵ !

Second Theorem: approximate simulation

Theorem 2

Transformers can *approximately* simulate all WFAs with *n* states at length T, up to arbitrary precision $\epsilon > 0$, with depth $\mathcal{O}(\log T)$, embedding dimension $\mathcal{O}(n^2)$, attention width $\mathcal{O}(n^2)$, MLP width $\mathcal{O}(n^4)$ and $\mathcal{O}(1)$ attention heads.

Remark

Notice how in Theorem 2, the size of the construction **does not** depend on ϵ !

Theorem 4. (abridged version of Theorem 3.1 of (Chong, 2020)) Let $d \ge 2$ be an integer, let $f \in \mathcal{P}_{\le d}(\mathbb{R}^{m_1}, \mathbb{R}^{m_2})$ and let ρ_{Θ}^{σ} be a two-layer MLP with activation function σ and parameters $\Theta = (\mathbf{W}_1, \mathbf{W}_2)$. If $\sigma \in \mathcal{C}(\mathbb{R}) \setminus \mathcal{P}_{\le d-1}$, then for every $\epsilon > 0$, there exists some $\Theta \in \{(\mathbf{W}_1, \mathbf{W}_2) \mid \mathbf{W}_1 \in \mathbb{R}^{m_1 \times N}, \mathbf{W}_2 \in \mathbb{R}^{N \times m_2}\}$ with $N = \binom{m_1+d}{d}$ such that $\|f - \rho_{\Theta}^{\sigma}\|_{\infty} < \epsilon$.

イロト イヨト イヨト ・

- Introduction/Motivation
- 2 Transformers
- 3 WFA Refresher
- 4 Theoretical Results for WFAs
- **5** WTA Refresher
 - 6 Theoretical Results for WTAs
 - Experiments
 - 8 Conclusion

• Intuition: Same thing as WFAs but for tree-structured inputs!

Binary Trees

Given a finite alphabet Σ , the set of binary trees with leafs labeled by symbols in Σ is denoted by \mathscr{T}_{Σ} . Formally, \mathscr{T}_{Σ} is the smallest set such that $\Sigma \subset \mathscr{T}_{\Sigma}$ and $(t_1, t_2) \in \mathscr{T}_{\Sigma}$ for all $t_1, t_2 \in \mathscr{T}_{\Sigma}$.

Weighted Tree Automata

A weighted tree automaton (WTA) \mathcal{A} with *n* states on \mathscr{T}_{Σ} is a tuple $\langle \alpha \in \mathbb{R}^n, \mathcal{T} \in \mathbb{R}^{n \times n \times n}, \{ \mathbf{v}_{\sigma} \in \mathbb{R}^n \}_{\sigma \in \Sigma} \rangle$. A WTA \mathcal{A} computes a function $f_{\mathcal{A}} : \mathscr{T}_{\Sigma} \to \mathbb{R}$ defined by $f_{\mathcal{A}}(t) = \langle \alpha, \mu(t) \rangle$ where the mapping $\mu : \mathscr{T}_{\Sigma} \to \mathbb{R}^n$ is recursively defined by

•
$$\mu(\sigma) = \mathbf{v}_{\sigma}$$
 for all $\sigma \in \Sigma$,

•
$$\mu((t_1, t_2)) = \mathcal{T} imes_2 \mu(t_1) imes_3 \mu(t_2)$$
 for all $t_1, t_2 \in \mathscr{T}_{\Sigma}$.

Simulation by a function

Given a WTA $\mathcal{A} = \langle \boldsymbol{\alpha}, \mathcal{T}, \{ \mathbf{v}_{\sigma} \}_{\sigma \in \Sigma} \rangle$ with *n* states on \mathscr{T}_{Σ} , we say that a function $f : (\Sigma \cup \{ \llbracket, \rrbracket \})^T \to (\mathbb{R}^n)^T$ simulates \mathcal{A} at length T if for all trees $t \in \mathscr{T}_{\Sigma}$ such that $|\operatorname{str}(t)| \leq T$, $f(\operatorname{str}(t))_i = \mu(\tau_i)$ for all $i \in \mathcal{I}_t$.

Simulation by a function

Given a WTA $\mathcal{A} = \langle \boldsymbol{\alpha}, \mathcal{T}, \{ \mathbf{v}_{\sigma} \}_{\sigma \in \Sigma} \rangle$ with *n* states on \mathscr{T}_{Σ} , we say that a function $f : (\Sigma \cup \{ \llbracket, \rrbracket \})^T \to (\mathbb{R}^n)^T$ simulates \mathcal{A} at length T if for all trees $t \in \mathscr{T}_{\Sigma}$ such that $|\operatorname{str}(t)| \leq T$, $f(\operatorname{str}(t))_i = \mu(\tau_i)$ for all $i \in \mathcal{I}_t$.

(4) (5) (4) (5)

- Introduction/Motivation
- 2 Transformers
- 3 WFA Refresher
- 4 Theoretical Results for WFAs
- 5 WTA Refresher
- 6 Theoretical Results for WTAs
 - 7 Experiments
 - 8 Conclusion

Theorem 3

Transformers can *approximately* simulate all WTAs \mathcal{A} with *n* states at length T, up to arbitrary precision $\epsilon > 0$, with embedding dimension $\mathcal{O}(n)$, attention width $\mathcal{O}(n)$, MLP width $\mathcal{O}(n^3)$ and $\mathcal{O}(1)$ attention heads. Moreover:

- Simulation over arbitrary trees can be done with depth $\mathcal{O}(\mathcal{T})$
- Simulation over balanced trees (trees whose depth is of order log(T)) with depth $\mathcal{O}(log(T))$.

Theorem 3

Transformers can *approximately* simulate all WTAs \mathcal{A} with *n* states at length T, up to arbitrary precision $\epsilon > 0$, with embedding dimension $\mathcal{O}(n)$, attention width $\mathcal{O}(n)$, MLP width $\mathcal{O}(n^3)$ and $\mathcal{O}(1)$ attention heads. Moreover:

- Simulation over arbitrary trees can be done with depth $\mathcal{O}(\mathcal{T})$
- Simulation over balanced trees (trees whose depth is of order log(T)) with depth O(log(T)).

Remark

In the worst case, the tree is completely unbalanced in which case we recover the sequential WFA case!

- Introduction/Motivation
- 2 Transformers
- 3 WFA Refresher
- 4 Theoretical Results for WFAs
- 5 WTA Refresher
- 6 Theoretical Results for WTAs
- Experiments
- Conclusion

Depth vs. Length

target: 2 states WFA counting 0's in binary strings theory: log T layers for sequences of length T

target: k states WFAs counting k symbols in a string theory: n^2 width to simulate WFA with n states

- Introduction/Motivation
- 2 Transformers
- 3 WFA Refresher
- 4 Theoretical Results for WFAs
- 5 WTA Refresher
- 6 Theoretical Results for WTAs
- Experiments

- We define simulation of **weighted automata** for **sequences and trees**
- We derive the notion of **approximate simulation** and how it applies to transformers
- We show that transformers can simulate WFAs with $\mathcal{O}(\log \mathcal{T})$ layers
- We show transformers can simulate WTAs with $\mathcal{O}(\log T)$ layers
- Our results extend the ones of Liu et al. for DFAs in **two directions**: from **boolean to real weights** and from **sequences to trees**

Thank you for listening! :) Questions?

(日)