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Aim of the talk

@ Introduce tensor networks (# tensor neural networks)
@ What do tensor networks have to do with grammatical inference?

o Extend weighted finite automata (WFA) to continuous sequences
(connections with RNN)

@ How tensor networks can help learning continuous WFA and scale up
spectral learning.
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Aim of the talk

@ Introduce tensor networks (# tensor neural networks)
@ What do tensor networks have to do with grammatical inference?

o Extend weighted finite automata (WFA) to continuous sequences
(connections with RNN)

@ How tensor networks can help learning continuous WFA and scale up
spectral learning.

Connecting tensor networks and WFA for fun and (maybe) profit
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Outline

© Preliminaries
@ Tensor Networks
@ Weighted Automata
@ Spectral Learning

© Weighted Automata Vs. RNNs
© Tensor Networks and Weighted Automata

@ A Tensor Network View of the Spectral Learning Algorithm
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Most of what | will talk about today is based on joint work with Tianyu Li
(PhD student) and Doina Precup:

@ Rabusseau, Guillaume, Tianyu Li, and Doina Precup. "Connecting
weighted automata and recurrent neural networks through spectral
learning.” The 22nd International Conference on Artificial Intelligence
and Statistics. PMLR, 2019.

@ Li, Tianyu, Doina Precup, and Guillaume Rabusseau. "Connecting
Weighted Automata, Tensor Networks and Recurrent Neural Networks
through Spectral Learning.” arXiv preprint arXiv:2010.10029 (2020).

Tianyu Li:

Guillaume Rabusseau August 27, 2021 4/49



Preliminaries




Tensor Networks
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Tensors

dy M le

d2 d2

R

M E]RledQ TERd1Xd2Xd3
M € R for i € [di],j € [da] (Tijk) € Rfor i € [dh],j € [do], k € [d3]
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Tensors: Multiplication with Matrices

A o M
m, d,
m; o
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Tensors: Multiplication with Matrices

A « M A |«

my d, m;
my o my
AMB' € RmMmxm T x1 A x5 B x3 C € Rmxmzxms
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Tensors: Multiplication with Matrices

A o M A |«

%
m, dzi m; di
| e
m, O m, OO | »,
AMB' € RmMmxm T x1 A x5 B x3 C € Rmxmzxms

ex: If T € Rhxdxds gnd A ¢ R™M*% B € R™*% C e R™*%, then
T x1 A x2 B x3 C e RM*XMXms g defined by
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Tensors: Multiplication with Matrices

A o M A o

%
m; dz m; d2
e
m; w my w /729
AMBT ¢ Rmxm T x1 A x5 B x3 C € Rmxmzxms

ex: If T € RhxX®xds gpnd A € R™M*% B ¢ R™*% C e R™*%, then
T x1 A x5 B x3C € R™MXMXMs s defined by

ni  ny n3
(T X1 A X2 B X3 C)il,iz,lé = Z Z Z Tk1k2k3Ai1k1 Bigkgcig,kg
ki=1 kp=1 ks=1

for all ih € [dl], i € [mz], i3 € [d3]
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Tensor Networks

‘ Degree of a node = order of tensor‘

d do
m (: :) n d d3

VERd M ERmXH TGRdlxdzxdg,
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Tensor Networks

‘ Degree of a node = order of tensor‘

d do
m (: :) n d d3

VERd M ERmXH TeRdlxdzxdg,

‘ Edge = contraction ‘

Matrix product:

m @ n @ P (AB),‘I,,'2 = > k=1 Ai kB
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Tensor Networks

‘ Degree of a node = order of tensor‘

d do
m (: :) n d d3

VERd M ERmXH TeRdlxdzxdg,

‘ Edge = contraction ‘

n Ty, — n

Inner product:
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Tensor Networks

‘ Degree of a node = order of tensor‘

d do
m (: :) n d d3

VERd M ERmXH TeRdlxdzxdg,

‘ Edge = contraction ‘

Inner product between tensors:
d1

@ﬁ—) (S, v> = le_l 212 1 223:1 SfliziaTi1i2f3

d3
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Tensor Networks

‘ Degree of a node = order of tensor‘

d do
m (: :) n d d3

VERd M ERmXH TeRdlxdzxdg,

‘ Edge = contraction ‘

Frobenius norm of a tensor:
dr

GCES)  ISIE = Tl S S (Sin)?

d3
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Tensor Networks

‘ Degree of a node = order of tensor‘

d do
m (: :) n d d3

VERd M ERmXH TeRdlxdzxdg,

‘ Edge = contraction ‘

Trace of an n x n matrix:
n

Tr(M) =311 M;;
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Tensor Networks

‘ Degree of a node = order of tensor‘

d do
m (: :) n d d3

VERd M ERmXH TeRdldeng,

‘ Edge = contraction ‘

Tensor times matrices:

(T x1 Ax2B x3CQ)j 45 = Z Z Z T ki koks Ay Biok, Cig ks

ki=1 ko=1 k=1
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Weighted Automata
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String Weighted Automata (WA)

e ¥ a finite alphabet (e.g. {a, b}), £* strings on X (e.g. abba), A the
empty string.
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String Weighted Automata (WA)

e ¥ a finite alphabet (e.g. {a, b}), £* strings on X (e.g. abba), A the
empty string.

@ Recall: a Deterministic Finite Automaton (DFA) recognizes a
language (subset of X*).

b a

6 @

a

— a DFA computes a function f : ©¥* — {T, L}.
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Weighted Automata: States and Weighted Transitions

Example with 2 states and alphabet ~ = {q, b}

a 0.4 a 0.1 auasl
b 0.1 b o1 b 0.1
0.6
*8\/
a2
b 0.3

f(ab) = 0.4 x 0.3 x 0.6 + 0.2 x 0.1 x 0.6 = 0.084

image credits: B. Balle, X. Carreras, A. Quattoni - ENMLP'14 tutorial
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Weighted Automata: States and Weighted Transitions

Example with 2 states and alphabet ~ = {q, b}

Operator Representation

a04 Q0.1 aQ.l
b 0.1 % i b 0.1 o = 1.0 A 0.4 0.2
0.0 0.1 0.1
0.6
—t _[o0] o _[o1 03
@ = lge ~ 101 01
a 0.2
b 0.3
f(ab) = 0.4 x 0.3 x 0.6 + 0.2 x 0.1 x 0.6 = 0.084
= o A"A® w

slide credits: B. Balle, X. Carreras, A. Quattoni - ENMLP’'14 tutorial
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String Weighted Automata (WA)

@ Y a finite alphabet (e.g. {a, b}), X* strings on X (e.g. abba)
@ A WA computes a function f : 2* — R
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String Weighted Automata (WA)

@ Y a finite alphabet (e.g. {a, b}), X* strings on X (e.g. abba)
@ A WA computes a function f : 2* — R
e Weighted Automaton: A = (a, {A?},¢ex,w) where

a € R" initial weights vector
w € R" final weights vector
A € R"™" transition weights matrix for each 0 €
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String Weighted Automata (WA)

@ ¥ a finite alphabet (e.g. {a, b}), ¥* strings on X (e.g. abba)
o A WA computes a function f : X* - R
e Weighted Automaton: A = (a, {A?},¢ex,w) where

a € R" initial weights vector
w € R" final weights vector
A € R"™" transition weights matrix for each 0 €

@ A computes a function f4 : ©* — R defined by

fA(O'10'2 . O'k) — aTAUIAUQ e Ao—kw
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Spectral Learning

Guillaume Rabusseau



Hankel matrix

o Weighted Finite Automata:

» Y a finite alphabet of size d (e.g. {a, b})
» Y* strings on X (e.g. abba)
» A WFA computes a function f : ¥* — R:

flor--ox) = a ATA%2 ... A%
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Hankel matrix

o Weighted Finite Automata:
» Y a finite alphabet of size d (e.g. {a, b})
» Y* strings on X (e.g. abba)
» A WFA computes a function f : ¥* — R:

flor--ox) = a ATA%2 ... A%

o Hf € RY"*%": Hankel matrix of f : £* - R

» Definition: prefix p, suffix s = (H¢)ps = f(ps)

a b aa
a f(aa) f(ab)
b f(ba) f(bb)
aa | f(aaa) f(aab)

ab

Guillaume Rabusseau

ab

August 27, 2021
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Spectral Learning of WFAs

e Hf € RE"™*X": Hankel matrix of f: ¥* - R

Definition: prefix p, suffix s = (H¢)p s = f(ps)

e Fundamental theorem [Carlyle and Paz, 1971; Fliess 1974]:

rank(Hf) < oo <= f can be computed by a WFA
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Spectral Learning of WFAs

e Hf € RE"™*X": Hankel matrix of f: ¥* - R

Definition: prefix p, suffix s = (H¢)p s = f(ps)

e Fundamental theorem [Carlyle and Paz, 1971; Fliess 1974]:
rank(Hf) < oo <= f can be computed by a WFA

< Proof is constructive! From a low rank factorization of Hf we can
recover a WFA computing f...
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Spectral Learning of WFA

1. Choose a set of prefixes and suffixes, P, S C £*.
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Spectral Learning of WFA

1. Choose a set of prefixes and suffixes, P, S C £*.

2. Estimate the Hankel sub-blocks hp € R”, hs € R®, Hp s € RP*S,
Hpss € RP*%xS defined by
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Spectral Learning of WFA

1. Choose a set of prefixes and suffixes, P, S C £*.

2. Estimate the Hankel sub-blocks hp € R”, hs € R®, Hp s € RP*S,
Hpss € RP*EXS defined by
(hp)u = f(u),
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Spectral Learning of WFA

1. Choose a set of prefixes and suffixes, P, S C £*.

2. Estimate the Hankel sub-blocks hp € R”, hs € R®, Hp s € RP*S,
Hpss € RP*EXS defined by
(hp)y = f(u), (hs)y = f(v),
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Spectral Learning of WFA

1. Choose a set of prefixes and suffixes, P, S C £*.

2. Estimate the Hankel sub-blocks hp € R”, hs € R®, Hp s € RP*S,
Hpss € RP*EXS defined by
(hp)u = f(u), (hs)y = f(v), (Hp.s)uy = f(uv)
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Spectral Learning of WFA

1. Choose a set of prefixes and suffixes, P, S C £*.

2. Estimate the Hankel sub-blocks hp € R”, hs € R®, Hp s € RP*S,
Hpss € RP*EXS defined by
(hP)u = f(”)? (hS)v = f(V), (HP,S)u,v = f(UV) and (H’P,Z,S)u,cf,v = f(UUV)
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Spectral Learning of WFA

1. Choose a set of prefixes and suffixes, P,S C X*.

2. Estimate the Hankel sub-blocks hp € R”, hs € R®, Hp s € RP*S,
Hpss € RP*EXS defined by
(hP)u = f(”)? (hS)v = f(V), (HP,S)u,v = f(UV) and (%P,Z,S)U,O',V = f(UUV)

3. Recover WFA parameters (o, A, w):

Hp s P S

ﬂoi ~ ﬂoi.i (truncated SVD)
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Spectral Learning of WFA

1. Choose a set of prefixes and suffixes, P,S C X*.
2. Estimate the Hankel sub-blocks hp € R”, hs € R®, Hp s € RP*S,
Hpss € RP*%xS defined by
(hp), = f(u), (hs)y = f(v), (Hp.s)uy = f(uv) and (Hp s 8)uov = f(uov)
3. Recover WFA parameters («, A, w):

Hps P S
ﬂoi ~ ﬂoi.i (truncated SVD)

o hs st w pt hp
no _ S n n . n P
oL - o—o— 0 - 2020

Pt Hpss

—(P——(D—(F—.—
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Spectral Learning of WFA

1. Choose a set of prefixes and suffixes, P, S C £*.
2. Estimate the Hankel sub-blocks hp € R”, hs € RS, Hps € RPxS,
Hp s s € RP¥EXS defined by
(hp)y = f(u), (hs)y = f(v), (Hp,s)uv = f(uv) and (Hp 5 .s)uev = f(uov)
3. Recover WFA parameters (o, A, w):

Hp.s P S
ﬂoi ~ ﬂOL.i (truncated SVD)
fe? hs st w pt hp
O n _ O S © n n ® - n o P -
Pt Hpss

4?7%—?—07

— Efficient and consistent learning algorithms for weighted automata
[Hsu et al., 2009; Bailly et al. 2009; Balle et al., 2014, ...].
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Spectral Learning: when does it work?
Theorem (Exact case)

If the set of prefixes and suffixes P,S C ¥* are such that

rank(Hp s) = rank(H¢) < oo

then the spectral learning algorithm returns a WFA computing f.
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Spectral Learning: when does it work?

Theorem (Exact case)
If the set of prefixes and suffixes P,S C ¥* are such that

rank(Hp s) = rank(H¢) < oo

then the spectral learning algorithm returns a WFA computing f.

Suppose f is computed by a WFA. By a continuity argument, if we are
given noisy estimates

Hps=Hps+&ps, Hpss=Hpss+t&pss, .. wehave

f=f

im
€p,slI=0, [I€p 5 sl—0

where f is the estimator returned by the spectral method.
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Spectral Learning: when does it work?

Theorem (Exact case)
If the set of prefixes and suffixes P,S C ¥* are such that

rank(Hp s) = rank(H¢) < oo

then the spectral learning algorithm returns a WFA computing f.

Suppose f is computed by a WFA. By a continuity argument, if we are
given noisy estimates

Hps=Hps+&ps, Hpss=Hpss+t&pss, .. wehave

im F=fr
l€r sll—=0, [I€p 5, sll—0
where f is the estimator returned by the spectral method.

— When f is a probability distribution, we get an unbiased and
consistent estimator! [c.f., e.g., PhD thesis of B. Balle]
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Estimating Hankel matrices

How to estimate the Hankel matrices from data?
@ Language modeling. If f is a distribution over X*: empirical
frequencies.
a b aa ba
1/8 2/8 2/8 0

A
,ab,aa,b, 0y
s={yaen) - A= | 2/s yg 0 1/s
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Estimating Hankel matrices

How to estimate the Hankel matrices from data?
@ Language modeling. If f is a distribution over X*: empirical

frequencies.
a b aa ba
o oaf18 28 28 0
s={ymrht - HA=.|281/8 0 1/8
»| 0 1/8 0 0

@ Regression. What if f is an arbitrary function?

a b aa ba
-2 12 02 7

A
. 0.2), (ab, —0.5), (b, 1.2 o
S = {(a:ba 1)1)(aa 72))(151; 043} - H—Z 0&2 _Oof : 1&1
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Estimating Hankel matrices

How to estimate the Hankel matrices from data?
@ Language modeling. If f is a distribution over X*: empirical

frequencies.
a b aa ba
o af1/8 2/8 2/8 0
s={ymrht - HA=.|281/8 0 1/8
»| 0 1/8 0 0

@ Regression. What if f is an arbitrary function?

a b aa ba
Al -2 12 02 7

,0.2), (ab, —0.5), (b, 1.2 o
S = {(a:ba 1)1)(aa 72))(151; 043} - H=a 0é2 _Oof : 1&1
b | 7 . 77

< Two steps [Balle & Mohri, NeurlPS 2012]:
1. Structured matrix completion to infer missing entries
2. Spectral learning algorithm
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Weighted Automata Vs. RNNs
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Weighted Automata Vs. Recurrent Neural Networks

& em ol

1 bo1 - ® ® ® ®

6 @P-maa
@02 ® ® ©» ® ®
b 03

@ Weighted automata are "robust” models for sequence data
@ Recurrent neural networks can also deal with sequence data
@ Remarkably expressive models, impressive results in speech and audio
recognition
© Less tractable than WA, limited understanding of their inner working
@ Connections between WFA and RNN:
» Can RNN learn regular languages? [Giles et al, 1992], [Avcu et al., 2018]
» Can we extract finite state machines from RNNs? [Giles et al, 1992],
[Weiss et al., 2018,2019], [Ayache et al., 2018]
» Can we combine FSMs with WFA? [Rastogi et al., 2016], [Dyer et al., 2016]
» To which extent Weighted Automata are linear RNNs?
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Weighted Automata Vs. Recurrent Neural Networks

& em ol

1 bo1 - ® ® ® ®

6 @P-maa
@02 ® ® ©» ® ®
b 03

@ Weighted automata are "robust” models for sequence data
@ Recurrent neural networks can also deal with sequence data
@ Remarkably expressive models, impressive results in speech and audio
recognition
© Less tractable than WA, limited understanding of their inner working
@ Connections between WFA and RNN:
» Can RNN learn regular languages? [Giles et al, 1992], [Avcu et al., 2018]
» Can we extract finite state machines from RNNs? [Giles et al, 1992],
[Weiss et al., 2018,2019], [Ayache et al., 2018]
» Can we combine FSMs with WFA? [Rastogi et al., 2016], [Dyer et al., 2016]
» To which extent Weighted Automata are linear RNNs?
» Can we extend WFAs to input sequences of continuous vectors?
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2nd order RNNs

@ Recurrent Neural Network (RNN):

(X]_,XZ,X3,"') = (YI7Y27Y3=" )

@ Vanilla RNN:

h; = g(Ux¢ + Vh,_1), y: = g(Mh,)
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2nd order RNNs

@ Recurrent Neural Network (RNN):

(X]_,X27X3,"') = (Y17Y27Y37"')

@ Vanilla RNN:

h; = g(Ux¢ + Vh,_1), y: = g(Mh,)

@ Second-order RNN [Giles et al., NIPS'90]:
h; = g(W x2xt x3hy_1)
— order 2 multiplicative interactions: [h:]; = g (Z-J( W;jk[xt]j[ht_l]k).

J
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2nd order RNNs

o Recurrent Neural Network (RNN):

(X]_,X2,X3,"') = (Y17Y27Y37"')

@ Vanilla RNN:

h: = g(Ux; + Vh;_1), y: = g(Mhy)

@ Second-order RNN [Giles et al., NIPS'90]:
h; = g(W x2xt x3hy_1)
— order 2 multiplicative interactions: [h:]; = g (Zj,k W;jk[xt]j[ht_l]k).

< (side note) 2nd order RNN subsume vanilla RNN
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Weighted Automata and Recurrent Neural Networks

@ The hidden state of a second-order RNN is computed by

h: = g(W X2 Xt X3 ht—l)

b)—W-@-W-@-W
OO
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Weighted Automata and Recurrent Neural Networks

@ The hidden state of a second-order RNN is computed by

h: = g(W X2 Xt X3 ht—l)

b)—W-@-W-@-W
OO

@ The computation of a weighted automaton is very similar!

(A)— (Ao

—O—©—©—~0
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Weighted Automata and Recurrent Neural Networks

@ The hidden state of a second-order RNN is computed by

ht = g(W Xo Xt X3 ht_]_)

()—W-@-W-&-W
OO

@ The computation of a weighted automaton is very similar!

(@—D——D—
) & &

(where A € R™EX" defined by A. ,. = A%)
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WFAs = linear 2-RNNs

Theorem

WFAs are expressively equivalent to second-order linear RNNs for
computing functions over sequences of discrete symbols.
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WFAs = linear 2-RNNs

Theorem

WFAs are expressively equivalent to second-order linear RNNs for
computing functions over sequences of discrete symbols.

@ But 2-RNNs can compute functions over sequences of continuous
vectors (e.g., word embeddings), what about WFAs?

< We can extend the definitions of WFAs to continuous vectors!
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Continuous WFA / linear 2-RNN

Definition
A continuous WFA is a tuple A = (a, A, w) where

a € R" initial weights vector
w € R" final weights vector
A € R"9%n s the transition tensor.

A computes a function f4 : (RY)* — R defined by

F(x1,%2, - ,Xg) = @ @ @ @ Q
) ()
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WFAs = linear 2-RNNs

Theorem

WFAs are expressively equivalent to second-order linear RNNs (linear
2-RNNs) for computing functions over sequences of discrete symbols.

@ But 2-RNNs can compute functions over sequences of continuous
vectors (e.g., word embeddings), what about WFAs?

— We can extend the definition of WFAs to continuous vectors!
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WFAs = linear 2-RNNs

Theorem

WFAs are expressively equivalent to second-order linear RNNs (linear
2-RNNs) for computing functions over sequences of discrete symbols.

@ But 2-RNNs can compute functions over sequences of continuous
vectors (e.g., word embeddings), what about WFAs?
— We can extend the definition of WFAs to continuous vectors!
@ Can we learn linear 2-RNNs from data?

* Over sequences of discrete symbols?
— Yes: spectral learning of WFA
* Qver sequences of continuous vectors?
— Yes: technical contribution of [GR, T. Li, D. Precup, AISTATS'19]
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Future directions

@ Extension to tree models:

» Linear Recursive Tensor Neural Networks (Socher et al., 2013) are
Weighted Tree Automata!
» Continuous extension of WTA and spectral learning algorithm.
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Weighted Tree Automata

o A weighted tree automaton (WTA) is a tuple A = (&, T, {ws }rex)

a € R": vector of initial weights
T € R™"™" . tensor of transition weights

wys € R : vector of final weights associated with o € ©

AR y
(T) (T)
a b c d
OEROEOEND
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Future directions

@ Extension to tree models:

» Linear Recursive Tensor Neural Networks (Socher et al., 2013) are
Weighted Tree Automata!
» Continuous extension of WTA and spectral learning algorithm.

Guillaume Rabusseau August 27, 2021 31/49



Future directions

@ Extension to tree models:
» Linear Recursive Tensor Neural Networks (Socher et al., 2013) are
Weighted Tree Automata!
» Continuous extension of WTA and spectral learning algorithm.
» (Using the spectral learning for WTA to extract PCFG from RNN (i.e.,
extending [Barbot et al., ICGI 2021] to stochastic setting or using
RNNs with ordered neurons [Shen et al., ICLR 2018]))
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Future directions

@ Extension to tree models:
» Linear Recursive Tensor Neural Networks (Socher et al., 2013) are
Weighted Tree Automata!
» Continuous extension of WTA and spectral learning algorithm.
» (Using the spectral learning for WTA to extract PCFG from RNN (i.e.,
extending [Barbot et al., ICGI 2021] to stochastic setting or using
RNNs with ordered neurons [Shen et al., ICLR 2018]))

@ What do linear counterparts of neural sequential models (LSTMs,
bi-directionnal RNNs, etc.) correspond to?
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Future directions

@ Extension to tree models:
» Linear Recursive Tensor Neural Networks (Socher et al., 2013) are
Weighted Tree Automata!
» Continuous extension of WTA and spectral learning algorithm.
» (Using the spectral learning for WTA to extract PCFG from RNN (i.e.,
extending [Barbot et al., ICGI 2021] to stochastic setting or using
RNNs with ordered neurons [Shen et al., ICLR 2018]))

@ What do linear counterparts of neural sequential models (LSTMs,
bi-directionnal RNNs, etc.) correspond to?

@ Spectral initialization of RNNs (ongoing work of Maude Lizaire).
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Future directions

@ Extension to tree models:

» Linear Recursive Tensor Neural Networks (Socher et al., 2013) are
Weighted Tree Automata!

» Continuous extension of WTA and spectral learning algorithm.

» (Using the spectral learning for WTA to extract PCFG from RNN (i.e.,
extending [Barbot et al., ICGI 2021] to stochastic setting or using
RNNs with ordered neurons [Shen et al., ICLR 2018]))

@ What do linear counterparts of neural sequential models (LSTMs,
bi-directionnal RNNs, etc.) correspond to?

@ Spectral initialization of RNNs (ongoing work of Maude Lizaire).

@ More accurate map of equivalences between WFA and RNNs (e.g.
Multiplicative interaction RNNs are special case of 2nd order RNNs,
formal hierarchy of higher-order RNNs)...
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Tensor Train / Matrix Product State (MPS) decomposition

e TT/MPS decomposition [Oseledets (2011), Fannes et al. (1992)]:

- @
1 \l.j2 \l-j3 dy

1 |do |d3 |da d
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Tensor Train / Matrix Product State (MPS) decomposition

e TT/MPS decomposition [Oseledets (2011), Fannes et al. (1992)]:

- OO @
1 |d> |d3 |da a1 \l/dz \[ﬁ3 da

= diR1 + Ridb Ry + RydyR3 + R3dy parameters instead of didrdsdy.
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Tensor Train / Matrix Product State (MPS) decomposition

e TT/MPS decomposition [Oseledets (2011), Fannes et al. (1992)]:

- OO @
1 |do |5 |da d \l/cb \l/d3 da

= diR1 + Ridb Ry + RydyR3 + R3dy parameters instead of didrdsdy.
o If the ranks are all the same (Ry = R, = --- = R), can represent a
vector of size 2" with O (nR?) parameters!
@ We can also efficiently perform operations on MPS tensors:

> Inner product, sum, component-wise product, ... all in time linear in n
for vectors of size d".
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Tensor Train / Matrix Product States

G)—G—G—G
a1 dr d3 da

1 |do |ds |da

@ We can parameterize linear classification models with MPS
[Stoudenmire & Schwab, 2016]:

() = sign((W, X)) = sign \',
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Tensor Train / Matrix Product States

6 —G2—G9—Gy
a1 dr d3 da

1 |d> |d3 |da

@ We can parameterize linear classification models with MPS
[Stoudenmire & Schwab, 2016]:

() = sign((W, X)) = sign \',

@ We can also model probability distributions with MPS [Han et al.,
2018]:

. @@
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Tensor Train / Matrix Product States

G)—G)—G9—G
i dh ds ds

oy 1o |5 |da

@ We can parameterize linear classification models with MPS
[Stoudenmire & Schwab, 2016]:

() = sign((W, X)) = sign \',

@ We can also model probability distributions with MPS [Han et al.,
2018]:

BEPE . - (SKPS
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MPS for sequence modeling

@ We can also use MPS to model functions and distributions over fixed
length sequences:

OO D @ <>2
P(Xl,XZ,X3,X4) = or P(xl,XQ,X3,X4) =
@ ® ® ® O @ ® ®
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MPS for sequence modeling

@ We can also use MPS to model functions and distributions over fixed
length sequences:

OO D @ <>2
P(Xl,XZ,Xg,X4) = or P(xl,XQ,X3,X4) =
@ ® ® ® O @ ® ®

< How to model distributions/functions over variable length sequences?
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Uniform MPS

e uniform MPS (uMPS) decomposition = MPS with same core at

each site:
= (@A
d|d|d|d d d d d
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Uniform MPS

e uniform MPS (uMPS) decomposition = MPS with same core at

each site:
OB OO OVE®
d|d|d|d d d d d

o With uMPS, we can model functions and distributions over variable
length sequences:

/e/e/e/e/e /e/e/e
P(x1,x2,x3,%4) = ,P(x1,%2) =
@ @ @ @ @ @
/e/e/e/e/e/e/e
P(Xl,X2,X3,X4,X5,X6)
@ @ @ @ @ @

Guillaume Rabusseau August 27, 2021 36 /49



Uniform MPS

e uniform MPS (uMPS) decomposition = MPS with same core at

each site:
OB OO OVE®
d|d|d|d d d d d

o With uMPS, we can model functions and distributions over variable
length sequences:

/e/e/e/e/e /e/e/e
P(x1,%2,X3,X4) = ,P(x1,%2) = i o,
@ @ @ @ D =
/e/e/e/e/e/e/e
P(Xl,X2,X3,X4,X5,X6)
@ @ @ @ @ @

< Nothing else than the continuous WFA (aka linear 2-RNN) we defined
previously!
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Connections between uMPS and other models

e A uMPS is given by a tuple (a € R", A € R™*" , ¢ R") and
maps any sequence of vectors X1, - - ,Xx € RY to a scalar:
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e A uMPS is given by a tuple (a € R", A € R™*" , ¢ R") and
maps any sequence of vectors X1, - - ,Xx € RY to a scalar:

o If the inputs are one-hot encoding, uMPS = Weighted Automata

» < If the probability of a sequence is f(x1, Xz, - - ,%x)? = Quadratic
weighted automata (Bailly, 2011) / MPS from quantum physics
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Connections between uMPS and other models

e A uMPS is given by a tuple (a € R", A € R™*" , ¢ R") and
maps any sequence of vectors X1, - - ,Xx € RY to a scalar:

o If the inputs are one-hot encoding, uMPS = Weighted Automata
» < If the probability of a sequence is f(x1, Xz, - - ,%x)? = Quadratic
weighted automata (Bailly, 2011) / MPS from quantum physics
@ Linear second order RNNs = uMPS

@ For a thorough discussion of connections between uMPS, stochastic
processes and automata, see
Srinivasan, S., Adhikary, S., Miller, J., Rabusseau, G. and Boots, B.
Quantum Tensor Networks, Stochastic Processes, and Weighted Automata (AISTATS 2021).
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Future Directions

@ Versatile sampling algorithm:

» We can exactly sample from a uMPS/WFA distribution projected onto
the support of a regular language / context free grammar.

Jacob Miller, Guillaume Rabusseau, and John Terilla. Tensor Networks for Language Modeling.

arXiv preprint arXiv:2003.01039 (AISTATS 2021).
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Future Directions

@ Versatile sampling algorithm:

» We can exactly sample from a uMPS/WFA distribution projected onto
the support of a regular language / context free grammar.

Jacob Miller, Guillaume Rabusseau, and John Terilla. Tensor Networks for Language Modeling.

arXiv preprint arXiv:2003.01039 (AISTATS 2021).

@ Scale up learning to very large state spaces (ongoing work of Jacob
Miller).

@ Training uMPS/WFA with word embeddings for language modeling
(ongoing work of Jacob Miller and Raphaélle Tihon).
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A Tensor Network View of the
Spectral Learning Algorithm

August 27, 2021 39/49



Hankel matrix

@ We consider the case where inputs are sequences of discrete symbols:

» Y a finite alphabet of size d (e.g. {a, b})
> Y * strings on ¥ (e.g. abba)
» A WFA computes a function f : ©* — R:

f(o—l...ak):.,. 9-®

o1 02 Ok
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Hankel matrix

@ We consider the case where inputs are sequences of discrete symbols:

» Y a finite alphabet of size d (e.g. {a, b})
> Y * strings on ¥ (e.g. abba)
» A WFA computes a function f : ©* — R:

= d d d

o Hf € RE"™*X": Hankel matrix of f: ¥* - R

» Definition: prefix p, suffix s = (Hf)ps = f(ps)

a b aa ab
a f(aa) f(ab)
b f(ba) f(bb)
aa | f(aaa) f(aab)

Guillaume Rabusseau August 27, 2021 40 /49



A closer look at the Hankel matrix of a WFA

@ Let f: * — R be the function computed by a WFA (a, A, w).
o Define the ¢th order Hankel tensor H(£) € R=XExxE py

Hgﬁ)ﬁ-z,--.,ge = f(0'10'2 e UZ)
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A closer look at the Hankel matrix of a WFA

@ Let f: * — R be the function computed by a WFA (a, A, w).
o Define the ¢th order Hankel tensor H(£) € R=XExxE py

nnn nn
%%)702’_,.70'15 = f(0-10-2 . UZ) = d J d (1)

o1 a2 Ok

forall o1,---0p € L
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A closer look at the Hankel matrix of a WFA

@ Let f: * — R be the function computed by a WFA (a, A, w).
o Define the ¢th order Hankel tensor H(£) € R=XExxE py

0 n e n @ n . n @ n Q
%1(7?70'2,"-,0'15 = f(0102 te O'Z) = d d d (]_)
o1 a2 ok

forall o1,---0p €L
@ For each ¢, the tensor H© has low uniform MPS rank:

nnn.“nn
dld-|d = d d d
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A closer look at the Hankel matrix of a uMPS

e For each ¢, the tensor H() (defined by HY s, .. o, = F(0102 -+ 0¢)) has low

uniform MPS rank:

TR e 4
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A closer look at the Hankel matrix of a uMPS

@ For each /¢, the tensor HO (defined by HS,?,%.“W = f(0102 -~ 0y)) has low
uniform MPS rank:

dld-|d = d d d (3)

o It follows that the Hankel matrix Hf € R>"*>" can be decomposed in
sub-blocks of low uMPS rank:

a b aa ab
a f(aa) f(ab)
b f(ba) f(bb)
f(aaa) f(aab) ...



A closer look at the Hankel matrix of a uMPS

e For each ¢, the tensor H() (defined by H,, .. 5, = (0102 0¢)) has low
uniform MPS rank:

nhn___ nn
dla—Jo = d d d (3)

o It follows that the Hankel matrix Hf € R>"*>" can be decomposed in
sub-blocks of low uMPS rank:

a b aa ab .. a b |aa ab ba bb|aaa aab ...
a [, 3 4)
a f(aa) f(ab) ... ... ... T #HO ., ‘ #HE
b f(ba) f(bb) e e e aa
ab
H, = 2 f(aaa) f(aab) ... ... ... | _ D |#2, # ST
ab . . . N : bb
aaa 4 5 o
aab ‘Hgﬂ)x: ng)ﬁ ‘ ﬂ(‘zgx)?
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Back to the spectral learning algorithm

@ In the spectral algorithm, we need to estimate

(hp)y = f(u), (hs)y =f(v), (Hps)uyv = f(uv) and (Hpx,s)uov = f(uov)
for some sets of prefixes and suffixes P,S C X*.
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o If we choose P =S = X¢ we have
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Back to the spectral learning algorithm

@ In the spectral algorithm, we need to estimate
(hp)u = f(u), (hs)v = f(v), (HP,S)u,v = f(uv) and (H'P7z,$)u’g,v = f(uav)
for some sets of prefixes and suffixes P, S C X*.

o If we choose P =S = X¢ we have

h'p = hS = 'H.():Q, H’P,S - H(;fizf and (%P,Z,S) = ngzf:é)xzf

< All the quantities we need to estimate are matricization of low uMPS
rank tensors!
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Back to the spectral learning algorithm

@ In the spectral algorithm, we need to estimate
(hp)u = f(u), (hs)v = f(v), (HP,S)u,v = f(uv) and (7‘(7)7):73)”70,\, = f(uav)
for some sets of prefixes and suffixes P, S C X*.

o If we choose P =S = X¢ we have

hp = hS = ?’L(zgg, H’P,S - %(22;30:( and (%’P,Z,S) = ,H(zzf:é)xzf

< All the quantities we need to estimate are matricization of low uMPS
rank tensors!
@ This leads to an efficient learning algorithm:
» Estimate 1), 1) 1+ directly in the MPS/TT format
» Use the spectral algorithm to convert the MPS decomposition into a
uniform MPS model.
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Spectral Learning = Conversion from MPS to uMPS

o Let f:X* — R be a function for which we have access to an MPS
decomposition of the Hankel tensors 7{(5),7{(23),7{(2[“).
— f can be a probability distribution, a score function or the wave function of a
quantum system.

@ Spectral learning algorithm = efficient way to recover a uMPS
computing f from the 3 Hankel tensors
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Spectral Learning = Conversion from MPS to uMPS

@ Let f: ¥* — R be a function for which we have access to an MPS
decomposition of the Hankel tensors 7{(5),7{(%),7{(2{“).
— f can be a probability distribution, a score function or the wave function of a
quantum system.

@ Spectral learning algorithm = efficient way to recover a uMPS
computing f from the 3 Hankel tensors

— if we know the value of f on words of length ¢, 2¢ and 2¢ + 1, we can

compute the value of f on sequences of arbitrary length!
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Ay o Al A By -+ By-1By o Gy Gy

Input: 10 = G- - 90 %= -0 G W= G5 00

Output: uMPS (a, A, w) computing f
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Ay o Al A Br By - By-1By o Gy Gy

Input: 10 = G- - 90 %= -0 G W= G5 00

Output: uMPS (a, A, w) computing f
1. Left-orthonormalisation of By,--- , By (first half of #£(29)
Bi B -+ B1 B Uy s Ui

66 96 - pp
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Al Ay - Al A Bi By - By1By G o Gy Gy

Input: 10 = G- -0 H = -G G W= G

Output: uMPS (e, A, w) computing f
1. Left-orthonormalisation of By,--- , By (first half of #£(29)
Bi B -+ B1 B Uy s Ui

66 96 - pp

2. Right-orthonormalisation of Byiq,. - -
Ui

, By (second halfof #(29)

Biy1 B2 -+ Ba—1 By

TP

Div1Vig1 Viga - Va1 Vo

B
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Al Ay - Al A Bi By - By1By G o Gy Gy

Input: 10 = G- -0 H = -G G W= G

Output: uMPS (e, A, w) computing f
1. Left-orthonormalisation of By, - - - ,Bg (first half of ’H(%))
B By - B-1 B Uy s Ui

66 96 - pp

2. Right-orthonormalisation of Byiq,. - -
Ui

, By (second halfof #(29)

Biy1 B2 -+ Ba—1 By

3. Computation of the uMPS parameters:

Div1Vig1 Viga - Va1 Vo

I

Al A - Al A Al Ay - Al A
w —
Ui DN+ Vi - Va1 Vi U U -+ U1 U DNV
GG - G G G G G
A= ®
Ui Uz - U DNV U1 DN -+ Voo Vi
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Spectral Learning with Tensor Networks

@ More structure than low matrix rank in the Hankel matrix.

» When P =S = ¥!, the spectral learning algorithm can be performed
efficiently in the MPS/TT format.
— Time complexity is reduced from O (n|Z|?* + n?|Z|*"1) to O (n3¢|]).
» To learn arbitrary function, we can fill the missing entries of the Hankel
matrix using tensor completion instead of structured matrix completion
techniques.
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Learning linear 2-RNN over continuous inputs

@ To learn f from data, we "just” need access to H(Z),H(%),%(nﬂ).

@ Recall, in the discrete case:

©
7‘[0’1,0’2,...704 = f(0'10'2 e UZ) — f f ’

o1 ) Ok
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Learning linear 2-RNN over continuous inputs

@ To learn f from data, we "just” need access to H(Z),H(%),%(Mﬂ).

@ Recall, in the discrete case:

nnn.__ nn
d d d

7{%),02’.,.704 = f(o102---0¢) =

@ In the continuous case, we define the Hankel tensor of a 2-RNN

E) /7nn.”n/7
= d d d

similarly:

which implies that f(x1,x2, - ,xx) = <’H(k),x1 R X2 ® -+ @ Xk)
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Learning linear 2-RNN over continuous inputs

@ To learn f from data, we "just” need access to H(f),’){(%),%(%“).

@ Recall, in the discrete case:

(é) HI)VY... NI?
. 0) = d d d

@ In the continuous case, we define the Hankel tensor of a 2-RNN
similarly:
2) e d d d

which implies that f(x1,x2, - ,xx) = <’H(k),x1 R X2 ® -+ @ Xk)

< we can recover H) from input-output examples of the form
((x1,%2,- -+ ,X¢), y) using compressed sensing techniques! (related to
tensor recovery from linear measurement recovery, quantum
tomography and matrix sensing).
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Future directions

Extracting WFA from RNN defined over continuous inputs.

Spectral learning of continuous WFA /uMPS for RL (work of Tianyu
Li)
Similar connections and algorithms can be derived for models on trees

e What about graphs? (e.g. potential connections between TN and
GNN)

Lots of connections between quantum TN, probabilistic models,
formal languages, machine learning, etc. to explore! (e.g., using
density matrices to model languages (see work of Tai-Danae Bradley))
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That's all, folks!

Thanks for listening!
Questions?
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