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Introduction

e Sequence data is ubiquitous in computer science and
machine learning.
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o Weighted Automata (WAs): tractable models for
sequences of discrete data Vs. RNNs: powerful and
expressive models.

e This work: connecting WAs and RNNs for fun and profit.

Overview of the Results

e We show the exact equivalence of WAs and 2nd order
RNNs (2-RNNs) with linear activation functions.

e This leads to a natural extension of WAs for sequences
of continuous vectors.

e We extend the spectral learning algorithm for WAs:
First provable learning algorithm for linear 2-RNNs.

Recurrent Sequential Models
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A recurrent sequential model maps sequences of inputs to
sequences of outputs
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by computing a sequence of hidden /latent vectors
hb h27 T 7h]€ & Rn) ht — ¢(ht—17 ZCt)

for some recurrent map ¢ : R" x X — R"™ and initial state
hy. The sequence of outputs is computed with

yr = ¥ (hy)

for some output map ¢ : R" — Y.

Weighted Automata = linear 2-RNNs

o Vanilla RNN: X =R4 Y =R

Cb(ht—l, Xt) — Q(Uht—1 + VXt) = h(WTXt)

tp(hy)

where U € R4 V € R4 W € R"
o Second-order? RNN (2-RNN): X = R4 Y =R

ip(hy)

o(hy—1,x¢) = g(A X1 hy_y Xoxy)
where A € R"¥4xn

hy

— h(W X+t

o Weighted Automaton (WA): X =%, Y =R
¢p(hy1,0) =A% h; 1 P(hy)

where A? is the transition matrix associated with
symbol o for each o € .

= WTXt

hy

We can rewrite this as

hy

where A € R™**" i5 defined by
A ,. =A° foreach o € &

?Second-order refers to the order-2 interactions involved in the computation
of the latent state: |A x1h; 1 X Xt Z A, i1l [ xiiy
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see e.g. [Lee, 86|, [Giles, 91], [Pollack, 91], ..., [Wu et al., NIPS'16]
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Result 1

WASs are expressively equivalent to second-order linear

RNNs for computing tunctions over sequences of discrete
symbols.

Weighted Automata

Example with 2 states and alphabet ~ = {a, b}

Operator Representation

a 0.4 . a 0.1 _ ]
b 0.1 b 0'1 b 0.1 10| .a 04 0.2
: oy = A =
0.0 0.1 0.1
0.6 i i - =
—(® .. _[0.0] 4b _ |01 03
Xo = 106 ~ 101 01
a 0.2 z > ) )
b 0.3

f(ab) = 0.4 x 0.3 x 0.6 + 0.2 x 0.1 x 0.6 = 0.084
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Learning Weighted Automata

The Hankel matrix Hy € R*" %" agsociated with a function
[ X% = Ris defined by (H), , = f(uv) for all u,v € >*.

aa ... a b

HO’

aa

ab

Theorem |Fliess, 1974] For any function f : X* — R,
rank(Hy) is finite iff f can be computed by a WA.

Spectral learning of WAs (in a nutshell)

® Choose a set of prefixes and suflixes, P, S C X*.

@ Estimate the Hankel sub-blocks H and H? € RP*%
for each o € X, where (H?),, = f(uov) for all u,v.

® Perform rank n decomposition H = PS
o WA with initial /final weights hy =P, ., w =S. ) and
transition matrices A = PTH?S™ is a minimal WFA

for f.

'Two observations to put together:

(1) The spectral learning algorithm is consistent.

(i1) Linear 2-RNNs over discrete sequences are WAs.

Result 2

The spectral learning algorithm is a consistent learning

algorithm for probability distributions over sequences of
discrete symbols computed by second-order RNNs with
linear activation functions.

Extension to Continuous Sequences

Problem: learn a linear 2-RNNs from training data.
If inputs are one-hot encodings, we can use the spectral learn-
ing algorithm for WAs...

— What about sequences of continuous vectors?

Observation: Linear 2-RNNs are multilinear.
f(xq,... Z&@u@,-..,X — Zozif(xl,...,u
i

— learning the restriction of f to basis vectors is enough:
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We only need to learn the function f : [d]* — R

. Zk > f(ez-l, €y .- ,ez-k)

Idea: Use the spectral learning algorithm to learn f.
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Hankel Matrix Recovery from Linear
Measurements

Choosing P = S = [d]*, we need to estimate the Hankel
matrix H € R *?" defined by

Hiﬂz“'iL,jljz”‘jL — f(eila oo €iy €y e 7ejL)

— How to estimate H from input-output examples?

Given an input sequence (xXi,Xo,- -+ ,Xsr) and its output

y ~ f(x1,Xs, -+ ,Xor) We have

Yy = Z [Xl]h

7:17'" 77:2L

ak [XQL]isz(e’iU R 7e7§2L)
® xo1) ' vec(H)

— Each input-output example is a linear measurement of H.

Learning Algorithm

Input: Three training datasets Dy, Doy, Doy with in-
put sequences of length L, 2L and 2L +1 respectively.
Number of states n

1. for [ € {L,2L,2L + 1} do

> From D = {((x), %) x) Y, C
(RY! x R build
x'@xy @ ox)T y!
X = : y = :
3 HY = arg ming || Xvec(H) — y||%
4. end for

5: Rank n factorization and parameter estimation:
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6: return Linear 2-RNN (hy, A, w).

Intuition on why this works

Result 3

Our learning algorithm computes a consistent estimator
for linear 2-RNNs:

Theorem

o Let (hy, A, w) be a minimal linear 2-RNN with n
hidden units computing a function f : (R)* — R
o Let L be such that rank(H®H) = n

(1)

e Suppose the entries of x ;o are drawn at random and
(1) (2)

f(Xl 7X2 X 7XZ(Z))-

If Ny >d forl =1L, 2L, 2L + 1, the 2RNN returned
by our algorithm computes f with probability one.

each yl!) =

Experiment
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Figure 1: Learning a random 2-RNN from noisy data



