
Connecting Weighted Automata and Recurrent Neural
Networks through Spectral Learning

Guillaume Rabusseau∗†§ Tianyu Li∗‡ Doina Precup∗‡§

∗ Mila † Université de Montréal ‡ McGill University § Canada CIFAR AI Chair

Introduction

• Sequence data is ubiquitous in computer science and
machine learning.

•Weighted Automata (WAs): tractable models for
sequences of discrete data Vs. RNNs: powerful and
expressive models.
•This work: connecting WAs and RNNs for fun and profit.

Overview of the Results

•We show the exact equivalence of WAs and 2nd order
RNNs (2-RNNs) with linear activation functions.
•This leads to a natural extension of WAs for sequences
of continuous vectors.
•We extend the spectral learning algorithm for WAs:
First provable learning algorithm for linear 2-RNNs.

Recurrent Sequential Models

h0 φ

x1

y1

ψ

φ

x2

y2

ψ

φ

x3

y3

ψ

· · ·

A recurrent sequential model maps sequences of inputs to
sequences of outputs

x1, x2, . . . , xk ∈ X
f7−−−−−→ y1, y2, . . . , yk ∈ Y

by computing a sequence of hidden/latent vectors
h1,h2, · · · ,hk ∈ Rn, ht = φ(ht−1, xt)

for some recurrent map φ : Rn×X → Rn and initial state
h0. The sequence of outputs is computed with

yt = ψ(ht)
for some output map ψ : Rn→ Y .

Weighted Automata ≡ linear 2-RNNs

•Vanilla RNN: X = Rd, Y = R
φ(ht−1,xt) = g(Uht−1 + Vxt) ψ(ht) = h(w>xt)

where U ∈ Rn×d, V ∈ Rn×d, W ∈ Rn

• Second-ordera RNN (2-RNN): X = Rd, Y = R
φ(ht−1,xt) = g(A×1 ht−1 ×2 xt) ψ(ht) = h(w>xt)

where A ∈ Rn×d×n.
h0ht = A

x1

A

x2

A

x3

g g g

•Weighted Automaton (WA): X = Σ, Y = R
φ(ht−1, σ) = Aσ ht−1 ψ(ht) = w>xt

where Aσ is the transition matrix associated with
symbol σ for each σ ∈ Σ.

h0ht = Aσ1 Aσ2 Aσ3

We can rewrite this as
h0ht = A

eσ1

A

eσ2

A

eσ3

where A ∈ Rn×Σ×n is defined by
A:,σ,: = Aσ for each σ ∈ Σ

aSecond-order refers to the order-2 interactions involved in the computation
of the latent state: [A×1 ht−1 ×2 xt]j =

∑
i1,i2

Ai1,i2,j[ht−1]i1[xt]i2

see e.g. [Lee, 86], [Giles, 91], [Pollack, 91], ..., [Wu et al., NIPS’16]

Result 1

WAs are expressively equivalent to second-order linear
RNNs for computing functions over sequences of discrete
symbols.

Result 1

WAs are expressively equivalent to second-order linear
RNNs for computing functions over sequences of discrete
symbols.

Weighted Automata

Learning Weighted Automata

The Hankel matrix Hf ∈ RΣ∗×Σ∗ associated with a function
f : Σ∗→ R is defined by (H)u,v = f (uv) for all u, v ∈ Σ∗.

H =



a b aa ...

a f (aa) f (ab)
b f (ba) f (bb)
aa f (aaa) f (aab)
ab
...

 Hσ =



a b aa ...

a f (aσa) f (aσb)
b f (bσa) f (bσb)
aa f (aaσa) f (aaσb)
ab
...


Theorem [Fliess, 1974] For any function f : Σ∗ → R,
rank(Hf) is finite iff f can be computed by a WA.

Spectral learning of WAs (in a nutshell)

1 Choose a set of prefixes and suffixes, P ,S ⊂ Σ∗.
2 Estimate the Hankel sub-blocks H and Hσ ∈ RP×S
for each σ ∈ Σ, where (Hσ)u,v = f (uσv) for all u, v.

3 Perform rank n decomposition H = PS
4 WA with initial/final weights h0 = Pλ,:, w = S:,λ and
transition matrices Aσ = P+HσS+ is a minimal WFA
for f .

Two observations to put together:
(i)The spectral learning algorithm is consistent.
(ii) Linear 2-RNNs over discrete sequences are WAs.

Result 2

The spectral learning algorithm is a consistent learning
algorithm for probability distributions over sequences of
discrete symbols computed by second-order RNNs with
linear activation functions.

Extension to Continuous Sequences

Problem: learn a linear 2-RNNs from training data.
If inputs are one-hot encodings, we can use the spectral learn-
ing algorithm for WAs...
↪→What about sequences of continuous vectors?
Observation: Linear 2-RNNs are multilinear.
f (x1, . . . ,

∑
i

αiui, . . . ,xk) =
∑
i

αif (x1, . . . ,ui, . . . ,xk)

⇒ learning the restriction of f to basis vectors is enough:

f (a,b) = f

∑
i

αiei,
∑
j

βjej

 =
∑
i,j

αiβjf (ei, ej)

We only need to learn the function f̃ : [d]∗→ R
f̃ : i1i2 · · · ik 7→ f (ei1, ei2, . . . , eik)

Idea: Use the spectral learning algorithm to learn f̃ .

Hankel Matrix Recovery from Linear
Measurements

Choosing P = S = [d]L, we need to estimate the Hankel
matrix H ∈ RdL×dL defined by

Hi1i2···iL,j1j2···jL = f (ei1, , . . . , eiL, ej1, , . . . , ejL)

↪→How to estimate H from input-output examples?
Given an input sequence (x1,x2, · · · ,x2L) and its output
y ' f (x1,x2, · · · ,x2L) we have

y '
∑

i1,··· ,i2L

[x1]i1 . . . [x2L]i2Lf (ei1, . . . , ei2L)

= (x1 ⊗ · · · ⊗ x2L)>vec(H)

⇒Each input-output example is a linear measurement of H.

Learning Algorithm

Input: Three training datasets DL, D2L, D2L+1 with in-
put sequences of length L, 2L and 2L+1 respectively.
Number of states n.

1: for l ∈ {L, 2L, 2L + 1} do
2: From Dl = {((x(i)

1 ,x
(i)
2 , · · · ,x

(i)
l), y(i))}Nl

i=1 ⊂
(Rd)l × R build

X =

 (x(1)
1 ⊗ x(1)

2 ⊗ · · · ⊗ x(1)
l)>

...
(x(N)

1 ⊗ x(N)
2 ⊗ · · · ⊗ x(N)

l)>

 y =

 y(1)

...
y(N)


3: H(l) = arg minH ‖Xvec(H)− y‖2

F

4: end for
5: Rank n factorization and parameter estimation:

H2L
...

... = P
... S

...

A =

=

P+ ... H2L+1 S+...

h0 = HL S+...

w = HL P+...

6: return Linear 2-RNN 〈h0,A,w〉.

Intuition on why this works

h0f(x1,x2,x3,x4) = A

x1

A

x2

A

x3

A

x4

w

P S

H(4)

H(5) = P A S

Result 3

Our learning algorithm computes a consistent estimator
for linear 2-RNNs:
Theorem
• Let (h0,A,w) be a minimal linear 2-RNN with n
hidden units computing a function f : (Rd)∗→ R
• Let L be such that rank(H(2L)) = n

• Suppose the entries of x(i)
j are drawn at random and

each y(i) = f (x(i)
1 ,x

(i)
2 , · · · ,x

(i)
l).

If Nl ≥ dl for l = L, 2L, 2L + 1, the 2-RNN returned
by our algorithm computes f with probability one.

Experiment

102 103 104

0

10 9

10 6

10 3

100

M
SE

2 = 0.0

102 103 104

Training Size

10 2

10 1

100

101

2 = 0.1

102 103 104

100

101

2 = 1.0

TIHT(R = 5)
IHT(R = 5)
LeastSquares(R = 5)
TIHT+SGD(R = 5)
LSTM_tanh(R = 20)
NuclearNorm(R = 5)

Figure 1: Learning a random 2-RNN from noisy data

