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Overview

I Sequence data is ubiquitous in computer science and machine learning.

I Weighted Finite Automata (WFA) can model functions on sequences.
I We propose a spectral multitask learning algorithm for WFAs:
I extends the spectral learning algorithm for WFAs [1]
I relies on the novel model of vector-valued WFA.

Multitask Learning

I Common task in machine learning: estimate a function f : X → Y from a training sample
{(xi, yi)}N

i=1 where each yi ' f (xi).
I In multitask learning, the learner is given several learning tasks f1, · · · , fm.
I Jointly learning related tasks f1, · · · , fm can lead to better performances.
I This work: multitask learning when X consists of sequence data.

Weighted Finite Automata

I A weighted finite automaton (WFA) is a tuple A = (α, {Aσ}σ∈Σ,ω) and computes a
function fA : Σ∗→ R defined for each word x = x1x2 · · · xk ∈ Σ∗ by

fA(x1x2 · · · xk) = α>Ax1Ax2 · · ·Axkω = α>Axω.

I The number of states of A is the size n of the matrices Aσ and A is minimal if any WFA B
such that fA = fB has at least n states, in which case n is the rank of the function f .

Spectral Learning of WFAs

I Hankel matrix Hf ∈ RΣ∗×Σ∗ associated with a function f : Σ∗→ R
(Hf )u,v = f (uv) for all u, v ∈ Σ∗.

Theorem [3, 4] For any function f : Σ∗→ R, rank(f ) = rank(Hf ).

I Spectral learning of WFAs (in a nutshell) [1, Lemma 4.1].
1. Let Hf = PS with P,S> ∈ RΣ∗×n where n = rank(f )
2. For each σ ∈ Σ, let Hσ

f ∈ RΣ∗×Σ∗ be defined by (Hσ
f )u,v = f (uσv) for all u, v ∈ Σ∗.

3. WFA (α, {Aσ}σ∈Σ,ω) with α> = Pλ,:, ω = S:,λ, and Aσ = P†HσS† is a minimal WFA for f .

WFAs as Linear Models in a Feature Space

I Computation of a WFA A on x ∈ Σ∗:
1. map x to feature vector φ(x) = α>Ax through a compositional feature map φ : Σ∗→ Rn

2. compute final value fA(x) = 〈φ(x),ω〉
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I φ is compositional: φ(xσ)> = φ(x)>Aσ.
I φ is minimal if V = span({φ(x)}x∈Σ∗) ⊂ Rn is of dimension n.
⇒ φ : x 7→ α>Ax is minimal if and only if (α, {Aσ}σ∈Σ,ω) is minimal.

A Notion of Relatedness between Functions on Sequences

Relatedness between WFAs: to which extent two WFAs can share a joint feature map φ.
I Let f1, f2 : Σ∗→ R of rank n1 and n2. with feature maps φ1 : Σ∗→ Rn1 and φ2 : Σ∗→ Rn2.
I φ = φ1 ⊕ φ2 : Σ∗→ Rn1+n2 is a joint feature map for f1 and f2:

f1(x) = 〈φ(x),ω1 ⊕ 0〉 and f2(x) = 〈φ(x),0⊕ ω2〉
but it may not be minimal.

→ there may exist another feature map of dimension n < n1 + n2.
I The smaller n is, the more related f1 and f2 are.

Vector-Valued WFA

I A d-dimensional vector-valued weighted finite automaton (vv-WFA) with n states is a
tuple A = (α, {Aσ}σ∈Σ,Ω) where
I α ∈ Rn is the initial weights vector
I Ω ∈ Rn×d is the matrix of final weights
I Aσ ∈ Rn×n is the transition matrix for each σ ∈ Σ.

I A vv-WFA computes a function~fA : Σ∗→ Rd defined for each word x = x1x2 · · · xk ∈ Σ∗ by
~fA(x1x2 · · · xk) = α>Ax1Ax2 · · ·AxkΩ = α>AxΩ.

⇒ Rank of ~f = [f1, f2] : Σ∗→ R2 equal dimension of a minimal joint feature map for f1 and f2.
⇒ max{rank(f1), rank(f2)} ≤ rank([f1, f2]) ≤ rank(f1) + rank(f2).
Example

f1(x) = 0.5|x |a + 0.5|x |b rank f2 = 4 = rank([f2, f3])

f2(x) = 0.3|x |b − 0.6|x |c rank([f1, f3]) = 6 = rank(f1) + rank(f3)

f3(x) = |x |c rank(f1) = rank(f2) < rank([f1, f2]) < rank(f1) + rank(f2)

Spectral Learning of vv-WFAs

I Hankel tensor H ∈ RΣ∗×d×Σ∗ associated with a function ~f : Σ∗→ Rd

Hu,:,v = ~f (uv) for all u, v ∈ Σ∗.

Theorem [Vector-Valued Fliess Theorem] For any ~f : Σ∗→ Rd , rank(~f ) = rank(H(1)), where
H(1) = [H:,1,: H:,2,: · · · H:,d ,:] is the flattening of the Hankel tensor.

I Spectral learning of vv-WFAs. A vv-WFA computing ~f can be recovered from any rank n
factorization of H(1):

1. Let H(1) = PS(1) with P ∈ RΣ∗×n and S ∈ Rn×d×Σ∗.
2. For each σ ∈ Σ, let Hσ ∈ RΣ∗×d×Σ∗ be defined by Hσ

u,:,v = ~f (uσv) for all u, v ∈ Σ∗.

3. The vv-WFA A = (α, {Aσ}σ∈Σ,Ω) where α> = Pλ,:, Ω = S :,:,λ, and Aσ = P†Hσ
(1)(S(1))

† is
a minimal vv-WFA for ~f .

Multitask Learning of WFAs

I Let f1, · · · , fm be related functions defined on Σ∗.
I Learning ~f = [f1, · · · , fm] as a vv-WFA enforces discovering a shared feature map

between tasks.

Algorithm 1

1: Compute the rank R truncated SVD Ĥ(1) ' UDV>.
2: Let A = (α, {Aσ}σ∈Σ,Ω) be the vv-WFA defined by

α> = Uλ,:, ,Ω = U>(Ĥ:,:,λ) and Aσ = U>Ĥσ
(1)(Ĥ(1))

†U for each σ ∈ Σ.

3: for i = 1 to m
4: Compute the rank Ri truncated SVD Ĥ:,i ,: ' UiDiV>i .
5: Let Ai = (U>i Uα, {U>i UAσU>Ui}σ∈Σ,U>i UΩ:,i)

I Additional step to the spectral learning algorithm (lines 3-5):
I vv-WFA A = (α, {Aσ}σ∈Σ,Ω) is minimal 6⇒WFA Ai = (α, {Aσ}σ∈Σ,Ω:,i) is minimal.
I Need to project down each Ai to its true dimension.

Theoretical Insight

Theorem Let M ∈ Rd1×d2 of rank R, M̂ = M + E, ΠU,ΠÛ ∈ Rd1×d1 matrices of orthogonal
projections on the top R left sing. vectors of M and M̂. Then, for any δ > 0, with probability
≥ 1− δ,

‖ΠU −ΠÛ‖F ≤ 4

√
(d1 − R)R + 2 log(1/δ)

d1d2

‖E‖F

sR(M)
+
‖E‖2

F
sR(M)2

 . (1)

I Consider m tasks f1, · · · , fm with empirical Hankel matrices Ĥ1, · · · , Ĥm ∈ RP×S, then

Ĥ(1) =
[
Ĥ1 Ĥ2 · · · Ĥm

]
∈ RP×mS.

I If the tasks are maximally related (i.e. R = rank(~f ) = rank(f1) = · · · = rank(fm)) then as the
number of tasks grows, the first term in Eq. (1) tends to 0 and the estimation error of the
singular subspace decays quadratically instead of linearly.

Experiments on Synthetic Data

I Randomly generated stochastic WFAs following the PAutomaC competition process [6].
I Related WFAs: joint feature space of dimension dS = 10 and task specific space of

dimension dT ( i.e. rank(fi) = dS + dT and rank(~f ) = rank([f1, · · · , fm]) = dS + mdT ).
I Training sample drawn from target task f1 and training samples of size 5,000 for tasks

f2, · · · , fm.
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Experiments on Real Data

I Universal Dependencies [5]: sentences from 33 languages labeled with 17 PoS tags.
⇒ Samples drawn from 33 distributions over strings on an alphabet of size 17.
I For each language, (80%,10%,10%)-split between training, validation and test sets.
I Two ways of selecting related tasks:

1. use all other languages
2. select the 4 closest languages w.r.t. the distance between the (top-50) left singular

subspaces of the Hankel matrices.

Training size 100 500 1000 5000 all available data
Related tasks: all other languages

Perplexity 7.0744 ( ±7.76) 3.6666 ( ±5.22) 3.2879 ( ±5.17) 3.4187 ( ±5.57) 3.1574 ( ±5.48)
WER 1.4919 (±2.37) 1.3786 (±2.94) 1.2281 (±2.62) 1.4964 (±2.70) 1.4932 (±2.77)

Related tasks: 4 closest languages
Perplexity 6.0069 ( ±6.76) 4.3670 ( ±5.83) 4.4049 ( ±5.50) 2.9689 ( ±5.87) 2.8229 ( ±5.90)

WER 2.0883 (±3.26) 1.5175 (±2.87) 1.2961 (±2.57) 1.3080 (±2.55) 1.2160 (±2.31)

Table: Average relative improvement over all languages (in %) of MT-SL vs. SL on the UNIDEP dataset (e.g. for
perplexity we report 100 · (pSL − pMT−SL)/pSL).

Target task 4 closest tasks w.r.t. subspace distance (closest first)
Basque Finnish Polish Czech Indonesian
Croatian Estonian Slovenian Czech Finnish
French Italian Spanish German English
Hungarian Danish Ancient Greek German Portuguese
Gothic Old Church Slavonic Latin Ancient Greek Finnish
Italian English French Spanish Dutch
Japanese Hindi Persian Arabic Tamil
Latin Old Church Slavonic Ancient Greek Gothic Finnish
Swedish Danish Norwegian Finnish Estonian

Table: Some related tasks used in the UNIDEP experiment.

I Cherry picked example: on the Basque task with a training set of size 500, the WER was
reduced from ∼ 76% for SL to ∼ 70% using all other languages as related tasks, and to
∼ 65% using the 4 closest tasks (Finnish, Polish, Czech and Indonesian).
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