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S Multitask Spectral Learning of Weighted Finite Automata
@Aﬁ‘b Guillaume Rabusseau' Borja Balle? Joelle Pineau':®

» Sequence data is ubiquitous in computer science and machine learning. » A d-dimensional vector-valued weighted finite automaton (vv-WFA) with n states is a
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Experiments on Synthetic Data

» Randomly generated stochastic WFAs following the PAutomaC competition process [6].
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» Weighted Finite Automata (WFA) can model functions on sequences.
» We propose a spectral multitask learning algorithm for WFAs:

» extends the spectral learning algorithm for WFAs [1]
» relies on the novel model of vector-valued WEA.

Multitask Learning

» Common task in machine learning: estimate a function f : X — Y from a training sample
{(x:, ¥i)}Y, where each y; ~ f(x;).

» In multitask learning, the learner is given several learning tasks f, - - - | fy,.

» Jointly learning related tasks fi, - - - | f, can lead to better performances.

» This work: multitask learning when X consists of sequence data.

Weighted Finite Automata

» A weighted finite automaton (WFA) is a tuple A = (a, {A” },¢x, w) and computes a
function f4 : X* — R defined for each word x = x1Xo- - - X, € L* by

fA(X1 Xo - - °Xk) — ()éTAX1 A2 .. A% = aTAxw.

» The number of states of Ais the size n of the matrices A° and A is minimal if any WFA B
such that f4 = fg has at least n states, in which case nis the rank of the function f.

Spectral Learning of WFAs

» Hankel matrix Hf € R* **" associated with a function f: ¥* - R
(Hf)uy = f(uv) forall u,veX”.

Theorem [3, 4] For any function f : ¥* — R, rank(f) = rank(Hy).

» Spectral learning of WFAs (in a nutshell) [1, Lemma 4.1].
1. Let H; = PS with P.ST ¢ R* " where n = rank(f)
2. Foreach o € T, let H7 € R> "> be defined by (H?),,, = f(uov) forall u,v € *.
3. WFA (o, {A},cx, w) With @’ =P, ., w =S. ), and A° = PTH’S' is a minimal WFA for .

WFAs as Linear Models in a Feature Space

» Computation of a WFA Aon x € ¥*:

1. map x to feature vector ¢(x) = o' A* through a compositional feature map ¢ : ©* — R”
2. compute final value f4(x) = (¢(x), w)

E*

> ¢ is compositional: ¢(xo)" = ¢(x)"A”.
» ¢is minimal if V = span({¢(x)}xex+) C R”is of dimension n.
— ¢ : X — o' A¥is minimal if and only if (a, {A%},c5x, w) is minimal.

A Notion of Relatedness between Functions on Sequences

Relatedness between WFAs: to which extent two WFAs can share a joint feature map ¢.
» Let i, : X" — R of rank ny and n». with feature maps ¢ : ¥* — R™ and ¢ : ¥* — R"™,
> o= 1P g0 ¥ — R™MT™2 s a joint feature map for f; and £:

fi(x) = (¢(x), w1 ©0) and fr(x) = (#(x),0 D wy)
but it may not be minimal.

— there may exist another feature map of dimension n < ny + no.
» The smaller nis, the more related f, and £ are.
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Multitask Learning of WFAs

tuple A = (a, {A%} ey, Q) where
> a € R"is the initial weights vector dimension dr (i.e. rank(f) = ds+ dr and rank(f) = rank([fy, - - - , fm]) = ds + mdr).

> Q c R™ S the matrix pf final V\_/elghtS » Training sample drawn from target task f; and training samples of size 5, 000 for tasks
» A’ € R™"is the transition matrix for each o € %. fo, - -

» A vv-WFA computes a function fA . ¥* — RY defined for each word x = xy X2 - - - X, € ¥* by

» Related WFASs: joint feature space of dimension ds = 10 and task specific space of

—

) 7fm-

. ds=10,dr=0 d¢=10,dr=5 ds¢=10,dr=10
fA(X1 Xo - - Xk) — (XTAX1 A% ... A*Q = (XTAXQ. . A - - true model
~ 6 - .. &4 SL 4.5
— Rank of f = [f;, &] : ¥* — R? equal dimension of a minimal joint feature map for f; and f. 6 - 5 T ®—e MT-SL, 2 tasks 4.0

' J=% MT-SL, 4 tasks
‘s‘ =P MT-SL, 8 tasks
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= max{rank(f1), rank(f)} < rank([f, f2]) < rank(f}) + rank(%).
Example
fi(x) = 0.5|x|a+ 0.5|x|p
f(x) = 0.3|x|p — 0.6|x|¢
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rank fo = 4 = rank(|[f, f3])
rank([f1, f3]) = 6 = rank(f;) + rank(f)
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Experiments on Real Data

» Hankel tensor H € R *9<T" associated with a function f : ¥* — R¢

—

Hy.v=f(uv) forall u,veX”

—

Theorem [Vector-Valued Fliess Theorem] Forany f : ©* — RY, rank(f) = rank(H 1)), where
Hay=[H.1. H.2. --- H.q] is the flattening of the Hankel tensor.

» Universal Dependencies [5]: sentences from 33 languages labeled with 17 PoS tags.
= Samples drawn from 33 disiributions over strings on an alphabet of size 17.

» For each language, (80%, 10%, 10%)-split between training, validation and test sets.
» Two ways of selecting related tasks:

S 1. use all other languages

» Spectral learning of vv-WFAs. A vw-WFA computing f can be recovered from any rank n
factorization of H 4):

1. Let 7‘[(1) - PS(1) withP e R**"and S € RMXAXE"

2. Foreach o € ¥, let #7 € R> 9> be defined by #{,., = f(uov) forall u,v € T*.

3. The w-WFA A= (a, {A},e5, Q) Where a' =P, ., Q2=8..,,and A" = PJf?-Lf”(Sm)T IS
a minimal vv-WFA for f.

2. select the 4 closest languages w.r.t. the distance between the (top-50) left singular
subspaces of the Hankel matrices.

Training size 100 500 1000 5000
Related tasks: all other languages
Perplexity 7.0744 ( +7.76) 3.6666 ( +5.22) 3.2879 ( +5.17) 3.4187 ( +5.57)

all available data

3.1574 ( +5.48)

_ _ WER 1.4919 (+237) 1.3786 (+294) 1.2281 (+262) 1.4964 (+270) 1.4932 (+2.77)
» Let f1,--- , f be related functions defined on X*. Related tasks: 4 closest languages
» Learning f = [f1,--- , fy] @s a vv-WFA enforces discovering a shared feature map Perplexity 6.0069 ( +6.76) 4.3670 ( +583) 4.4049 ( +550) 2.9689 ( +587) 2.8229 ( +590)

between tasks. WER 2.0883 (+3.26) 1.5175 (z2.87) 1.2961 (+257) 1.3080 (+255) 1.2160 (+2.31)

Algorithm 1

Table: Average relative improvement over all languages (in %) of MT-SL vs. SL on the UNIDEP dataset (e.g. for

R perplexity we report 100 - (s — Pmr_sL)/PsL)-
1: Compute the rank R truncated SVD #(1y ~ UDV "',

Theoretical Insight

Theorem Let M € R%*% of rank R, M =M + E, M, N, € R%*% matrices of orthogonal
projections on the top R left sing. vectors of M and M. Then, for any o > 0, with probability

> Let A — (a, {AJ}UGL Q) be the vv-WFA defined by Target task 4 closest tasks w.r.t. subspace distance (closest first)
T _ R TAZ? o _ 1T9y0 (47, \t Basque Finnish Polish Czech Indonesian
| o U, ,2=U(H._.,) and A’=U H(U(%“)) U foreacho €X. Croatian | Estonian Slovenian Czech Finnish
3. fori=1tom X French ltalian Spanish German English
4 Compute the rank R; truncated SVD 7-[:7,-7: ~ U,-D,-V,-T. Hungarian | Danish Ancient Greek German Portuguese
5. Let A; = (U-TUa {UTUAOUTUI,} . UTuQ. ) Gothic Old Church Slavonic Latin Ancient Greek Finnish
P R R T T ltalian English French Spanish Dutch
Japanese |Hindi Persian Arabic Tamil
» Additional step to the spectral learning algorithm (lines 3-5): Latin Old Church Slavonic Ancient Greek Gothic Finnish
> W-WFA A = (a, {A%},c5, Q) is minimal & WFA A; = (a, {A7},cx, Q.)) is minimal, Swedish | Danish Norwegian __ Finnish =stonian

")

» Need to project down each A, to its true dimension. | |
Table: Some related tasks used in the UNIDEP experiment.

» Cherry picked example: on the Basque task with a training set of size 500, the WER was
reduced from ~ 76% for SL to ~ 70% using all other languages as related tasks, and o
~ 65% using the 4 closest tasks (Finnish, Polish, Czech and Indonesian).
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number of tasks grows, the first term in Eq. (1) tends to 0 and the estimation error of the
singular subspace decays quadratically instead of linearly.
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