Minimization of Graph Weighted Models over Circular Strings

Guillaume Rabusseau

McGill University - IVADO - Reasoning and Learning Lab

ETAPS / FoSSaCS 2018 - Thessaloniki

Supervised Learning:

Learn $f : \mathcal{X} \to \mathcal{Y}$ from a sample $\{(x_1, y_1), \cdots, (x_N, y_N)\} \subset \mathcal{X} \times \mathcal{Y}$.

Supervised Learning:

Learn $f : \mathcal{X} \to \mathcal{Y}$ from a sample $\{(x_1, y_1), \cdots, (x_N, y_N)\} \subset \mathcal{X} \times \mathcal{Y}$.

• Learning algorithms often assume $\mathcal{X} = \mathbb{R}^d$.

Supervised Learning:

Learn $f : \mathcal{X} \to \mathcal{Y}$ from a sample $\{(x_1, y_1), \cdots, (x_N, y_N)\} \subset \mathcal{X} \times \mathcal{Y}$.

- Learning algorithms often assume $\mathcal{X} = \mathbb{R}^d$.
- How can one learn with structured inputs such as strings and trees?

• Intersection of Theoretical Computer Science and Machine Learning...

Supervised Learning:

Learn $f : \mathcal{X} \to \mathcal{Y}$ from a sample $\{(x_1, y_1), \cdots, (x_N, y_N)\} \subset \mathcal{X} \times \mathcal{Y}$.

- Learning algorithms often assume $\mathcal{X} = \mathbb{R}^d$.
- How can one learn with structured inputs such as strings and trees?

- Intersection of Theoretical Computer Science and Machine Learning...
- \rightarrow Weighted Automata: robust model to represent functions defined over structured objects (and in particular probability distributions).

Guillaume Rabusseau

Minimization of GWMs over Circular Strings

Long Term Objective

- Long term objective: learning algorithm for functions defined over graphs.
- Spectral learning of weigthed automata has been proposed for strings [Bailly et al., Hsu et. al, 2009] and trees [Bailly et al., 2010]

Long Term Objective

- Long term objective: learning algorithm for functions defined over graphs.
- Spectral learning of weigthed automata has been proposed for strings [Bailly et al., Hsu et. al, 2009] and trees [Bailly et al., 2010]

- Extending automata to graphs is challenging.
 - $\rightarrow\,$ No suitable model of weighted graph automata...

Long Term Objective

- Long term objective: learning algorithm for functions defined over graphs.
- Spectral learning of weigthed automata has been proposed for strings [Bailly et al., Hsu et. al, 2009] and trees [Bailly et al., 2010]

- Extending automata to graphs is challenging.
 - ightarrow No suitable model of weighted graph automata...
- Tensor networks view of weighted automata can naturally be extended to labeled graphs :
- Graph Weighted Models (GWMs) [Bailly, GR, Denis, LATA'15, JCSS'18]

Minimization of GWMs over Circular Strings

- \bullet Long term objective: learning algorithm for GWMs (over $\mathbb{R})$
- \rightarrow Tedious task...
 - In this work,
 - ▶ we focus on GWMs restricted to the family of circular strings (GWM^c),
 - we study the equivalence and minimization problems.
 - These problems are more challenging with GWM^c than with weighted automata (WA):
 - WA (over \mathbb{R}) \simeq Linear algebra
 - GWM^c \simeq Non-commutative algebra

Outline

Preliminaries

- Weighted Automata
- Tensor Networks and Weighted Automata
- Graph Weighted Models
- Graph Weighted Model over Circular Strings (GWM^c)
 - Equivalence of GWM^cs
 - 4 Minimization of GWM^cs

- Σ a finite alphabet (e.g. $\{a, b\}$), Σ^* strings on Σ (e.g. *abba*)
- A WA computes a function $f: \Sigma^* \to \mathbb{R}$

- Σ a finite alphabet (e.g. $\{a, b\}$), Σ^* strings on Σ (e.g. *abba*)
- A WA computes a function $f: \Sigma^* \to \mathbb{R}$
- States and weighted transitions:

- Σ a finite alphabet (e.g. $\{a, b\}$), Σ^* strings on Σ (e.g. *abba*)
- A WA computes a function $f: \Sigma^* \to \mathbb{R}$
- Algebraic representation: WA *M* with *n* states:

$$M = (oldsymbol{lpha}, \{ oldsymbol{\mathsf{M}}^\sigma \}_{\sigma \in oldsymbol{\Sigma}}, oldsymbol{\omega})$$
 where

- $\pmb{lpha} \in \mathbb{R}^n$ initial weights vector
- $\omega \in \mathbb{R}^n$ final weights vector
- $\mathbf{M}^{\sigma} \in \mathbb{R}^{n imes n}$ transition weights matrix for each $\sigma \in \Sigma$

- Σ a finite alphabet (e.g. $\{a, b\}$), Σ^* strings on Σ (e.g. *abba*)
- A WA computes a function $f: \Sigma^* \to \mathbb{R}$
- Algebraic representation: WA *M* with *n* states:

$$\begin{split} M &= \left(\boldsymbol{\alpha}, \{ \mathbf{M}^{\sigma} \}_{\sigma \in \Sigma}, \boldsymbol{\omega} \right) \text{ where} \\ & \boldsymbol{\alpha} \in \mathbb{R}^n \text{ initial weights vector} \\ & \boldsymbol{\omega} \in \mathbb{R}^n \text{ final weights vector} \\ & \mathbf{M}^{\sigma} \in \mathbb{R}^{n \times n} \text{ transition weights matrix for each } \sigma \in \Sigma \end{split}$$

• *M* computes a function $f_M : \Sigma^* \to \mathbb{R}$ defined by

$$f_{\mathcal{M}}(\sigma_{1}\sigma_{2}\cdots\sigma_{k})=\boldsymbol{\alpha}^{\top}\mathbf{M}^{\sigma_{1}}\mathbf{M}^{\sigma_{2}}\cdots\mathbf{M}^{\sigma_{k}}\boldsymbol{\omega}$$

Detour: Tensors

$$\begin{split} \mathbf{M} \in \mathbb{R}^{d_1 \times d_2} & \mathcal{T} \in \mathbb{R}^{d_1 \times d_2 \times d_3} \\ \mathbf{M}_{ij} \in \mathbb{R} \text{ for } i \in [d_1], j \in [d_2] & (\mathcal{T}_{ijk}) \in \mathbb{R} \text{ for } i \in [d_1], j \in [d_2], k \in [d_3] \end{split}$$

A 2 1 B

Matrix product:

$$(\mathsf{AB})_{i_1,i_2} = \sum_k \mathsf{A}_{i_1k} \mathsf{B}_{ki_2}$$

Guillaume Rabusseau

Minimization of GWMs over Circular Strings

• WA M with n states: $M = (\alpha, \{\mathbf{M}^{\sigma}\}_{\sigma \in \Sigma}, \omega)$ where

$$\begin{split} &\alpha \in \mathbb{R}^n \text{ initial weights vector} \\ &\omega \in \mathbb{R}^n \text{ final weights vector} \\ &\mathbf{M}^{\sigma} \in \mathbb{R}^{n \times n} \text{ transition weights matrix for each } \sigma \in \Sigma \end{split}$$

• M computes a function $f_M: \Sigma^* \to \mathbb{R}$ defined by

$$f_{\mathcal{M}}(\sigma_{1}\sigma_{2}\cdots\sigma_{k})=\boldsymbol{\alpha}^{\top}\mathbf{M}^{\sigma_{1}}\mathbf{M}^{\sigma_{2}}\cdots\mathbf{M}^{\sigma_{k}}\boldsymbol{\omega}$$

• WA M with n states: $M = (\alpha, \{\mathbf{M}^{\sigma}\}_{\sigma \in \Sigma}, \omega)$ where

$$\begin{split} & \boldsymbol{\alpha} \in \mathbb{R}^n \text{ initial weights vector} \\ & \boldsymbol{\omega} \in \mathbb{R}^n \text{ final weights vector} \\ & \mathbf{M}^{\sigma} \in \mathbb{R}^{n \times n} \text{ transition weights matrix for each } \boldsymbol{\sigma} \in \boldsymbol{\Sigma} \end{split}$$

• *M* computes a function $f_M : \Sigma^* \to \mathbb{R}$ defined by

$$f_{\mathcal{M}}(\sigma_1\sigma_2\cdots\sigma_k) = \boldsymbol{\alpha}^{\top}\mathbf{M}^{\sigma_1}\mathbf{M}^{\sigma_2}\cdots\mathbf{M}^{\sigma_k}\boldsymbol{\omega}$$

- $\mathcal{F} = \{a(\cdot), h(\cdot, \cdot), g(\cdot, \cdot, \cdot)\}$
- GWM: vector $\mathcal{M}^a \in \mathbb{R}^n$, matrix $\mathcal{M}^h \in \mathbb{R}^{n \times n}$, tensor $\mathcal{M}^g \in \mathbb{R}^{n \times n \times n}$

•
$$\mathcal{F} = \{a(\cdot), h(\cdot, \cdot), g(\cdot, \cdot, \cdot)\}$$

• GWM: vector $\mathcal{M}^a \in \mathbb{R}^n$, matrix $\mathcal{M}^h \in \mathbb{R}^{n \times n}$, tensor $\mathcal{M}^g \in \mathbb{R}^{n \times n \times n}$

•
$$\mathcal{F} = \{\alpha(\cdot), a(\cdot, \cdot), b(\cdot, \cdot), \omega(\cdot)\}$$

• GWM: $\mathcal{M}^{lpha}, \mathcal{M}^{\omega} \in \mathbb{R}^n$, $\mathcal{M}^a, \mathcal{M}^b \in \mathbb{R}^{n imes n}$

•
$$\mathcal{F} = \{f(\cdot, \cdot, \cdot), a(\cdot), \alpha(\cdot)\}$$

• GWM:
$$\mathcal{M}^f \in \mathbb{R}^{n \times n \times n}$$
, $\mathcal{M}^{lpha}, \mathcal{M}^a \in \mathbb{R}^n$

- $\mathcal{F} = \{a(\cdot, \cdot), b(\cdot, \cdot)\}$
- GWM: $\mathbf{M}^{a}, \mathbf{M}^{b} \in \mathbb{R}^{n \times n}$

Outline

Preliminaries

- Graph Weighted Model over Circular Strings (GWM^c)
- 3 Equivalence of GWM^cs
- 4 Minimization of GWM^cs

Graph Weighted Model over Circular Strings (GWM^c)

• A circular string is a string closed onto itself.

 $ightarrow \,$ aaba $\simeq \,$ abaa $\simeq \,$ baaa $\simeq \,$ aaab

- A *d*-dimensional GWM^c A is given by $\{\mathbf{A}^{\sigma}\}_{\sigma \in \Sigma} \subset \mathbb{R}^{d \times d}$
- A computes a function $f_A: \Sigma^+ o \mathbb{R}$ defined by

$$f_{\mathcal{A}}(\sigma_1\sigma_2\cdots\sigma_k) = \mathsf{Tr}(\mathbf{A}^{\sigma_1}\mathbf{A}^{\sigma_2}\cdots\mathbf{A}^{\sigma_k})$$

Relations between GWM^c and WA

• WAs and GWM^cs are closely related:

$$f_{\mathcal{M}}(x) = \boldsymbol{\alpha}^{\top} \mathbf{M}^{x_1} \mathbf{M}^{x_2} \cdots \mathbf{M}^{x_k} \boldsymbol{\omega}$$
 vs. $f_{\mathcal{A}}(x) = \operatorname{Tr}(\mathbf{A}^{x_1} \mathbf{A}^{x_2} \cdots \mathbf{A}^{x_k})$

Relations between GWM^c and WA

• WAs and GWM^cs are closely related:

$$f_{\mathcal{M}}(x) = \boldsymbol{\alpha}^{\top} \mathbf{M}^{x_1} \mathbf{M}^{x_2} \cdots \mathbf{M}^{x_k} \boldsymbol{\omega}$$
 vs. $f_{\mathcal{A}}(x) = \operatorname{Tr}(\mathbf{A}^{x_1} \mathbf{A}^{x_2} \cdots \mathbf{A}^{x_k})$

In fact, $GWM^c \subsetneq WA$:

- f is WA-recognizable $\neq f$ is GWM^c-recognizable.
 - \hookrightarrow any f that is not invariant under cyclic permutations.
 - \hookrightarrow the constant function $f: x \mapsto 0.5$

Relations between GWM^c and WA

• WAs and GWM^cs are closely related:

$$f_{\mathcal{M}}(x) = \alpha^{\top} \mathbf{M}^{x_1} \mathbf{M}^{x_2} \cdots \mathbf{M}^{x_k} \omega$$
 vs. $f_{\mathcal{A}}(x) = \operatorname{Tr}(\mathbf{A}^{x_1} \mathbf{A}^{x_2} \cdots \mathbf{A}^{x_k})$

In fact, $GWM^c \subsetneq WA$:

- f is WA-recognizable $\neq f$ is GWM^c-recognizable.
 - \hookrightarrow any f that is not invariant under cyclic permutations.
 - \hookrightarrow the constant function $f: x \mapsto 0.5$
- f is GWM^c-recognizable \Rightarrow f is WA-recognizable.

 \hookrightarrow If $\mathbf{M}^{\sigma} = \mathbf{I} \otimes \mathbf{A}^{\sigma}$ and $\alpha = \omega = \operatorname{vec}(\mathbf{I})$ then $f_{\mathcal{M}}(x) = f_{\mathcal{A}}(x)$ for all $x \in \Sigma^*$.

Outline

Preliminaries

- Graph Weighted Model over Circular Strings (GWM^c)
- 3 Equivalence of GWM^cs
- 4 Minimization of GWM^cs

Equivalence Problem

• Given two GWM^c can we decide if they compute the same function?

Equivalence Problem

- Given two GWM^c can we decide if they compute the same function?
- YES: Equivalence of real-valued WAs is decidable in polynomial time...
 - 1. Convert the two GWM^c into WAs
 - 2. Use WAs algorithm to decide equivalence

Equivalence Problem

- Given two GWM^c can we decide if they compute the same function?
- YES: Equivalence of real-valued WAs is decidable in polynomial time...
 - 1. Convert the two GWM^c into WAs
 - 2. Use WAs algorithm to decide equivalence
- What if we do not want to rely on WAs algorithms?

 — This will give insights on fundamental GWM properties...

Equivalence of Weighted Automata

Proposition

Given two WAs $M_1 = (\alpha_1, \{M_1^{\sigma}\}_{\sigma \in \Sigma}, \omega_1)$, $M_2 = (\alpha_2, \{M_2^{\sigma}\}_{\sigma \in \Sigma}, \omega_2)$ with n states,

 $f_{M_1} = f_{M_2} \iff M_1$ and M_2 are related by a change of basis

i.e. $\alpha_1^\top \mathbf{P} = \alpha_2^\top, \ \mathbf{P}^{-1} \omega_1 = \omega_2, \ \mathbf{P}^{-1} \mathbf{M}_1^\sigma \mathbf{P} = \mathbf{M}_2^\sigma \ \forall \sigma \in \Sigma \text{ for some } \mathbf{P}.$

Equivalence of Weighted Automata

Proposition

Given two WAs $M_1 = (\alpha_1, \{M_1^{\sigma}\}_{\sigma \in \Sigma}, \omega_1)$, $M_2 = (\alpha_2, \{M_2^{\sigma}\}_{\sigma \in \Sigma}, \omega_2)$ with n states,

 $f_{M_1} = f_{M_2} ~~\Leftrightarrow~~ M_1$ and M_2 are related by a change of basis

i.e. $\alpha_1^\top \mathbf{P} = \alpha_2^\top, \ \mathbf{P}^{-1} \omega_1 = \omega_2, \ \mathbf{P}^{-1} \mathbf{M}_1^\sigma \mathbf{P} = \mathbf{M}_2^\sigma \ \forall \sigma \in \Sigma \text{ for some } \mathbf{P}.$

 \hookrightarrow Not true for GWM^c! With $\Sigma = \{\sigma\}$:

$$\mathbf{A}^{\sigma} = egin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix}$$
 and $\widetilde{\mathbf{A}}^{\sigma} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}$

we have $f(x) = \tilde{f}(x) = 2$ for all $x \in \Sigma^*$ but \mathbf{A}^{σ} is not diagonalizable...

A few definitions:

- An algebra \mathcal{A} is nilpotent if $\exists n \colon \mathcal{A}^n = \{0\}$.
- The radical $\operatorname{Rad}(\mathcal{A})$ of \mathcal{A} is its maximal nilpotent ideal.
- An algebra is semi-simple if its radical is $\{0\}$.

A few definitions:

- An algebra \mathcal{A} is nilpotent if $\exists n \colon \mathcal{A}^n = \{0\}$.
- The radical $\operatorname{Rad}(\mathcal{A})$ of \mathcal{A} is its maximal nilpotent ideal.
- An algebra is semi-simple if its radical is {0}.

Example. Let \mathcal{G} be the algebra generated by

by
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
. We have

•
$$\mathcal{G} = \left\{ \begin{bmatrix} \alpha & \beta \\ \mathbf{0} & \alpha \end{bmatrix} : \alpha, \ \beta \in \mathbb{R} \right\}$$

A few definitions:

- An algebra \mathcal{A} is nilpotent if $\exists n \colon \mathcal{A}^n = \{0\}$.
- The radical $\operatorname{Rad}(\mathcal{A})$ of \mathcal{A} is its maximal nilpotent ideal.
- An algebra is semi-simple if its radical is $\{0\}$.

Example. Let \mathcal{G} be the algebra generated by $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. We have

•
$$\mathcal{G} = \left\{ \begin{bmatrix} \alpha & \beta \\ 0 & \alpha \end{bmatrix} : \alpha, \ \beta \in \mathbb{R} \right\}$$

• $\mathcal{G}_1 = \left\{ \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix} : \ \alpha \in \mathbb{R} \right\}, \ \mathcal{G}_2 = \left\{ \begin{bmatrix} 0 & \beta \\ 0 & 0 \end{bmatrix} : \ \beta \in \mathbb{R} \right\}$ are ideals of \mathcal{G} .

A few definitions:

- An algebra \mathcal{A} is nilpotent if $\exists n \colon \mathcal{A}^n = \{0\}$.
- The radical $\operatorname{Rad}(\mathcal{A})$ of \mathcal{A} is its maximal nilpotent ideal.
- An algebra is semi-simple if its radical is $\{0\}$.

Example. Let \mathcal{G} be the algebra generated by $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. We have

•
$$\mathcal{G} = \left\{ \begin{bmatrix} \alpha & \beta \\ 0 & \alpha \end{bmatrix} : \alpha, \ \beta \in \mathbb{R} \right\}$$

• $\mathcal{G}_1 = \left\{ \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix} : \ \alpha \in \mathbb{R} \right\}, \ \mathcal{G}_2 = \left\{ \begin{bmatrix} 0 & \beta \\ 0 & 0 \end{bmatrix} : \ \beta \in \mathbb{R} \right\}$ are ideals of \mathcal{G} .

 $\Rightarrow \operatorname{Rad}(\mathcal{G}) = \mathcal{G}_2$ and \mathcal{G} is not semi-simple.

Equivalence of GWM^cs

We say that a GWM $A = {\mathbf{A}^{\sigma}}_{\sigma \in \Sigma}$ is a semi-simple GWM^c if the algebra generated by the matrices ${\mathbf{A}^{\sigma}}_{\sigma \in \Sigma}$ is semi-simple.

Equivalence of GWM^cs

We say that a GWM $A = {\mathbf{A}^{\sigma}}_{\sigma \in \Sigma}$ is a semi-simple GWM^c if the algebra generated by the matrices ${\mathbf{A}^{\sigma}}_{\sigma \in \Sigma}$ is semi-simple.

Theorem

Two d-dimensional semi-simple GWM^c A and B compute the same function if and only if they are related by a change of basis, (i.e. $\exists \mathbf{P}$ such that $\mathbf{A}^{\sigma} = \mathbf{P}^{-1}\mathbf{B}^{\sigma}\mathbf{P}$ for all $\sigma \in \Sigma$).

Equivalence of GWM^cs

We say that a GWM $A = {\mathbf{A}^{\sigma}}_{\sigma \in \Sigma}$ is a semi-simple GWM^c if the algebra generated by the matrices ${\mathbf{A}^{\sigma}}_{\sigma \in \Sigma}$ is semi-simple.

Theorem

Two d-dimensional semi-simple GWM^c A and B compute the same function if and only if they are related by a change of basis, (i.e. $\exists \mathbf{P}$ such that $\mathbf{A}^{\sigma} = \mathbf{P}^{-1}\mathbf{B}^{\sigma}\mathbf{P}$ for all $\sigma \in \Sigma$).

Theorem

Any function that can be computed by a GWM^c can be computed by a semi-simple GWM^c of the same dimension.

 \hookrightarrow ... and such a semi-simple GWM^c can be computed in polynomial time.

Equivalence of GWM^cs (cont'd)

The proofs of the two previous theorems fundamentally rely on the Wedderburn-Malcev Theorem:

Theorem

Let \mathcal{A} be a finite-dimensional algebra **over a field of characteristic** 0. There exists a semi-simple subalgebra $\tilde{\mathcal{A}}$ of \mathcal{A} which is isomorphic to $\mathcal{A}/\text{Rad}(\mathcal{A})$ and such that $\mathcal{A} = \tilde{\mathcal{A}} \oplus \text{Rad}(\mathcal{A})$ (direct sum of vector spaces).

Equivalence of GWM^cs (cont'd)

The proofs of the two previous theorems fundamentally rely on the Wedderburn-Malcev Theorem:

Theorem

Let \mathcal{A} be a finite-dimensional algebra **over a field of characteristic** 0. There exists a semi-simple subalgebra $\tilde{\mathcal{A}}$ of \mathcal{A} which is isomorphic to $\mathcal{A}/\text{Rad}(\mathcal{A})$ and such that $\mathcal{A} = \tilde{\mathcal{A}} \oplus \text{Rad}(\mathcal{A})$ (direct sum of vector spaces).

and on the fact that the corresponding surjective homomorphism $\pi \colon \mathcal{A} \to \tilde{\mathcal{A}}$ is trace preserving, i.e $Tr(\mathbf{A}) = Tr(\pi(\mathbf{A}))$ for all $\mathbf{A} \in \mathcal{A}$.

Equivalence of GWM^cs (cont'd)

Example. Let \mathcal{G} be the algebra generated by $\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}$. We have

•
$$\mathcal{G} = \left\{ \begin{bmatrix} \alpha & \beta \\ 0 & \alpha \end{bmatrix} : \alpha, \ \beta \in \mathbb{R} \right\}$$

• $\mathcal{G}_1 = \left\{ \begin{bmatrix} \alpha & 0 \\ 0 & \alpha \end{bmatrix} : \ \alpha \in \mathbb{R} \right\}, \ \mathcal{G}_2 = \left\{ \begin{bmatrix} 0 & \beta \\ 0 & 0 \end{bmatrix} : \ \beta \in \mathbb{R} \right\}$ are ideals of \mathcal{G} .

Here we have $\operatorname{Rad}(\mathcal{G}) = \mathcal{G}_2$ and $\mathcal{G} = \mathcal{G}_1 \oplus \mathcal{G}_2$.

Outline

Preliminaries

- Graph Weighted Model over Circular Strings (GWM^c)
- 3 Equivalence of GWM^cs
- 4 Minimization of GWM^cs

GWM^c Minimization

Characterization of minimality:

Theorem

Let A be a GWM^c given by the set of matrices $\{\mathbf{A}^{\sigma}\}_{\sigma \in \Sigma} \subset \mathbb{R}^{d \times d}$. Then, A is minimal if and only if the linear space

$$E = \bigcap_{x \in \Sigma^d} \ker(\mathbf{A}^x) = \{ \mathbf{v} \in \mathbb{F}^d : \mathbf{A}^x \mathbf{v} = \mathbf{0} \text{ for all } x \in \Sigma^d \}$$

is trivial, i.e. $E = \{\mathbf{0}\}$.

GWM^c Minimization

Characterization of minimality:

Theorem

Let A be a GWM^c given by the set of matrices $\{\mathbf{A}^{\sigma}\}_{\sigma \in \Sigma} \subset \mathbb{R}^{d \times d}$. Then, A is minimal if and only if the linear space

$$E = \bigcap_{x \in \Sigma^d} \ker(\mathbf{A}^x) = \{ \mathbf{v} \in \mathbb{F}^d : \mathbf{A}^x \mathbf{v} = \mathbf{0} \text{ for all } x \in \Sigma^d \}$$

is trivial, i.e. $E = \{\mathbf{0}\}$.

Minimization algorithm:

- 1. Let $\mathbf{\Pi} \in \mathbb{R}^{d \times d}$ be the orthogonal projection onto E.
- 2. Let $\mathbf{U} \in \mathbb{F}^{d \times R}$ such that $\mathbf{I} \mathbf{\Pi} = \mathbf{U}\mathbf{U}^{\top}$ $(R = dim(E^{\perp}))$.
- 3. Define *R*-dimensional GWM^c \hat{A} with $\hat{A}^{\sigma} = \mathbf{U}^{\top} \mathbf{A}^{\sigma} \mathbf{U}$ for each $\sigma \in \Sigma$.
- $\Rightarrow \hat{A}$ is a minimal GWM^c computing f_A .

Conclusion

- We studied two fundamental problems for GWMs restricted to circular strings
- Theory of GWMs relies on non-commutative algebras rather than simple linear algebra

Conclusion

- We studied two fundamental problems for GWMs restricted to circular strings
- Theory of GWMs relies on non-commutative algebras rather than simple linear algebra

Future work:

- Extend the minimization/equivalence algorithms to GWMs defined over larger families of graphs.
 - First step: extend the notion of semi-simple GWMs.
- Learning GWMs:
 - Ongoing work on 2-dimensional words (preliminary results at LearnAut'18).

Semi-simple GWMs

GWMs maps open graphs to matrices:

Semi-simple GWMs

GWMs maps open graphs to matrices:

Semi-simple GWMs

GWMs maps open graphs to matrices:

For any graph $G \in S$ in some family of graph, for any edge e of G, $f_M(G \setminus e)$ is a matrix.

A GWM is semi-simple if the algebra generated by all such matrices is semi-simple...