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Learning with Structured Data
Supervised Learning:

Learn f : X → Y from a sample {(x1, y1), · · · , (xN , yN)} ⊂ X × Y.

Learning algorithms often assume X = Rd .
How can one learn with structured inputs such as strings and trees?

Intersection of Theoretical Computer Science and Machine Learning...

→ Weighted Automata: robust model to represent functions defined over
structured objects (and in particular probability distributions).
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Long Term Objective
Long term objective: learning algorithm for functions defined over
graphs.
Spectral learning of weigthed automata has been proposed for strings
[Bailly et al., Hsu et. al, 2009] and trees [Bailly et al., 2010]

Extending automata to graphs is challenging.
→ No suitable model of weighted graph automata...

Tensor networks view of weighted automata can naturally be
extended to labeled graphs :

↪→ Graph Weighted Models (GWMs) [Bailly, GR, Denis, LATA’15,
JCSS’18]
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Minimization of GWMs over Circular Strings

Long term objective: learning algorithm for GWMs (over R)
→ Tedious task...

In this work,
I we focus on GWMs restricted to the family of circular strings (GWMc),
I we study the equivalence and minimization problems.

These problems are more challenging with GWMc than with weighted
automata (WA):

I WA (over R) ' Linear algebra
I GWMc ' Non-commutative algebra
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Outline

1 Preliminaries
Weighted Automata
Tensor Networks and Weighted Automata
Graph Weighted Models

2 Graph Weighted Model over Circular Strings (GWMc)
3 Equivalence of GWMcs
4 Minimization of GWMcs
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String Weighted Automata (WA)
Σ a finite alphabet (e.g. {a, b}), Σ∗ strings on Σ (e.g. abba)
A WA computes a function f : Σ∗ → R

States and weighted transitions:
Algebraic representation: WA M with n states:

M = (α, {Mσ}σ∈Σ,ω) where
α ∈ Rn initial weights vector
ω ∈ Rn final weights vector

Mσ ∈ Rn×n transition weights matrix for each σ ∈ Σ

M computes a function fM : Σ∗ → R defined by

fM(σ1σ2 · · ·σk) = α>Mσ1Mσ2 · · ·Mσkω
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Detour: Tensors

M ∈ Rd1×d2

Mij ∈ R for i ∈ [d1], j ∈ [d2]
T ∈ Rd1×d2×d3

(T ijk) ∈ R for i ∈ [d1], j ∈ [d2], k ∈ [d3]
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Detour: Tensor Networks

M1 2 T1

2

3

Matrix: Mi1i2 3rd order tensor: T i1i2i3
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(AB)i1,i2 =
∑

k
Ai1kBki2

Guillaume Rabusseau Minimization of GWMs over Circular Strings August 12, 2019 8 / 26



Detour: Tensor Networks

M1 2 T1
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Matrix: Mi1i2 3rd order tensor: T i1i2i3
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Tr(M) =
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i
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Detour: Tensor Networks

M1 2 T1

2

3

Matrix: Mi1i2 3rd order tensor: T i1i2i3

Tensor times matrices:

TA

B

C

1

1

1

2 1

2

2

2

3

(T ×1 A×2 B×3 C)i1,i2,i3 =
∑

k1k2k3

T k1k2k3Ai1k1Bi2k2Ci3k3
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String Weighted Automata (WA)

WA M with n states: M = (α, {Mσ}σ∈Σ,ω) where
α ∈ Rn initial weights vector
ω ∈ Rn final weights vector

Mσ ∈ Rn×n transition weights matrix for each σ ∈ Σ

M computes a function fM : Σ∗ → R defined by

fM(σ1σ2 · · ·σk) = α>Mσ1Mσ2 · · ·Mσkω

α Mσ1 Mσ2 · · · Mσk ω1 1 2 1 2 1 2 1 2 1
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Graph Weighted Models [R. Bailly∗, GR∗, F. Denis, LATA’15/JCSS’18]

F = {a(·), h(·, ·), g(·, ·, ·)}
GWM: vector Ma ∈ Rn, matrix Mh ∈ Rn×n, tensor Mg ∈ Rn×n×n

h

h

g a
2

1

1 2

2

1

3 1 Mh

Mh

Mg Ma

2

1

1 2

2

1

3 1
fM

fM(G) =
∑

i1,i2,i3,i4∈[n]
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Graph Weighted Models [R. Bailly∗, GR∗, F. Denis, LATA’15/JCSS’18]

F = {α(·), a(·, ·), b(·, ·), ω(·)}
GWM: Mα,Mω ∈ Rn, Ma,Mb ∈ Rn×n

α a b b a ω1 1 2 1 2 1 2 1 2 1

Mα Ma Mb Mb Ma Mω1 1 2 1 2 1 2 1 2 1

fM

fM(G) =
∑

i1,i2,i3,i4,i5∈[n]
Mα

i1M
a
i1,i2M

b
i2,i3M

b
i3,i4M

a
i4,i5M

ω
i5

= α>MaMbMbMaω
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Graph Weighted Models [R. Bailly∗, GR∗, F. Denis, LATA’15/JCSS’18]

F = {f (·, ·, ·), a(·), α(·)}
GWM: Mf ∈ Rn×n×n, Mα,Ma ∈ Rn
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Graph Weighted Models [R. Bailly∗, GR∗, F. Denis, LATA’15/JCSS’18]

F = {a(·, ·), b(·, ·)}
GWM: Ma,Mb ∈ Rn×n
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fM(G) =
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= Tr(MaMbMaMaMbMb)
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1 Preliminaries
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Graph Weighted Model over Circular Strings (GWMc)

A circular string is a string closed onto itself.

a

b

b

a

→ aaba ' abaa ' baaa ' aaab

A d-dimensional GWMc A is given by {Aσ}σ∈Σ ⊂ Rd×d

A computes a function fA : Σ+ → R defined by

fA(σ1σ2 · · ·σk) = Tr(Aσ1Aσ2 · · ·Aσk )
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Relations between GWMc and WA

WAs and GWMcs are closely related:

fM(x) = α>Mx1Mx2 · · ·Mxkω vs. fA(x) = Tr(Ax1Ax2 · · ·Axk )

In fact, GWMc ( WA:

f is WA-recognizable 6⇒ f is GWMc -recognizable.
↪→ any f that is not invariant under cyclic permutations.
↪→ the constant function f : x 7→ 0.5

f is GWMc -recognizable ⇒ f is WA-recognizable.
↪→ If Mσ = I⊗Aσ and α = ω = vec(I) then fM(x) = fA(x) for all x ∈ Σ∗.
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Equivalence Problem

Given two GWMc can we decide if they compute the same function?

YES: Equivalence of real-valued WAs is decidable in polynomial
time...

1. Convert the two GWMc into WAs
2. Use WAs algorithm to decide equivalence

What if we do not want to rely on WAs algorithms?
↪→ This will give insights on fundamental GWM properties...
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Equivalence of Weighted Automata

Proposition
Given two WAs M1 = (α1, {Mσ

1}σ∈Σ,ω1), M2 = (α2, {Mσ
2}σ∈Σ,ω2) with

n states,

fM1 = fM2 ⇔ M1 and M2 are related by a change of basis

i.e. α>1 P = α>2 , P−1ω1 = ω2, P−1Mσ
1 P = Mσ

2 ∀σ ∈ Σ for some P.

↪→ Not true for GWMc ! With Σ = {σ}:

Aσ =
[

1 1
0 1

]
and Ãσ =

[
1 0
0 1

]

we have f (x) = f̃ (x) = 2 for all x ∈ Σ∗ but Aσ is not diagonalizable...
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Detour: Finite-dimensional Algebras

A few definitions:
An algebra A is nilpotent if ∃n : An = {0}.
The radical Rad(A) of A is its maximal nilpotent ideal.
An algebra is semi-simple if its radical is {0}.

Example. Let G be the algebra generated by
[

1 1
0 1

]
. We have

G =
{[
α β
0 α

]
: α, β ∈ R

}

G1 =
{[
α 0
0 α

]
: α ∈ R

}
, G2 =

{[
0 β
0 0

]
: β ∈ R

}
are ideals of G.

⇒ Rad(G) = G2 and G is not semi-simple.
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Equivalence of GWMcs

We say that a GWM A = {Aσ}σ∈Σ is a semi-simple GWMc if the algebra
generated by the matrices {Aσ}σ∈Σ is semi-simple.

Theorem

Two d-dimensional semi-simple GWMc A and B compute the same
function if and only if they are related by a change of basis, (i.e. ∃P such
that Aσ = P−1BσP for all σ ∈ Σ).

Theorem

Any function that can be computed by a GWMc can be computed by a
semi-simple GWMc of the same dimension.

↪→ ... and such a semi-simple GWMc can be computed in polynomial
time.
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Equivalence of GWMcs (cont’d)

The proofs of the two previous theorems fundamentally rely on the
Wedderburn-Malcev Theorem:

Theorem

Let A be a finite-dimensional algebra over a field of characteristic 0.
There exists a semi-simple subalgebra Ã of A which is isomorphic to
A/Rad(A) and such that A = Ã ⊕Rad(A) (direct sum of vector spaces).

and on the fact that the corresponding surjective homomorphism
π : A → Ã is trace preserving, i.e Tr(A) = Tr(π(A)) for all A ∈ A.
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Equivalence of GWMcs (cont’d)

Example. Let G be the algebra generated by
[

1 1
0 1

]
. We have

G =
{[
α β
0 α

]
: α, β ∈ R

}

G1 =
{[
α 0
0 α

]
: α ∈ R

}
, G2 =

{[
0 β
0 0

]
: β ∈ R

}
are ideals of G.

Here we have Rad(G) = G2 and G = G1 ⊕ G2.
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GWMc Minimization
Characterization of minimality:

Theorem
Let A be a GWMc given by the set of matrices {Aσ}σ∈Σ ⊂ Rd×d . Then,
A is minimal if and only if the linear space

E =
⋂

x∈Σd

ker(Ax ) = {v ∈ Fd : Ax v = 0 for all x ∈ Σd}

is trivial, i.e. E = {0}.

Minimization algorithm:
1. Let Π ∈ Rd×d be the orthogonal projection onto E .
2. Let U ∈ Fd×R such that I−Π = UU> (R = dim(E⊥)).
3. Define R-dimensional GWMc Â with Âσ = U>AσU for each σ ∈ Σ.

⇒ Â is a minimal GWMc computing fA.
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Conclusion

We studied two fundamental problems for GWMs restricted to
circular strings
Theory of GWMs relies on non-commutative algebras rather than
simple linear algebra

Future work:
Extend the minimization/equivalence algorithms to GWMs defined
over larger families of graphs.

I First step: extend the notion of semi-simple GWMs.
Learning GWMs:

I Ongoing work on 2-dimensional words (preliminary results at
LearnAut’18).
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Semi-simple GWMs

GWMs maps open graphs to matrices:

h

h

g a
2

1

1 2

2

1

3 1 Mh

Mh

Mg Ma

2

1

1 2

2

1

3 1
fM
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For any graph G ∈ S in some family of graph, for any edge e of G ,
fM(G \ e) is a matrix.

A GWM is semi-simple if the algebra generated by all such matrices is
semi-simple...
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