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e TNs for very high-dimensional data
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e Inductive biases in QML.
e Which quantum circuits can’t be simulated

by Tensor Networks? How are they relevant

to ML?
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e Learning Quantum Circuit Designs.

QML theory: Generalization bounds, benefits
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Tensor Decomposition

as a tool to

characterize the

expressivity of RNNs

with second-order

Interactions.
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What are 2RNNs?
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Why 2RNNs?

Because,
I:I o(Vh!~! + Ux' +b) ® Strictly more expressive than RNNs
T
R o .
O 2?RNN ® | anguage Modelling : Learning more
D complex dependencies (e.g. compositional
U oc(A x1 h'™! x5 x" + Vh!™' + Ux' + b)
C semantics). G, G G G
T —0-0-0
| 2nd order term CP
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Why 2RNNs?

Multiplicative Integration RNN
oc(Vh!~! + Ux' + b) Only component-wise
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O
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CP Decomposition & CPRNN
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T. Kolda and B. Bader, Tensor Decompositions and applications. SIAM REVIEW (2009)




CP Decomposition & CPRNN
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Reduces the number of parameters:

O(d?) —— O(Rd)
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CP Decomposition & CPRNN

CPRNN
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o 2nd-order term parameterized by CP decomposition
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CP Decomposition & CPRNN

/Raﬂk CPRNN

X ~[A,B,C] _ob,oc,
Za o Pt o([A, B, C] x; ht~! x5 x' + Vh!~! + Ux' + b)

by b, b o 2nd-order term parameterized by CP decomposition
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Reduces the number of parameters: * Rank of CPRNN = Model hyper-parameter
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CP Decomposition & CPRNN

CPRNN
o([A,B,C] x; h' ! x, x* + Vh!™! + Ux' + b)

o 2nd-order term parameterized by CP decomposition
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e Rank of CPRNN = Model hyper-parameter

e Empirically successful, but no theoretical analysis

(I. Sutskever et al., Generating text with recurrent neural networks. ICML (2011))
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Models Hidden state Tensor Network
(2nd order terms)
2RNN  o(A x; h"" " xox" + Vh'™! + Ux’ + b) ht—1 - i
1 d
O'(Axl ht_ X9 Xt) Xt

4N R R<:>n
CPRNN O'(HA,B, C]] X1 ht_l X9 Xt + Vht_l + UXt + b) ht : @.R

CPBIRNN o([A,B,C] x; h'~! x5 x") d

ol ® Vh!~! © Ux @ <0‘>

+83; ® Vh!'~! + 3, ® Ux" + b)

o(Vh!~! + Ux' + b) @ @

MIRNN



Questions

Nested family in tensor space

I
N
T
R
O
D
U
C
T

I
O
N

Increasing rank increases tensor
capacity up to saturation




Questions

Nested family in tensor space

Expressivity / Size

/ Neural Networks

I
N
T
R
O
D
U
C
T

I
O
N

Hidden
dimension

Increasing rank increases tensor
capacity up to saturation




Questions

Nested family in tensor space

How does increasing the capacity of the
tensor parameter relate to the

expressivity of the CPRNN?
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Questions

Nested family in tensor space

How does increasing the capacity of the
tensor parameter relate to the

expressivity of the CPRNN?

How does the point of saturation In
tensor space translate Iin

Expressivity / Size

/ \ How do the rank and hidden size
interplay in controlling the CPRNNSs
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Relating Tensor Space to Function Space through Rank

Definition :  Hcpryn (R, n)

Set of functions f mapping

iNput sequences to hidden state sequences
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rank /X and hidden state T
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Questions

How does increasing the capacity of the
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Relations of inclusions
— C C

—f— —

between sets

expressivity of the CPRNN?
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How do the rank and hidden size

interplay in controlling the C
capacity?

D

SNNs



Relating Tensor Space to Function Space through Rank

; Intuition : Consider a linear non recurrent model
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Relating Tensor Space to Function Space through Rank

; Intuition : Consider a linear non recurrent model
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Relating Tensor Space to Function Space through Rank

; Intuition : Consider a linear non recurrent mode
E
0
R h(x) = ABx —_—-—— Hag(R,n)
E B c R
‘ nXx R
| . s ; o . AceR
- “ (B)~x ®
A @ ®
L - . :
i .
O @
E o /) ®
S h € R"
U x € R?
L
; Strict Inclusion Saturation
Hap(R,n) C Hap(R+1,n) Hap(R,n) =Hap(R+1,n)

Riax = min{n, d}




Relating Tensor Space to Function Space through Rank

Intuition : For CPRNNSs
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Relating Tensor Space to Function Space through Rank

Intuition : For CPRNNSs
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Relating Tensor Space to Function Space through Rank

Intuition : For CPRNNSs

bt~ ~(A) @

T
H
=
O
R
=
T
I
C
A
L

Xt

h(x!,h'™1) = o([A,B,C] x; h' ™! xox* + Vh!~! + Ux! + b) —» Hcepran(R+1,1)

Strict Inclusion? Saturation?

O-Hrcouvuma




Relating Tensor Space to Function Space through Rank

; Intuition : For CPRNNSs, non triviall
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| 2) Recurrence: h'™! s not “free” n 07
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R 3) Non linearities
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Relating Tensor Space to Function Space through Rank

Theorem 1

* Hepran(R,n) € Hepran (R + 1,n) for any R.

* HeprNN(R,n) = HeopraN(R + 1,n) for any R >
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Relating Tensor Space to Function Space through Rank

Theorem 1

* HOoPRNN (R, n) C HeprRNN (R + 1, n) for any R. <
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Rmafp’

Moreover, assuming n < d.:
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Relating Tensor Space to Function Space through Rank

Theorem 1

* HOoPRNN (R, TL) C HepPRrRNN (R + 1, n) for any R. <

* HeprNnN(R,n) = HeopraN(R + 1,n) for any R >
Rmafp’

Moreover, assuming n < d.:

* HcepBIRNN (R, 1) € HepBIrRnN(R + 1,n) forany R <
Riyp—max and any real analytic invertible activation func-

J
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T
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* HeprnN(R,n) € HeprnN(R + 1, n) for a linear acti-
vation function and any R < Riyp_max-

Strict Inclusion Saturation

L

Hepprirnn(R,n) € Hopprrnn(R+1,n) ..., Heppirnn(R,n) = Hopprirnn (R +1,n)

O-Hrcouvuma

HCPRNN(R, n) _g_ HCPRNN(R -+ 1,n) HC’PRNN(Ra n) — HC’PRNN(R + 1777/)

| ———

. 2
Rtyp—max Rmax mln{n ; nd}

* I

n n2d
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Relating Tensor Space to Function Space through Rank

I Theorem 1
H CPRNN
(E) * HopPRNN (R, n) C HepPRrRNN (R + 1, n) for any R.
R * HepraN(R,n) = HepruN(R + 1,n) for any R >
E Rmax-
T .
| Moreover, assuming n < d:
C * HepBIRNN(R,n) C HepBIRNN (R + 1,n) forany R <
A Riyp—max and any real analytic invertible activation func-
L tion.
* HeprnN(R,n) € HeprnN(R + 1, n) for a linear acti-
R vation function and any R < Riyp—max-
E
S Strict Inclusion Saturation
U o o -
L C
T Heprirnn(R,n) € Hopprrnn (R + 1,n) ce..7ve.. HeprirnnN(R,n) =HeprirnN(R+1,n)
?
S Heprnn(R,n) € Heprvn(R+1,1) Heprvn(R,n) = Heprnn (R +1,1)
n n’d Riyp—max  fmax min{n?, nd}

2n +d — 2



Relating Tensor Space to Function Space through Rank

T
H 2RNN . CPRNN
E = Rmax
o Corollary 3
R
E * HeprnN(R,n) = Harnn(n) for any R > R4, (for /
T any activation function)
I
C Moreover, assuming n < d: K
ﬁ * HepBIrnN (R, 1) © Hornn(n) for any R < Riyp—max

and any real analytic invertible activation function.
R CPEIRNN
=
S
U
L Strict Inclusion Saturation
T - —————————— e ~— —————————
S

Heprirnn (R,n) C Hogyn(n) oo Heparrnn(R,n) = Harnn (1)

7

. 2
Rtyp—max Rmax mln{n ; nd}




Relating Tensor Space to Function Space through Rank

T
a 2RNN - CPRNN
= = Rmax

o Corollary 4

I; Assuming n < d, for any R > n, /

-:- o Hymirnn(n) € Hepran (R, n)

C  Hyarnn(n) € Heprnn(R,n) for linear activation K

A function

L

R CPEIRNN

=

S

U

_'I-_ No inclusion Strict Inclusion

S Hyrrrnn(n) 3T Hoprnn(R,n) Hyrrvn(n) € Heprnn (R, n)

n n2d
2n +d — 2

. 2
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Questions

How does increasing the capacity of the

tensor parameter relate to the

Relations of inclusions
— C C
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between sets

expressivity of the CPRNN? v/

How does the point of saturation In

tensor space translate Iin

Hepran (R, n) v Hepran (L2 +1,n)

function space?

How do the rank and hidden size

interplay in controlling the C
capacity?
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Interplay between Rank and Hidden Size

; Intuition : Consider a linear non recurrent model
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Interplay between Rank and Hidden Size

; Intuition : Consider a linear non recurrent model

-

0

'; y(x) = W(ABx)

T Rxd

| B € R~

C : A ¢ R™E

A q n R d W c Ran
Q
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Interplay between Rank and Hidden Size

; Intuition : Consider a linear non recurrent model

-

0

R y(x) = W(ABx) L% o Hap(R,n)

T Rxd

| B € R~

C : A ¢ R™E

A q n R d W c Ran
C

R C

E

S W ‘ y € R?

E ) h ¢ R"

- X € R

S

Lo Hag(R,n) 7 LY oHAg(R,n+1)
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Interplay between Rank and Hidden Size

; Intuition : Consider a linear non recurrent mode
=
O
R
=
T B c Rftxd B c Rftxd
| A € RnXR : A € R(n+l)><R
C gxXn O gXx(n+1)
A W e R ® ® o W e R
L O . . . O
O : Z : Q
= ° e O
g V ‘ y € RY ® V o y € R¢
¥ h € R" heR™
] X € Rd . - ) x € R
; Bottleneck R

Lo Hag(R,n) 7 LMY oHag(R,n+1)
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Interplay between Rank and Hidden Size

; Intuition : Not trivial (not only for CPRNNS)!

=

O . -

R 1) Ifg<n & 2) Non linearities

=

T B € RRXd B c RRXd

| A € RnXR ‘ A € R(n+l)><R

C ‘ ‘ W € RIX™M ‘ ‘ W € qu(n+l)

A o ® ® O P

L O . . . O
O : Z : Q

2 _ ® ® @ @ o

S o V y € R? ® V ® y y € R?

U h € R” heR"

] x € R* - . x € R?

; Bottleneck R
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Interplay between Rank and Hidden Size

Theorem 2

» LM90HcpBIRNN(R, 1) C LT 90 cpiRNN (R, n4+1)
for any R and n.

» L%0HcpeIRNN(R, 1) = L™ 9oH cppirnN (R, n+1)
for any n > R and linear activation function.
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Interplay between Rank and Hidden Size

Theorem 2

» LM90HcpBIRNN(R, 1) C LT 90 cpiRNN (R, n4+1)
for any R and n.

» L%0HcpeIRNN(R, 1) = L™ 9oH cppirnN (R, n+1)
for any n > R and linear activation function.

T
H
=
O
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=
T
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Moreover, assuming n < d.:

o L™%0HcprIRNN(R, 1) C L™ 90H cpRIRNN (R, nt1) ‘
for any n < R and any invertible activation function
satisfying o(0) = 0.
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Interplay between Rank and Hidden Size

Theorem 2

» LM90HcpBIRNN(R, 1) C LT 90 cpiRNN (R, n4+1)
for any R and n.

» L%0HcpeIRNN(R, 1) = L™ 9oH cppirnN (R, n+1)
for any n > R and linear activation function.

T
H
=
O
R
=
T
I
C
A
L

Moreover, assuming n < d.:

o L™%0HcprIRNN(R, 1) C L™ 90H cpRIRNN (R, nt1) ‘
for any n < R and any invertible activation function
satisfying o(0) = 0.

Bottleneck R Strict inclusion

L™ 0 Heppran(R,n) = L7190 Hoppman (R, n + 1) L% o Hepairan (R, n) € L1 o Hopamran (R, n + 1)

| ———— . P}

. 2
Rtyp—max Rmax mln{n ; nd}
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Recap

T
H
E
O
R
E
T Hyvrnn (n) 3C Hepran (R, n) Hyviran(n) € Hepran (R, 1) Corollary 4
(I) Heppirnn (B, 1) & Hornn (1) : HepirnN (R, 1) = Harnn(n)
C

A HoperNN (12, 1) € HepBmran(R + 1,n) ceoToe.. HoperNN(R,n) = HepriraN(R +1,17)  Theorem |
L

Hepran (R, n) € Hepryn(R+1,n) HepraN (R, n) = Hoprnn(R +1,n)  Theorem |
R n n mn mn
= L™ o Heppirnn (R, n) = L7 0 Hoppran (B, 1 + 1) L™ 0 Hopprnn(R,n) € L9 o Heppran (R, 7 + 1)

2

E n o Z j_ 5 Rtyp—max Rmax miﬂ{n2, nd}
-
)




EXperiments

How does theory translate to practice”
.e. Training with Gradient Descent Optimization
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EXperiments

How does theory translate to practice”
.e. Training with Gradient Descent Optimization

=
X
P
=
R
I
\Y
=
N
T
A
L

Data : Penn Tree bank

Models : RNN, MIRNN, CPRNN, 2RNN

O-HrcouvumD

Metric : Bits Per Character (~Perplexity)




Impact of the Hidden Size

=
X
P
= | ] | S
R Model size | Training time AR
= 9 . —-®- CPRNN R=101
~360K ~12
N (’)(nd T ) mins —o - CPRNN R=350
T —8— CPRNN R=1500
A MIRNN [O(nd +n?) ~368k ~25min ;L; 2RNN
L
2.0t

CPRNN [P(Rn + nd] ~422k-2M | ~25min-1h

2RNN O(n?d) | ~26.8M ~1.5h

10 102 10°
Hidden Size

R
=
S
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T
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Fixed Size Comparison

There exist values of
rank and hidden size

such that

RNN, MIRNN and 2RNN

BPC

2.8 1
20T

2.4

2.2

2.0 1

1.8 |

1.6 |

RNN |
—Aa— MIRNN

—— 2RNN
—e— CPRNN

N\

10 10° 10°
Number of parameters
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Rank vs Hidden Size

between
RNN and 2RNN

via

BPC

o &

2.4 ™

2.2 T

2.0t

1.8 |

1.6 |

2RBNN
RNN
CPRN
N=64
n=128
N=256

N

n=1024

L1l Ll Ll
10’ 10° 10°
Rank




Conclusion

® CPRNN = Parameter efficient alternative to 2RBNNs

® CPRNN interpolates RNN and 2RBNN —
CPEBIRNN

2RNN o CPRNN
e Tensor Decomposition &

C

8 ® Formal characterization of Expressivity /
C

1 » Rank: Tuning parameter (up to saturation)

U

S

|

O

\

® CPRNN outperforms RNN and 2RNN
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L
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I
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Tensor Decomposition &

Formal characterization of Expressivity

» Rank: Tuning parameter (up to saturation)

CPRNN = Parameter efficient alternative to 2BNNS

CPRNN interpolates RNN and 2RNN

CPRNN outperforms RNN and 2RNN

Future work: Depth?

Hidden Deoth
dimension ept

Conclusion

2RNN

CPEIRNN

Expressivity / Size

o* ®
"
Neural Networks o :
o :
R '
A '
1

é

CPRNN
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Introduction

@ Objective: show sequential reasoning capacities of Transformer
architecture
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Introduction

@ Objective: show sequential reasoning capacities of Transformer
architecture

@ Result on the expressivity of the architecture not learnability!
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Introduction

@ Objective: show sequential reasoning capacities of Transformer
architecture

@ Result on the expressivity of the architecture not learnability!

@ Take the lense of simulation
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What do we mean by simulation?

@ Simulation = showing steps

@ Previous results by Liu et al. introduce this idea for DFA
@ For some DFA A over X:

o Input: we X*

o Output: sequence of visited states

Example of a DFA for multiples of 3 on ¥ = {0,1}

Simulating Weighted Automata RIKEN-AIP, October 2024



What do we mean by simulation?

@ Liu et al. showed transformers can simulate DFA up to length T
with Olog T layers (even O(1) in some cases!)
o Notion of shortcuts: shallow transformers w.r.t. T

@ General idea of the theorem

e Input: a DFA and some sequence length T
e Output: a transformer which can simulate the inner working of DFA for
any word of length T

@ Can we do this for more complex models?

Simulating Weighted Automata RIKEN-AIP, October 2024 6/25
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Transformers

Transformer architecture in our construction is similar to the encoder in
the original transformer architecture.

Output probabilities

Decoder

Multi-head
Attention

Encoder

Multi-head

Attention Masked Multi-head

Attention
(Postons encadng (5 (Femsomswoina D
Embeddings Embeddings

Input sequence Target sequence

Simulating Weighted Automata RIKEN-AIP, October 2|



Transformers

The model is defined as follows

o Input: X € RT*9 where T is sequence length and d is embedding
dimension

@ Self-attention block:
f(X) = softmax(XW oW X )XW\,

o Attention layer fiitn: h copies of f, concatenate the outputs
o Feedforward layer f,,: Simple feedforward MLP
Full L-layer model, with fi : RT*4 — RT*d

fif = fr-fmll_g o Flb) o FL=D) o flL=) o g D) ()

attn mlp attn . mlp attn-

Simulating Weighted Automata RIKEN-AIP, October 2024 9/25
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Weighted Finite Automata

e Weighted Finite Automata (WFA) generalize DFAs by computing a
function over some word w (instead of simply accepting/rejecting)

5

: b 0.1
—(0)

a0.2

b 0.3

a0.1
b 0.1

0.6
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Weighted Finite Automata

e Weighted Finite Automata (WFA) generalize DFAs by computing a
function over some word w (instead of simply accepting/rejecting)

a04 a0.1
a0.1
b 0.1 b 01 b 0.1
0.6
—(@)
a0.2
b 0.3

= Exactly equivalent to Bi-RNN with linear activation function!

. Tensor Network
Models Hidden state (2nd order terms)
2RNN h! 4@7
O'(A X1 ht_1 X Xt) xt
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Weighted Finite Automata

A weighted finite automaton (WFA) of n states over ¥ is a tuple
A= {(a,{A%},ex, B), where

e «, B € R initial /final weights

e A7 € R™": transition matrix for each o € ¥
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Weighted Finite Automata

A weighted finite automaton (WFA) of n states over ¥ is a tuple
A= {(a,{A%},ex, B), where

e «, B € R initial /final weights

@ A% € R"™": transition matrix for each o € ¥
WFA A computes a function fa : ©* — R:

fa(x)=fa(x1---xt) =a AM... A3 = o AX3
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Weighted Finite Automata

A weighted finite automaton (WFA) of n states over ¥ is a tuple
A= {(a,{A%},ex, B), where
e «, B € R initial /final weights
e A7 € R™": transition matrix for each o € ¥
WFA A computes a function fa : ©* — R:
fa(x) =falxa- x) = a'AM . AXB = AB
Example Consider the following WFA with 2 states on ¥ = {a, b}

Operator Representation

a04 01 a0.1
b 0.1 b 0.1 b0.1 o« - 1.0 A° = 04 0.2
0.0 0.1 0.1
0.6

—(@) _[00] po _[o1 03
“ =loe ~lo1 01

a0.2

b 0.3

f(ab) = 0.4 x 0.3 x0.6+0.2 x 0.1 x 0.6 =0.084

= aTAA
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Simulating WFA

Exact Simulation

Given a WFA A over some alphabet ¥, a function f : ©7 — RT*" exactly
simulates A at length T if, for all x € £ as input, we have f(x) = A(x),
where A(x) = (a”, A9 ... o AXT)T

Simulating Weighted Automata RIKEN-AIP, October 2024 14 /25




Simulating WFA

Exact Simulation

Given a WFA A over some alphabet ¥, a function f : ©7 — RT*" exactly
simulates A at length T if, for all x € £ as input, we have f(x) = A(x),

where A(x) = (a”, A9 ... o AXT)T
- N
a ‘ \ al A
b alA®Ab
b ==  Transformer = aTACAbAL
a aT A®APAbAC
\ ,/
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Simulating WFA

Approximate Simulation

Given a WFA A over some alphabet ¥, a function f : &7 — RT*"
approximately simulates A at length T with precision € > 0 if for all
x € £T, we have ||f(x) — A(X)||F < .

Simulating Weighted Automata RIKEN-AIP, October 2024 15/25



Main Results for WFAs

First Theorem: exact simulation:

Theorem 1 Transformers using bilinear layers in place of an MLP and
hard attention can exactly simulate all WFAs with n states at length T,
with depth O(log T), embedding dimension O(n?), attention width O(n?),
MLP width O(n?) and O(1) attention heads.
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Main Results for WFAs

First Theorem: exact simulation:

Theorem 1 Transformers using bilinear layers in place of an MLP and
hard attention can exactly simulate all WFAs with n states at length T,
with depth O(log T), embedding dimension O(n?), attention width O(n?),
MLP width O(n?) and O(1) attention heads.

/ Transformer Simulation

B AT [aTAc
b 3 ) (@) A“A" aTA®A?

b ki :b{ ASAPAL Readout aTATAbAD

a LIEJ AbA“ ACAPAPAC N al A®AAbAC

\
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Main Results for WFAs

Second Theorem: approximate simulation

Transformers can approximately simulate all WFAs with n states at length
T, up to arbitrary precision € > 0, with depth O(log T), embedding
dimension O(n?), attention width O(n?), MLP width O(n*) and O(1)
attention heads.
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Main Results for WFAs

Second Theorem: approximate simulation

Transformers can approximately simulate all WFAs with n states at length
T, up to arbitrary precision € > 0, with depth O(log T), embedding
dimension O(n?), attention width O(n?), MLP width O(n*) and O(1)
attention heads.

Notice how in Theorem 2, the size of the construction does not depend
on ¢!
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Main Results for WFAs

Second Theorem: approximate simulation

Transformers can approximately simulate all WFAs with n states at length
T, up to arbitrary precision € > 0, with depth O(log T), embedding
dimension O(n?), attention width O(n?), MLP width O(n*) and O(1)
attention heads.

Notice how in Theorem 2, the size of the construction does not depend
on ¢!

and let pg be a two-layer MLP with activation function o and parameters © = (W1, Ws). If o € C(R) \ P<a-1,
then for every € > 0, there exists some © € {(W1, W3) | Wi € R™>*N ‘W, € RV*m2} with N = (""jd) such
that || f — pgllec < €.
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Weighted Tree Automata

Simulation by a function

Given a WTA A = (o, T, {V, }sex) with n states on J5, we say that a
function £ : (XU {[,]})" — (R")7 simulates A at length T if for all trees
t € J5 such that |str(t)| < T, f(str(t)); = p(7) for all i € Z;.
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Weighted Tree Automata

Simulation by a function

Given a WTA A =

function f: (XU {[,])" —
t € J5 such that [str(t)| < T, f(str(t)); =

(o, T, {Vo}sex) with n states on J5, we say that a
(R™)T simulates A at length T if for all trees
w(ri) for all i € Z;.

'WTA States Computatlon Input Tree )
A T x
bb 1 Vb X2 Vp i= /-"bb br—>. a
. a
Lar= T x1 iy 2 Vo =(Hina) a ofvg \&
t = T X1 Va X2 My —-

‘WTA Output

‘\\ |

VA(t (o, pu(t))

[ H(t) Va Hopa oy Vb Vb — Va — —]

‘\f

Transformer Simulation

T

‘ ] L[ str(t)

: ~

Simulating Weighted Automata

RIKEN-AIP, October 2024
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Main Results for WTAs

Transformers can approximately simulate all WTAs A with n states at
length T, up to arbitrary precision ¢ > 0, with embedding dimension O(n),

attention width O(n), MLP width O(n®) and O(1) attention heads.
Moreover:

@ Simulation over arbitrary trees can be done with depth O(T)

@ Simulation over balanced trees (trees whose depth is of order log(T))
with depth O(log(T)).

.
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Main Results for WTAs

Transformers can approximately simulate all WTAs A with n states at
length T, up to arbitrary precision ¢ > 0, with embedding dimension O(n),
attention width O(n), MLP width O(n®) and O(1) attention heads.
Moreover:

@ Simulation over arbitrary trees can be done with depth O(T)

@ Simulation over balanced trees (trees whose depth is of order log(T))
with depth O(log(T)).

In the worst case, the tree is completely unbalanced in which case we
recover the sequential WFA case!
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Depth vs. Length

MSE

Number of Layers

target: 2 states WFA counting 0's in binary strings
theory: log T layers for sequences of length T
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Conclusion

@ We define simulation of weighted automata for sequences and
trees

@ We derive the notion of approximate simulation and how it applies
to transformers

We show that transformers can simulate WFAs with O(log T)
layers

We show transformers can simulate WTAs with O(log T) layers

Our results extend the ones of Liu et al. for DFAs in two directions:
from boolean to real weights and from sequences to trees
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A Tensor Decomposition Perspective
on 2nd Order RNNs
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Conclusion

| am here for 2 more weeks and happy to chat!
| am interested in many topics, including (but not limited to):
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