IFT3545/MAT6490

version 2.4 20.02.2025

Définition 1 Un graphe (non-orienté) simple G = (V, E) est défini par son ensemble de sommets V et son ensemble d arêtes $E \subseteq \binom{V}{2}$.

Notons qu'un tel graphe a au plus une arête reliant deux sommets donnés et aucune boucle. Une boucle est une arête reliant un sommet à lui-même.

Définition 2 Un graphe orienté simple D = (V, A) est défini par son ensemble de sommets V et son ensemble d'arcs $A \subseteq (V \times V) \setminus \Delta(V)$ (on met $\Delta(V) = \{(v, v) : v \in V\}$ et on l'appele la diagonale).

Comme pour les graphe non-orienté, le graphe orienté ("digraphe") simple n'a aucune boucle (élément de $\Delta(V)$) et au plus un arc de u à v.

Sauf indication contraire, un graphe G a comme ensemble de sommets V (ou V(G) si plus de clarté est nécessaire), et comme ensemble d'arêtes E (ou E(G)). Une famille de graphes $\{G_i:i\in I\}$ (I est un ensemble d'indices, souvent $I=[k]=\{0,1,2,\ldots,k-1\}$ ou $I=\mathbb{N}$) aura $G_i=(V_i,E_i)$. Comme partout dans le cours, |V|=n et |E|=m. Sauf indication contraire nos graphes sont simple (pas de boucles, pas d'arêtes multiples), non orientés et finis. On distinguera les graphes orientés en les notant D=(V,A), avec les même conventions pour D_i ; A est l'ensemble d'arcs. On va noter l'arête $\{u,v\}$ (l'arcs (u,v)) d'un graphe (orienté) simplement par uv, sauf quand cela peut mener à une confusion.

Rappelons que P_k et C_k sont des chaînes ou des chemins et des cycles ou des circuits simples (élémentaires) sur k sommets et de longueur k-1 et k, respectivement.

Dans les produits, on note une arête uv par [u, v] pour plus de clarté.

Rappel: étant donné un ensemble X et $k \in \mathbb{N}$, on note $\binom{X}{k}$ l'ensemble de parties à k éléments de X, $\binom{X}{k} = \{Y \subseteq X : |Y| = k\}$. Pour un naturel $n \in \mathbb{N}$ on note $[n] = \{0, 1, 2, \dots, n-1\} = \{i \in \mathbb{N} : 0 \le i < n\}$.

Les définitons suivantes sont pour des graphes simples. Elles s'appliquent souvent - mutatis mutandis - aux graphes qui ne sont pas simple; faites attention.

Définition 3 Rappels:

- 1. Soit G = (V, E) un graphe, $u \in V$.
 - (1) Un parcours de longueur k dans G est une suite $x_0x_1...x_k$ de sommets de G telle que $x_ix_{i+1} \in E$ pour i = 0,...,k-1.
 - (2) Un sentier est un parcours dans lequel toutes les arêtes sont distinctes.
 - (3) Une chaîne est un parcours dans lequel tous les sommets sont distincts (a fortiori, les arêtes sont également distinctes).
 - (4) Un cycle de longueur $k \geq 3$ est un sentier $x_0x_1 \dots x_{k-1}$ dans lequel $x_{k-1}x_0 \in E$.
 - (5) Un cycle élémentaire ou simple est un cycle dont les sommets sont distincts
 - (6) $N(u) = \{v \in V : uv \in E\}; N[u] = N(u) \cup \{u\}$
 - (7) $d(u) = \deg(u) = |N(u)|$
 - (8) $\delta(G) = \min\{d(v) : v \in V\}, \ \Delta(G) = \max\{d(v) : v \in V\}$
 - (9) d(u, v) est la longueur (nombre d'arêtes) d'un chemin le plus court entre u et v
 - (10) diam $(G) = \max\{d(u, v) : u, v \in V\}$
 - (11) Si d(u) = d(v) = d pour tout $u, v \in V$, le graphe G est régulier de degré d (on dit aussi d-régulier).
- 2. Soit D = (V, A) un graphe orienté simple (ou strict dans le livre de Bondy et Murty).
 - (1) Un parcours de longueur k dans D est une suite $x_0x_1...x_k$ de sommets de G telle que $x_ix_{i+1} \in A$ pour i = 0,...,k-1.
 - (2) Un sentier est un parcours dans lequel tous les arcs sont distinctes.
 - (3) Un chemin est un parcours dans lequel tous les sommets sont distincts (a fortiori, les arcs sont également distinctes).
 - (4) Un circuit de longueur k est un sentier $x_0x_1...x_{k-1}$ dans lequel $x_{k-1}x_0 \in A$.
 - (5) Un circuit élémentaire ou simple est un circuit dont les sommets sont distincts.

- (6) $N^+(u) = \{v \in V : uv \in A\} \text{ et } N^-(u) = \{v \in V : vu \in A\};$ $N^+[u] = N^+(u) \cup \{u\} \text{ et } N^-[u] = N^-(u) \cup \{u\}$
- (7) $d^+(u) = \deg^+(u) = |N^+(u)|, d^-(u) = \deg^-(u) = |N^-(u)|$
- (8) d(u, v) est la longueur (nombre d'arcs) d'un chemin orienté le plus court entre u et v
- (9) $diam(D) = max\{d(u, v) : u, v \in V\}$

Définition 4 Un graphe est eulérien s'il existe un cycle (pas élémentaire sauf exception) passant par chaque arête exactement une fois.

Définition 5 Un graphe est hamiltonien s'il existe un cycle (pas élémentaire sauf exception) passant par chaque sommet exactement une fois.

Dans les deux cas on parle de *chaîne* eulerienne (hamiltonienne) si elle passe par chaque arête (sommet) exactement une fois.

La notation des voisinages s'étend aux ensembles : si $S \subseteq V$ dans un graphe (orienté ou pas), on définit $N(S) = \bigcup_{u \in S} N(u)$ et, mutatis mutandis, $N^+(S), N^-(S), N[S], N^+[S], N^-[S]$.

Définition 6 Un graphe H=(U,F) est un sous-graphe du graphe G=(V,E) si $U\subseteq V$ (ce qui implique que $F\subseteq (E\cap \binom{U}{2})$). Le sous-graphe est induit si $F=(E\cap \binom{U}{2})$; en effet, il est induit par U et on le note $G\langle U\rangle$. Un sous-graphe peut être induit par un ensemble d'arêtes F. Dans ce cas on le note $G\langle F\rangle$ et on met $U=\{u\in V: il \ existe \ un \ sommet \ u\in V \ tel \ que \ uv\in F\}$. On note $H\leq G$ le fait que le graphe H est un sous-graphe du graphe G.

Ces définitions s'étendent au graphe orientés, mutatis mutandis. En France, un sous-graphe est toujours induit, les autres sont des (sous-)graphes partiels.

Définition 7 Un sous-graphe H=(U,F) du graphe G=(V,E) est couvrant si U=V.

Définition 8 Un graphe G = (V, E) est connexe si pour toute partition non-triviale de $V = X \cup Y$ il existe une arête $uv \in E$ telle que $X \cap \{u, v\} \neq \emptyset \neq Y \cap \{u, v\}$ (i.e. telle que $u \in X$ et $v \in Y$).

Définition 9 Un graphe G = (V, E) est connexe si pour toute paire de sommets u, v il existe une chaîne entre u et v, i.e. une chaîne $x_0 \dots x_k$ telle que $x_0 = u$ et $x_k = v$.

Notons que le graphe trivial $K_1 = (\{u\}, \emptyset \text{ est connexe, trivialement (sic) par la définition 8, avec <math>k = 0$ par la définition 9. Bien sûr, les deux définitions sont équivalentes.

Soit G = (V, E) un graphe, simple ou pas, et soit $\mathcal{A} = \{X \subseteq V : G\langle X\rangle$ est connexe $\}$. On définit un ordre partiel sur \mathcal{A} en mettant $X \leq Y$ si $X \subseteq Y$. Les sous-graphes induits par les maxima de cet ordre partiel sont des *composantes connexes* de G, définies d'une autre façon plus bas.

Définition 10 (composante connexe I) Une composante connexe d'un graphe G, simple ou pas, est le graphe induit par une classe d'équivalence de la relation d'équivalence \equiv définie sur V(G) par $u \equiv v$ s'il existe, dans G, une chaîne entre u et v.

Donc (!) une composante connexe est un sous-graphe connexe maximal par inclusion (sommets).

Définition 11 (composante connexe II) Soit G = (V, E) un graphe et soit \sim une relation binaire sur V définie par $u \sim v$ s'il existe une chaîne entre u et v. Ceci est une relation d'équivalence et chaque classes d'équivalence est une composante connexe de G.

Les classes d'équivalence de la relation \sim sur V peuvent être définies récursivement. Pour $u \in V$, soit $N_i(u) = \{v \in V : d(u,v) \leq i\}$ et $N_{i+1}(u) = N_i(u) \cup (\cup_{v \in N_i(u)} N(v))$. Une classe d'équivalence de u est donc $N_{n-1}(u) = N_{diam(G)}(u)$.

Définition 12 Un arbre est un graphe connexe sans cycles.

Attention, un arbre n'a aucune racine, on ne peut parler d'enfants, les voisins d'un sommets ne sont pas ordonnés!

Définition 13 Le (graphe) complémentaire du graphe G = (V, E) est le graphe $G^c = \overline{G} = (V, \overline{E})$ avec $\overline{E} = {V \choose 2} \setminus E$.

Définition 14 Soit $G_i = (V_i, E_i)$, i = 0, 1, des graphes. Leur produit cartésien (V, E) est noté $G_0 \square G_1$ et est défini par $V = V_0 \times V_1$ et $E = \{ [(u, x), (v, y)] : soit uv \in E_0 \text{ et } x = y, \text{ soit } u = v \text{ et } xy \in E_1 \}.$

Définition 15 Soit G un graphe, $G^1 = G$. Pour k > 1, soit $G^k = G^{k-1} \square G$; on l'appelle la puissance cartésienne de G.

Définition 16 Un hypercube Q_n de dimension n est défini récursivement par

- K_2 est l'hypercube Q_1 de dimension 1;
- L'hypercube de dimension n+1 est $Q_{n+1}=Q_n\square K_2=K_2^{n+1}$.

Définition 17 Un hypercube H_n de dimension n est le graphe avec $V(H_n) = \{0,1\}^n$ et $E(H_n) = \{uv : u \text{ et } v \text{ diffèrent en exactement une coordonnée}\}.$

Donc $u \in V(H_n)$ si et seulement si $u = (u_1, \ldots, u_n)$ avec $u_i \in \{0, 1\}$ pour tout $i = 1, \ldots, n$.

Définition 18 Soit $G_i = (V_i, E_i)$, i = 0, 1, des graphes. Leur produit catégorique (ou tensoriel, ou fort) (V, E) est noté $G_0 \times G_1$ et est défini par $V = V_0 \times V_1$ et $E = \{[(u, x), (v, y)] : uv \in E_0 \text{ et } xy \in E_1\}$.

Définition 19 Soit $G_i = (V_i, E_i)$, i = 0, 1, des graphes. Le produit lexicographique ou la composition ou encore le produit en couronne de G_0 autour de G_1 (ou G_0 par G_1) est le graphe $G_0[G_1] = (V, E)$ (parfois noté $G_0 \wr G_1$) avec $V = V_0 \times V_1$ et $E = \{[(u, x), (v, y) : soit uv \in E_0, soit u = v \text{ et } xy \in E_1\}.$

En d'autre mots, on commence par G_0 . On remplace chaque sommet u de G_0 par une nouvelle copie G_1^u de G_1 , et on relie tous les sommets de G_1^u avec tous les sommets de G_1^v chaque fois que $uv \in E$.

Définition 20 Un homomorphisme de G = (V, E) dans H = (U, F) est une fonction $h : V \longrightarrow U$ telle que si $uv \in E$, alors $h(u)h(v) \in F$. On indique que h est un homomorphisme de G vers H par $G \xrightarrow{h} H$. Quajnd un homomorphisme de G vers H existe, on écrit simplement $G \to H$. Si aucun homomorphisme de G vers H n'existe, on écrit $G \nrightarrow H$.

Définition 21 Un isomorphisme de G = (V, E) dans H = (U, F) est une fonction bijective $\phi : V \longrightarrow U$ telle que $uv \in E$ si et seulement si $\phi(u)\phi(v) \in F$. Si un isomorphisme existe entre G et H, on dit que les graphes sont isomorphes et on écrit $G \simeq H$.

Un isomorphisme est un homomorphisme, bien évidement.

Définition 22 Un isomorhisme ϕ de G vers G est un automorphisme.

L'ensemble d'automorphismes d'un graphe G forme un groupe, noté Aut(G), avec la composition comme opération. L'identité du groupe est id_G , $id_G(u) = u$ pour tout $u \in V(G)$. L'inverse d'un automorphisme ϕ est simplement ϕ^{-1} (qui existe parce que ϕ est une bijection).

Un automorphisme ϕ de G envoie, par définition, une arête uv de G sur une arête $\phi(u)\phi(v)$.

Définition 23 Soit phi : $V \longrightarrow U$ un isomorphisme de G = (V, E) dans H = (U, F). Il induit une fonction $\hat{\phi} : E \longrightarrow F$ définie par $\hat{\phi}(uv) = \phi(u)\phi(v)$.

Définition 24 Un graphe G = (V, E) est sommet-transitif si pour toute paire $u, v \in V$ il existe un automorphisme ϕ de G tel que $\phi(u) = v$. Le graphe G est arête-transitif si pour toute paire $uv, xy \in E$ il existe un automorphisme ψ de G tel que $\{\psi(u), \psi(v)\} = \{x, y\}$.

Donc G est arête-transitif si pour toute paire $e, f \in E(G)$ il existe un automorphisme ϕ de G tel que $\hat{\psi}(e) = f$. Par exemple, le cycle C_n est sommettransitif et arête-transitif car on peut le tourner: si $C_n = v_0 \dots v_{n-1}$ alors $\phi_i(v_j) = v_{j+i}$ est un automorphisme de C_n qui envoie v_j sur v_{j+i} et donc l'arête $v_j v_{j+1}$ sur l'arête $v_{j+i} v_{j+i+1}$.

Définition 25 Le nombre chromatique d'un graphe G, noté $\chi(G)$, est le nombre minumum de couleurs qui permettent de colorier les sommets de G de manière à ce que des sommets adjacents reçoivent des couleurs différentes.

Définition 26 Le nombre chromatique d'un graphe G est $\chi(G) = \min\{n \in \mathbb{N} : il \ existe \ un \ homomorphisme \ h \ de \ G \ dans \ K_n\} = \min\{n \in \mathbb{N} : il \ existe \ h \ tel \ que \ G \xrightarrow{h} K_n\}.$

Les deux défnitions sont, biens sur, équivalentes.

Définition 27 Un graphe G = (V, E) est un noyau si quel que soit l'homomorphisme (endomorphisme) $h: V \longrightarrow V$, h(V) = V.

Définition 28 Un sous-graphe H d'un graphe G est le noyau de G si H est un noyau.

Remarque 1 Ne pas confondre le noyau pour les homomorphismes et celui défini pour les graphe orientés, définition54. En anglaias on distingue les deux: core pour les homomorphismes, kernel pour les graphes orientés.

Définition 29 Un stable dans un graphe G = (V, E) est un ensemble $S \subseteq V$ tel que pour tout $u, v \in S$, $uv \notin E$.

Définition 30 Une clique dans un graphe G = (V, E) est un ensemble $T \subseteq V$ tel que pour tout $u, v \in T$, $uv \in E$.

Parfois on insiste que T soit maximum pour l'appeler clique.

Définition 31 Le nombre de stabilité $\alpha(G)$ d'un graphe G est le nombre maximum de sommets de G deux-à-deux non-adjacents. En d'autres mots, $\alpha(G) = \max\{|S| : S \text{ est un stable de } G\}$

Définition 32 La rapport de stabilité d'un graphe G est $i(G) = \frac{\alpha(G)}{n}$, où n = |V(G)|. Le rapport de stabilité ultime est $I(G) = \lim_{k \to \infty} i(G^k)$, avec G^k de la définition 15.

Définition 33 Un graphe est localement fini si le degré de chaque sommet est fini.

Définition 34 Un rayon est un graphe isomorphe à $R = (\mathbb{N}, \{[i, i+1] : i \in \mathbb{N}\}.$

Définition 35 Soit G = (V, E) un graphe. Son graphe représentatif des arêtes (line graph, edge graph) est le graphe L(G) = (E, F) avec $F = \{ef : e \cap f \neq \emptyset\}$.

C'est-à-dire, les sommets de L(G) sont les arêtes de G et deux sommets de L(G) sont adjacents si les deux arêtes correspondantes sont incidentes (i.e. partagent un sommet).

Définition 36 Pour un graphe non-orienté G = (V, E) on définit $[X, Y] = \{uv \in E : e \cap X \neq \emptyset \neq e \cap Y\}.$

Définition 37 Dans un graphe G = (V, E), l'ensemble séparateur par arêtes est un ensemble $[X, \overline{X}], X \neq \emptyset$, avec $\overline{X} = V \setminus X$.

Définition 38 La connexité par arêtes du graphe G = (V, E) est $\kappa'(G) = \min\{|[X, \overline{X}]| : X \subset V\}$ si $E \neq \emptyset$ (et si $E = \emptyset$, $\kappa'(G) = 0$). Si G n'est pas connexe, bien évidemment $\kappa'(G) = 0$.

En d'autres mots, $\kappa'(G)$ est le nombre minimum d'arêtes dont l'enlèvement déconnecte le graphe s'il est connexe.

Définition 39 Un ensemble séparateur par sommets d'un graphe G = (V, E) est $S \subseteq V$ tel que G - S n'est pas connexe. La connexité du graphe G est $\kappa(G) = \min\{|S| : S \text{ est un ensemble séparateur par sommets de } G\}$ si un tel S existem sinon $\kappa(G) = |V| - 1$.

Donc si G n'est pas connexe, $\kappa(G) = 0$ et si $G \simeq K_n$, $\kappa(G) = n - 1$.

Définition 40 Soit D = (V, A) un graphe orienté (simple ou pas). Soit $\emptyset \neq X \subset V$, $X \neq V$. Appelons séparateur l'ensemble $(X, \overline{X}) = \{a \in A : la \ queue \ de \ a \ est \ dans \ X \ et \ la \ tête \ de \ a \ dans \ \overline{X}\}.$

Définition 41 Soit D=(V,A) un graphe orienté, pas forcément simple. Un réseau sur D est obtenu à partir de D en spécifiant l'ensemble $\emptyset \neq S \subset V$ de sources et l'ensemble $\emptyset \neq T \subset V$ de puits, $S \cap T = \emptyset$ ainsi qu'une application $c:A \longrightarrow \mathbb{N}$ de capacité. On définit $I=V \setminus (S \cup T)$ l'ensemble de sommets internes. La focntion de capacité est étendue aux ensembles d'arc: $c(M) = \sum_{a \in M} c(a)$ pour $M \subseteq A$.

Définition 42 Soit N un réseau, $f: A \longrightarrow \mathbb{R}$ une application. On étend f aux ensembles d'arcs : pour $X \subset A$, $f(X) = \sum_{a \in X} f(a)$. Si (X, \overline{X}) est un séparateur, alors $f^+(X) = f(X, \overline{X})$ et $f^-(X) = f(\overline{X}, X)$; si $X = \{x\}$, on écrit simplement $f^+(x)$, $f^-(x)$.

Définition 43 Soit N un réseau avec source s et puit t. Une coupe dans N est un séparateur X, \overline{X} tel que $s \in X$ et $t \in \overline{X}$. La capacité d'une coupe $K = (X, \overline{X})$ est $c(X, \overline{X}) = \sum_{a \in K} c(a)$. Une coupe est minimum si pour toute coupe $K' = (Y, \overline{Y})$ dans N, $c(K) \leq c(K)$.

Définition 44 Soit N un réseau sur D = (V, A). Un flot dans N est une fonction $f: A \longrightarrow \mathbb{R}$ vérifiant

• $f^+(u) = f^-(u) \text{ si } u \in I;$

• $0 \le f(a) \le c(a) \ pour \ a \in A$.

Définition 45 La valeur d'un flot f dans un réseau N avec source s et puit t est val $f = f^+(s) - f^-(s) = f^-(t) - f^+(t)$. Le flot f est maximum si val $f \ge val f'$ pour tout flot f' dans N.

Définition 46 Soit N un réseau avec source s et puit t et soit f un flot dans N. Une chaîne augmentante est une chaîne P de s vers t tel pour $a \in A(P)$,

- c(a) f(a) > 0 si a est un arc en avant, et
- f(a) > 0 si a est un arc inverse.

 $Si P = s = u_0 \dots u_l = t$, $un \ arc \ u_i u_{i+1}$, est en avant, $un \ arc \ u_i u_{i-1} \ est$ inverse.

Définition 47 Deux chaînes (chemins) dans un graphe (orienté) sont disjointes (disjoints) si elles (ils) n'ont aucun sommet en commun. Elles (ils) sont arête-disjointes (arcs-disjoints) si elles (ils) ne partagent aucune arête (arc).

Deux chaînes (chemins) entre deux sommets donnés u et v dans un graphe (orienté) sont indépendantes (indépendants) si elles (ils) n'ont aucun sommet en commun sauf u et v (on dit souvent qu'elles sont disjointes à l'intérieur ou encore intérieurement).

Définition 48 Un couplage dans un graphe G = (V, E) est un ensemble $M \subseteq E$ tel que $e \cap f = \emptyset$ si $e \neq f \in M$. Un sommet de G est M-saturé s'il est une extrémité d'une arête de M (i.e., il existe un $v \in V$ tel que $uv = e \in M$, si le graphe est simple). Un couplage est parfait si tout les sommets de G sont M-saturés. Un couplage M est maximum si pour tout couplage M', $|M| \geq |M'|$.

Définition 49 Soit G un graphe est M un couplage dans G. Une chaîne P dans G est M-alternante si deux arêtes successives de P ne sont ni dans M ni dans $E \setminus M$, i.e. si es arêtes sont en alternance dans M et pas dans M. Une chîne alternante est M-augmentante si ni la première ni la dernière arête n'est dans M.

Définition 50 Soit M une matrice. Une ligne dans M est soit une rangée. soit une colonne de M. Deux entrée de M sont indépendantes si elles ne sont pas sur la même ligne. Si les entrée de M sont 0,1 l'ensemble L de lignes couvre M si les ligns de L contiennent tous les 1.

Définition 51 Soit $X = \{X_i\}_{i \in [n]}$ une famille d'ensembles finis. Un système de représentants distincts (SRD) de X est un ensemble $\{x_i : i \in [n]\}$ tel que $x_i \in X_i$ (notons que puisque $\{x_i : i \in [i]\}$ est un ensemble, $x_i \neq x_j$ si $i \neq j$).

Définition 52 Un tournois est un graphe complet (donc simple) dont les arêtes sont orientés. En d'autres mots, entre chaque paire de sommets d'un tournois il y un arc unique.

Définition 53 Un ensemble absorbant dans un graphe orienté D = (V, A) dont les arêtes son coloriées est un ensemble de sommets S tel que de tout $u \in V \setminus S$ il existe un chemin (orienté!) monochromatique vers un sommet de S.

Définition 54 Un noyau dans un graphe orienté D = V, A est un stable minimum $S \subset V$ tel que si $v \in V \setminus S$ alors il existe un $s \in S$ avec $v \in A$.

Définition 55 Un demi-noyau dans un graphe orienté D = V, A est un stable minimum $S \subset V$ tel que si $v \in V \setminus S$ alors il existe un $s \in S$ avec $d(v,s) \leq 2$ (la distance est orientée, i.e. c'est la longuer d'un plus court chemin orienté).

Définition 56 Un groupe (G, *) est un ensemble G muni d'une opération binaire * vérifiant pour tout $a, b, c \in G$,

- pour tout $a,b \in G$, $a*b \in G$ (G est fermé sous l'opération *);
- pour tout $a, b, c \in G$, (a*b)*c = a*(b*c) (l'opération * est associative);
- il existe un $e \in G$ tel que pour tout $a \in G$, a * e = e * a = a (e est l'identité ou élément neutre de G);
- pour tout $a \in G$, il existe $b \in G$ tel que a*b = b*a = e (chaque élément de G possède un inverse)

On prouve (exercice) l'unicité de e ainsi que de b étant donné a; on peut alors écrire $b=a^{-1}$. Notons que * n'est pas toujours commutative, i.e. il se peut que $a*b \neq b*a$.

Définition 57 Un groupe (G, *) est engendré par l'ensemble $X \subseteq G$ si tout élément de G peut être exprimé en termes de ceux de X et l'opération *. I.e. si on écrit $a^0 = e$ et $a^i = a^{i-1} * a$, alors pour tout $b \in G$ il existe un $k \in \mathbb{N}$, des $k_i \in \mathbb{N}$ et des éléments $a_i \in G$, $i = 1, \ldots, k$, tels que $b = \prod_{i=1}^k a_i^{k_i}$. En d'autres mots, si on prends tous les produits (sous *) des éléments de X, on obtient G. Si G est engéndré par X, on dit que X est un ensemble générateur de G.

Définition 58 Le groupe (D_n, \cdot) engendré par l'ensemble $\{r, m\}$ (r est une rotation et m un mirroir) vérifiant $r^n = e = m^2$ et $rm = mr^{-1}$ est un groupe dihèdral.

Définition 59 Soit G un groupe. Une partie S de G est un symbole is

- 1. $a \in S$ si et seulement si $a^{-1} \in S$ (S est fermé par rapport à l'inverse);
- 2. $e \notin S$ (S ne contien pas l'identité de G)

Définition 60 Soit G un groupe et S un symbole. Le graphe de Cayley Cay(G,S) a G comme l'ensemble de sommets et ses arêtes sont les paires (a,b) telles que $a^{-1}b \in S$ (i.e. il existe un $s \in S$ avec as = b).

Définition 61 Soit G = (V, E) un graphe. Son graphe d'indépendence $\operatorname{Ind}(G)$ est le graphe dont les sommets sont les stables maximaux de G et une arête joigne deux stables dont l'intersection es vide. I.e. $V(\operatorname{Ind}(G)) = \{X \subseteq V : X \text{ est un stable maximum de } G\}$ et $E(\operatorname{Ind}(G)) = \{XY : X \cap Y = \emptyset\}$.

Définition 62 Un arbre enraciné est un arbre T = (V, E) avec un sommet distingué $r \in V$, appelé racine.

Le fait de distinguer r donne une orientation implicite de E: puisque T est un arbre, pour chaque sommet $u \in V$ il existe une chaîne unique de r vers u et on peut orienter les arêtes dans la direction de r vers u. Dans un tel arbre on peut donc parler d'un sous-arbre avec racine u: le sous-graphe connexe contenant u et tous les sommets x tels que l'unique chaîne de r vers x passe par u.