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Résumé: Cet article concerne un algorithme général de programmation
dynamique adapté 3 la résolution de problémes de commande optimale de

-

systémes stochastiques & événements discrets.

‘Un intér€t particulier est porté aux techniques numériques
utilis@es pour résoudre par approximations successives 1'@quation de

la programmation dynamique.

L'algorithme et les méthodes numériques sont illustrés 3

partir d'un probléme d'entretien préventif d'un &quipement complexe.
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Abstract: This paper presents a general dynamic programming algorithm
for the solution of optimal stochastic control problems concerning a
class of discrete event systems. The emphasis is put on the numerical
technique used for the approximation of the solution of the dynamic

programming equation.

This approach can be efficiently used for the solution of
optimal control problems concerning Markov Renewal Processes. This
is illustrated on a group preventive replacement model generalizing

an earlier work of the authors.
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1. INTRODUCTION

This paper deals with the computation of optimal control laws for
a class of discrete event systems. These systems are typical of the
modeling of queuing or maintenance problems, and we shall illustrate
the computational techniques presented in this paper, with a preventive

replacement model.

In a typical preventive replacement problem (see [9], [10]), the
state of a component is described by its age or by an indication of
failure. Replacement of the component restores its age at a zero.value.
In a discrete event formulation of the problem the system is observed at
discrete random times. At any of these times, also called intervention
times, the controller observes the state of the system, and chooses an
action in an admissible set. Associated with the state and action, a
probability law is governing the generation of the next intervention

time and observed state.

As the age is a continuous variable, the system can tentatively
be modeled as a Markov decision procéess, provided that the state and
action sets be defined as borelian spaces. Bertsekas and Shreve [5]
have proposed a rather complete theory of infinite horizon dynamic
programming with such general state and action spaces. However their
theory is based on a discrete time formulation with a constant dis-

count factor.

' In a discrete event system, the times of intervention are random,
so the discount factor will not remain constant from one stage to the
other. However for a large class of problems this discount factor can
be expressed as a function of the current state of the system (which

may include the current time).



Various authors [11, 21, 23] have already studied infinite horizon
multistage decision processes with state dependent discount factors,
usually assuming that the integral of the stochastic transition kernel
was uniformly bounded away from 1. However, for many discrete event

systems, this assumption does not hold.

Whittle [25] obtained a condition (the bridging condition) for a
Markov decision process with non negative costs to enjoy regularity

properties inplying the limit of n-state optimal policies to be optimal.

Finally a generalization of the Bertsekas Shreve dynamic programming
formalism has been achieved in Refs. [14] and [15], without the latter
uniform boundedness assumption. The present paper is concerned with the
numerical solution of the general dynamic programming equation obtained

in [15].

The simplest approach for the implementation of a numerical tech-
nique would be to discretize the time, state and action domains, and then
get back to a standard problem of a discrete (although very large) markovian
decision process. This approach is illustrated in Ref. [10], in the setting

of an optimal group replacement problem.

A more satisfactory approach consists in using numerical approxima-
tion techniques for the solution of the dynamic programming equation of

the original problem. This is the approach followed in this paper.

The paper is organized as follows: in section 2 we review briefly
the most relevant results of [15] which concern a gneeral multistage
decision process; in section 3 we present the use of approximation tech-
niques for the solution of the dynamic programming equation; in section 4,
we see that our model encompasses the Markov-renewal decision processes
with borelian state and action spaces; finally in section 5 we use the

approach for the numerical solution of a complex maintenance problem.




2. A CLASS OF MULTISTAGE DECISION PROCESSES WITH STATE-DEPENDENT
DISCOUNT FACTOR

In this section we present some results which extend the dynamic
programming theory of [5] to the case of a discounted Markov decision
process with a state-dependent discount factor. The proof of these

results are given in Refs. [14] and [15].

We consider a system with state x in X, a given borelian space. At
each decision time, a controller chooses an action a in A, also a borelian
space. A state~dependent constraint on the action set is defined by an
analytic subset I' of X x A, called the set of admissible state-action

couples, such that

A(x) A {a € A:(x,a) € f} £ ¢ Y x € X. ¢H)

The dynamics of the system is described by a stochastic kernel Q,
which is a family {Q(.

Viewed as a functional Q:XxA - P(X), Q is assumed to be Borel-measurable,

x,a) , (x,a)é€ X x A} of probability laws on X.

where the set P(x) of probability measures on X is endowed with the topology
of weak convergence. 'The.one stage cost function is a lower semi-analytic '
function g:T' = R. At stage n, if the system is in state x and the con-
troller picks action a in A(xn), then a cost g(xn, an) is incurred for

that stage, and the state at stage n+l is generated randomly according to

the probability measure Q(-,xn, an). The cost incurred at stage n is

discounted to an arbitrary origin by a discount factor B(xn), where
B : X » (0,1] is a Borel measurable discounting function. The system is
assumed to operate over an infinite time horizon (i.e. an infinite number

of stages).

The discounted cost for stage n is denoted by

c 4 B(xn) g(xn,an). (2)

We assume that the controller picks an action at each stage by using
an admissible stationary feedback control law defined as a function

u:X -+ A which is universally measurable and satisfies

n(x)€ A(x) Y x € X . (3)



Associated with any initial state x and control law, there is a

uniquely defined probability measure PM % (see Refs. [14], [15]) on the

5

set H of infinite sequences (xo, ags X5 2 ««.+) where

l’

(xi, ai) € XxA for i=0,1, ... and Xy = Xe

Definition 2.1: A multistage decision process with state dependent dis-
count factor is well defined by (X, A, T,:Q, g, B) if, for any initial

state x in X, the series

™8

¢4
1=0

is well defined (finite or infinite) Pu x_ almost everywhere and the
]

integral

[‘<‘20‘ci)d Pu’x (4)
H

is also well defined.

We introduce, when they exist, the values

A 1 ®
Vu(x) aYes J (iio ci)d P
H

T

and
v (%)

ll

inf Vv (x)
peu b

where U is the set of admissible control laws.

A control law p in U is said to be optimal [resp. e—-optimal] if

Vu(x) = V*(x) [resp. VM(X) = V*(x) + g] for all x in X.

Remark 2.1: An a priori more general definition of a control law could
be used, with memory and a random determination of the action at a given
state x . However it could be shown ([14], [15]) that one can without loss

of generality restrict the analysis to this simpler class of control laws.



The single important difference between this class of systems and
the one thoroughly analysed in Ref. [5] stems from the consideration

. . n .
of a discount factor defined as a function B(xn) instead of B, with

B € (0,1).

In the latter case, the condition that § be in (0,1) induces a

geometrically decreasing sequence of discount factors.

When the discount factor depends on x one has to consider the

expected discount factor from stage n+l to stage n which is given by

. :
0"('Xn’an) B ET;;T [xB(Xn+1) Q<dxn+l‘xn’an) o )

and we will introduce two versions of the model depending on the par-

ticular assumptions made on the functions g, a and Q.

Assumption 1.1: There exists G5 8o 8 such that

a(x,a) =< a; < 1 - (6)
Y (x,a) €T
gy = g(x,a) =g - (7

A system which satisfies (6)-(7) will be called a "C-system'

where C means 'contracting'.

Another class of systems is associated with the next assumption,

and many of them are not C-systems.

Assumption 1.2:. There exists a feedback control law ﬁ and numbers

8,, K

in R+ such that

1> Ko Rys 8y



Vx€X aGxi) S8 <1 ' (8)
Kl + K, $ 0 ¢©))
V(x,a) €T | K+ K, a(x,a) = g(x,a) (10)
Vx € X g(x,i(x) = g (11)
V(x,a) €T | Jxl.B(-X') Yo Q(dx’|x,a) = 0 . (12)

A system which satisfies (8)-(12) will be called an "LC-system' where

LC stands for 'locally contracting'.

The dynamic programming approach summarized in the two forthcoming

theorems will be valid under both assumptions.

Let Bo be the Banach space of bounded functionals V:X = (- =,)
endowed with the norm ||V] = sup |V(x)|, Bl the subspace of lower semi-
x€X
analytic functionals V in Bo which are also universally-measurable, and

finally 32 the closed subset of Bl defined as follows

. go gl
- << < i
{v € Bl. Ta = Vv =< 1 a } for version C
1 1
B =
2
{v ¢ Blz Kl + min(O,Kz) SV = l—al} for version LC.
For any V in Bz, we introduce
H(V) (x,a) 4 g(x,a) + B%X) J B(x’) V(x%) Q(dx’|x,a) V(x,a) €T (13)
X
T,(V) () Aaw) x, w(x)) Vxex, Ypel (14)
TV (x) & inf HW@)(x,a) V x € X . (15)

aEA(X)



The following two theorems summarize the dynamic programming approach.

Theorem 2.1: Let V be a function belonging to BZ' Then the following

holds for versions C and LC of the model:

(a) T(V) =V {iff V=V

*
(b) If T(V) =V then vV =YV
%*
(¢) If T(V) 2V then. V =2V
(@ 1im [T°W) - V) =0
n>o
(e) V' ¢B

2

* *
(f) A control law p is optimal iff T“(V )y =V

(g) A control law u is optimal iff T(Vu) = Vu €B, .

Remark 2.2: This theorem gives a set of optimality conditions ((a), (f),
(g)), as well as the basis for a dynamic programming algorithm of succes-
sive approximations ((d)) and properties permitting to bound the optimal

value function ((b), (c)).

This theorem proved in [14], [15] is complemented by the following,

also proved in the same references,

Theorem 2.2: The following holds for both versions, C and LC, of the

model:

%
(a) There exists an optimal control law y iff the inf H(V )(x) is

attained for all x in X, a€A(x)



(b) Let V be any function in B,. If for some integer n the sets
UMM A faeae) | HETW) (ra) =2

are cbmpact for any integer n greater than o, then there exists a

sequence {u.n}n€ N of control laws such that

n+l(.V) Yyn=n,

nl
Tp. (T"(n) =T o

n
" and there exists a control law U which is a pointwise limit of {p.n}n€ N

This control law | is also an optimal control law.

Remark 2.3: The conditions for Theorem 2.2 (b) are satisfied, in
particular, if each set A(x) is finite or if each A(x) is compact,

g.B and V are lower semi-continuous and Q is continuous XA,

Furthermore (b) is a constructive proof of the existence of an

optimal control law.



3.  APPROXIMATION TECHNIQUES FOR THE SOLUTION OF THE D.P. EQUATION

One of the last "frontier" in the theory and applications of
Dynamic Programming lies in the numerical solution of the D.P. equation
by using approximation techniques. For example Rishel [22] has pro-~
posed a value iteration method for the computation of the‘optimal con-

trol for a jump process describing a group preventive replacement problem.

However, to be implemented, this approach would necessitate the use of
approximation techniques in the computation of the value function at

each iteration,

In this section we introduce a general algorithm based on a value
iteration technique with abproximate computation of the value function
at each step. This algorithm is adapted to the D.P. equation given
in section 2, and generalizes most of the approaches proposed in the
O.R. literature for the comﬁutation of approximations and bounds in

dynamic programs.

The value iteration technique consists in applying the D.P. operator
T repeatedly, until some convergence test has been passed. McQueen [17],

Denardo [7], Porteus ([19], [20]) have obtained bounds for the norms

* * ,
IT™(V) - v || and ”Vu - V|| when T is applied exactly at each iteration.

These bounds converge geometrically to 0 as n tends to infinity.

When the state space is infinite, it is necessary to use an approxi-
mate computation of T(V) on X. A natural approach consists in partition-
ing the set X into a finite class of subsets, selecting a representative
state in each subset, and defining an approximate finite state model.
Bellman and Dreyfus [2] have proposed the approach, Fox [8]
has given conditions for the convergence of the value function to V*.

A similar scheme was proposed by Bertsekas [4] with a discretization of
both the state and the action spaces. Whitt [24] extended the approach

to the general comparison between dynamic programs. Hinderer [12],
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Langen [13] and several others have also contributed to the mathematical

theory of the convergence of a sequence of dynamic programs. Typically

these authors obtain bounds for the norms HV -V H and HV - Vu . Here
V is the optimal value function for the approximate model which is ex-

tended to the whole state space X as a function that is constant on each
subset of the partition, and VM is the value-function obtained on X when
one uses the optimal policy y of the approximate model, extended to X by

a function which is constant on each subset of the partition.

The approximation of the optimal value function V* on X by a
piecewise constant function could be advantageously replaced by more
sophisticated schemes like polynomial approximation, spline interpola-
tion or approximatioh, finite element methods etc... Daniel [6] and

Morin [ 18] have advocated such an approach;

Based on the dynamic programming equations summarized by Theorems
2.1 and 2.2, a general algorithm can be designed for the approximate
computation of the optimal cost to go function. This algorithm uses
bounds on V* defined by the next theorem whose proof is given in the

appendix.
For any function V in Bi we denote

vH ) 2 max(0, V(x)).

Theorem 3.1: Let a; satisfying (6) and n, = 1 for version C. Let
ay €(0,1) and

! (0,K,)
—=— - K, -~ min (0,K
. A 1 61 1 2
0 al(Kl + Kz)

for version LC of the model.
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- +
Consider two functions V and V., In B,, and two numbers § , §

1 2
in R+ such that
-8 ST(W) -V, < 5" .
Define .. ,
+ A + _ .
& =n, 8 + (n-1) [[(v,-V) | v (16)'
e Ln 54 (n . ~1) [|(v-v )+| . | 17
0 0 1
Then the following holds:
a
- 1 -
a) z2V, -¢e - 1_—(1"1- ICv-vy + &)l (18)
*
\Y
BT T AT (19)
=VyteE T-a, M1 &£ -

b) For any g > 0, there exists a control law U such that

.TM(V) SV +oeg (20)

If there exists a € [0,1) such that

- - 21
Tu(V3) T“(VZ) < aHV3 V2H - (21)
for any pair (V2,V3) € Bl satisfying V3 > V2, then
AT AT R Sy I
— “’ — [ l—(Il - ]. € 80
a +
Sl o f (Vi+ep = V) . = (22)

This theorem is complemented by the following one, due originally

to McQueen [1 1, which permits the elimination of non optimal actions.
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Theorem 3.2: If V and V are two functions in B2 such that

* -
vV =V

and, if a € A(x) is such that

then a ¢ A*(x).

Proof:

H(V) (x,a) > V(%)

HY) (x,8) > V() => BV (x,a) > V ()

=> a ¢ A*(x). .

These two theorems suggest the following algorithm:

ALGORITHM: (::)

Set al and no as in Theorem 3.1.

Set B : = BZ‘

Choose an upper bound for the total number of iterations.

Choose & > 0.

~

*
Take any function V in B as an initial guess of V.

Compute T(V) at a finite number of points in X.

~

Define V, in B as an approximation of T(V) on X.

Compute & , 6+ in R, such that

o+

-8 ST(V) -V, =58

1
and compute ¢ and e as in (16)-(17).

: %
The inequalities (18)-(19) determine bounds for V .
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Stopping rule 1l: Stop if the difference between the

two bounds (lower and upper) is smaller than .

<:::> Find a control law i and &g = 0 such that

Tu(V) = Vl + £g

If there exists a€[0,1) such that
- < -
T,(V3) Tu(_vz) < a |lvy-v,l
. 2 .
for any pair (V2,V3) € ( BO n Bl) and if

- a1

£ +
1—a1

v=vy + D)l + e+ g IV * g - M se (23

then @ is a control law which is e-optimal.

Stopping rule 2: Stop when one has obtained an

g~optimal control law.

(:::) Stopping rule 3: Stop when the maximal number of

iterations has been attained.

® = a
. - 1

-+
V= Vl - & - l_al ”(V‘Vl +e ) |
a
- + 1 + +
Vi=v +e + Ta; U(Vl +e -V |
B:={veB:v=v="1}
V: = Vl

@ we () -

The following theorem whose proof is also given in appendix

establishes the convergence of the algorithm.
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Theorem 3.3: (a) Let V., in Bz~and a sequence

0

-+

{(6;’ 6n’ Vn)}né N

in R_x R X BZ
be such that

lim 6 = 1im 86 = 0
n n
n-se n->e

with
- +
- < —
6n < T(Vn_l) Vﬁ < Sn ‘ Vné€elN.
Then
*
lim ||V -V'|| = 0.
n

n—>e

(b) TFor the version C of the model, if the sequences of
- +
5§, 6, and €0

converge to 0, then for any & > 0 an e&-optimal control law is obtained

values obtained in steps and (::) of the algorithm
in a finite number of iteratioms.

Remarks 3.1: (a) After step of the algorithm, an elimination of
non optimal actions can be done by using Theorem 3.2. Also the para-

meters ay and n, could be revaluated.

(b) Step 2 can be repeated any number of times before

going to step 3, resetting V:=Vl after each repetition.

(¢) One of the originalities of this algorithm is that
it provides bounds which take into account simultaneously the errors
due to the approximation, at each step of the d.p. procedure, and the
errors due to the fact that only a finite number of iterations are

effectuated.

(d) The algorithm is very flexible. One can choose any
method of approximation and even change the method from iteration to

iteration.
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) (e) 1In the implementation of the algorithm, a nontrivial
task is to obtain values for 5 , 5" and £g° Obviousiy, finite values
always exist. At worst, one can take vV - V, which is of course quite
pessimistic. For most practical situations, better bounds for the approx-
imation error can be obtained. For instance, if T(V) and Vl are monotonous
functions, and if T(V) can be computed ponctually with negligible error,

one can compute T(V) on a finite grid and interpolate to define V For

1.
example, if X is the real interval [a, b], one computes T(V) at the n

i = e = efine
points a X < Xy < < X b, d s

T(V) (%) if I i=1l, +ee, 0
v, (%) =
W) (xp,) I
3 if X, < X< X4
and set
5= = gt = max TV (x444) - T(V)(Xi) )

T 1<i<n-1 2

This also generalizes naturally to multidimensional state spaces.

Unfortunately, the main drawback of these ''guaranteed" bounds on
T(V)-—Vl is that they provide bounds on V, that are so conservative as
to be useless in most practical situations. This same drawback also

applies to the bounds proposed in [20] (see [3]).

Instead of computing guaranteed bounds, an alternative approach
could be to estimate the real approximation error, and obtain estimate

bounds on T(V)—Vl.

For instance, one way to estimate § and 6+, when T(V) is reasonably
smooth, is to recompute T(V) at a very large number of new points and
compute the real approximation error at these points. If these points
are well choosen, numerous, and if T(V)-V behaves reasonably, then the
smallest and largest of these errors can be taken as estimates of 8 and

+
& respectively.
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4, . A CLASS OF MARKOV-RENEWAL DECISION PROCESSES

We consider in this section an important subclass of systems which
can be modeled as discounted Markov decision processes with a state
dependent discount factor. These systems, called Markov-renewal decision

processés, have a state set X defined as a cartesian product

x 8" x s

where S is a given Borel space.

At stage n the state of the system will be thus represented by a
pair X = (tn, sn), where t corresponds to the time of occurence of

stage n and s, will represent the '"physical" state of the system.

Furthermore, for this class of systems, the discount factor B(xn)
is defined as
-pt

BGx) A,

where p is a positive (continuous) discount rate.

Let A be the action space and A(xn) the set of admissible actions
when the system is in state X = (tn, sn), which are defined as in

section 2.

The system dynamics can be described as follows: at stage 0 the
initial state X = (to, so) is given; at any stage n, the controller
observes the state x = (t_, s_) and chooses an action a_ in Alx ).

n n’ “n n n

Then the time tn of the next stage, with the next physical state

+1
s are determined as
n+l

t =t_ +
n+l n 4

s =g
n+l

where the pair (£,s) is generated randomly according to the probability
measure 6(-ltn, s

{Q(-

0’ an). Here, the stochastic kernel 6 is a family

x,a) , (x,a) € X x A} of probability laws on [0,®) X S.




17

Such a system is called a semi-Markov decision process if the

measure Q is such that almost surely Z is non zero., The cost of

transition from stage n to stage n+l is given by

glx , a) =gt , s, a).

We might be interested in the subclass of homogeneous Markov-
renewal decision processes obtained when A, 6 and g are not dependent
on the time component t of the state X = (tn, sn). Then the control

law p can be a mapping from S into A such that
Y s €58 n(s)€e A(s).

The Markov renewal decision process will define a C-system or a
LC-system if it satisfies Assumption 1 or Assumption 2. Notice that,
for this model we have

a(x,a) = I e~P5 Q(d%,S|s,a).

R+

Further, if A(t,s), g(t,s,a) and Q(-|t,s,a) are independant of t,
then
H(V) (t,5,a) = g(s,a) + [efpg V(t+Z,s") Q(dZ,ds”|s,a) .

[0,2)%S

If V(t,s) is independent of t, then H(V) (t,s,a) and T(V) (t,s) are also
independant of t. Hence, in this case, the state space can be reduced

to S. We use this simplification in the following example.
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5., ° EXAMPLE: A MULTICOMPONENT SYSTEM WITH IDENTICAL ELEMENTS

Consider a system comprised of m identical and stochastically in-

dependent components, each having a known and non decreasing failure rate

. t
A(t), a lifetime distribution function F(t) = exp(—J A(s)ds), and a
o

survival function TF(t) = 1-F(t). Whenever a component fails, the repair-
man is instantly informed, must replace it at once by a new one (emergency
replacement), and may replace at the same time any number of working
components (preventive replacement). He can also halt the system at any
moment and replace preventively any number of working components. All the

replacement durations are assumed to be negligible.

The cost of an intervention is composed of a fixed cost ¢y and a
replacement cost c. for each component replaced. A failure cost ce is
also incurred each time a component fails, and all the costs are discounted

at rate p > 0.

This generalizes the model studied in [1], [10] and [22], since neither
the failure cost cg mor the possibility to intervene at any moment were

considered then.

The system is observed whenever a component fails or a preventive
replacement is performed. These observation times are also the
decision points, at each of which an action is taken. An action is
a couple (£,d) where £ €{1,...,m} is a number of components to replace,
and d €[0,*] is a time interval until the next planned preventive re-
placement. The state of a component is given by its age, where by con-

vention the age of a failed component is <.

Owing to the non-decreasing failure rate, and since the components
are identical, the £ components to be replaced are certainly the oldest
ones. Hence, at any decision point, the oldest component is always to
be replaced, and it suffices to consider only the states (ages) of the

m-1 others, in decreasing order.
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. The state and action spaces are defined as

= {(xl,xz,...,xm_l)é Rm_l | >...>2x . =0}

m-1

»
I

Xl = x2
and

A={l,...,m} x [0,=]

%
respectively. One can easily define Q (using A) and g, set T = XxA,

and verify that (X, A, T, Q, g, p) is a¢MRDP model version LC, with

K2 =0

[
[N
-

gl =c, +m cr + cf

=

(o4}
]

0 m
) J eTPEEE)™ 2 M) d”
i=1

(o]

and

i(x) = (m,»)  for all x€X.

A replacement policy U is a universally measurable function p : X + A,
and we are looking for an e-optimal policy, where & is sufficiently

small. For this purpose we shall use the algorithm proposed in section
3.

Initially, we set

V = -\7 o - . = .
and n, is the smallest integer larger than or equal to 2(§—Kl)/K1. For any V
in 52 and (x, £, d) in I', we have

d

H(V) (x,£,d) = J e Pe
, o J

m
F(r.,+z|r.) 2
(rJ Z| J)._

A(r,+0) (e V(s (©)) a2
1 i=1

[ i =

+ e—pd

nag

?(rj+d|rj) V(sl(d)) tey t L c.

j=1

We do not write it extensively since it involves a rather heavy notation.
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where for j=1,...,m-¢

J 0 for j=m—£+1l,...,m

?(rj+glrj) = F(rj+§)/F(rj),

and si(g) is the vector (r1+g,...,ri_l+g,ri+1+z,...,rm+Z), which is element

of X.

As a numerical illustration, letm = 3, c, = c_ =1, cg = 2, p=0.1,
and

A(E) = .02t for t=0.
This failure rate corresponds to a Weibull distribution. One easily
obtains K1 = 2, g = 6, 61 = ,62011, V=2 and V = 15.88. We choose

v

n

2 as the initial functionm, ay = 0.5, and obtain n, = 14.

At each iteration of the algorithm (step 2), let us choose

0 Py S Py < eee <Py and define Q = {(pi,Pj)| 1<j=<1ic=<nl

This is the finite set of points at which T(V) is to be evaluated. These
points determine a covering of the conical state space X = {(Xl’XZ)[Xl Z %y Z 0}
by n(n+l)/2 subsets, as shown in figure 5.1. Among these subsets, n-1 are

triangles, (n-1)(n-2)/2 are rectangles and n are unbounded polyedra.



x2 A

h———
Py P, P3 P Pz Poa Pq X4

Figure 5.1:

A partition of the set X.
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©

(4.71, 4.71)

(5.07, 4.42)

© T - T : T T 4.42 T T
0 1 2 3 4 5 ' 6

Figure 5.3: Number of components to replace as a function of the state
of the system, as suggested by the retained policy.
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We then choose as follows a functional Vl that interpolates: T(V)
at the points of Q : v is an interpolating affine function on each
triangle, a bilinear function on each bounded rectangle, and an.affine

function which is constant in % on each unbounded polyedron.

Let us take
pi = 2.5 (i-1) s i=1, ...y 5

for the first 30 iterations. At the last of these iterations, we obtain

+ 3 -
H(Vl-V)+H = .000075 and I(v-v)"ll = 0.0 . Table 5.2 gives, for
each point (pi,pj) in @, the value of T(V)(pi,pj), as well as the values
of £ and d for which the minimum is attained in the definition of T(V),

after these 30 iterations.

P
14.022
1.45 - 0
3
13.692 13.887
5.92 3.28 2.5
3 3
13.173 13.455 13.692 ‘
7.59 6.76 5.92 5.0
3 3 3
12.371 12.794 13.119 13.388
9.26 8.42 7.59 6.76 7.5
1 2 2 2
11.109 N.748 12.199 12.553 12.842
10.92 10.09 9.26 8.42 7.59 10.0
1 1 2 2 2
P, 0 2.5 5.0 7.5 10.0

First approximation results, after 30 iteratioms,.
Each case corresponds to a point in Q. The first
number in the case is the value of T(V) at that
point. The other two are the current best values
of d and £ respectively.

Notice that a better approximation of T(V)(xl,xz) for X > 5 is
useless here, since we replace every component whose age is greater
than 5. A good approximation to T(V) is useful only in the region

where the best value of £ is 1.
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" We then refine the grid, taking
p, = (i-1)/4 , 1=1, ..., 22,

and do 15 more iterations. At the last iteration, we obtain

u(vl-V)*u = .00008 , ncv-vl)+n = 0.0 , and V (0,0) = 11.148.

Now, in order to obtain bounds for V*—Vl, we need the values §
and 5+, which are bounds on T(V)—Vl at the last iteration. Clearly,
it is not easy to obtain bounds for T(V)-Vl, since this function is
defined on a continuous domain. As proposed in Remark 3.1 (e) we will

thus evaluate T(V)-V. on a very fine grid, much finer than the preceding

1
one, and estimate 8 and 6+ by the minimum and maximum values of T(V)—-V1

on that grid respectively. This procedure seems reasonable since Vl and

T(V) are smooth monotonous functions.

Taking

P, = (i-1)/16 . i=1,...,88 ,

this yields 8 = .00073 and 8" = .00000. Using Eqs (18, 19), one easily

*
computes the "estimate bounds' for V

*
- .021=Vv - Vl = .002 .

*
The relative error on V is at most 0.2%, which is very satisfactory.

In a similar fashion, the optimal value of d can also be interpolated
in the same way as T(V), in order to define the finally retained policy u.

We then compute TM(V)—V on the finer grid to estimate ¢, and compute the

1
RHS of Eq. (23). This expression has a value of .021 suggesting that the

retained policy is at worst .021-optimal.

The conical state space X is partitioned into three regions, accord-
ing to the number of components that this e-optimal policy tells us to

replace. These regions can be seen in Figure 5.3. Notice that the
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nuﬁber of éomponents to replace is not a monotonously increasing func- '
tion of the ages of the components. This property was also observed in
the discrete time case (see [10 ), and has an easy interpretation. For
instance, in state (4.5,0), replacing two components makes the system
completely new, which is profitable. 1In state (4.5, 4.0), replacing
two components leaves one component at age 4.0, while replacing three
is more expensive. Replacing only one and waiting for the next inter-

vention happens to be the best action to choose.



“ APPENDIX

Proofs of the theorems of section 3

In the proof of theorem 3.1, we need the following 1émma. This
lemma is somewhat related to proposition 4.6 of Bertsekas and Shreve
[5], but different, since the assumption C of [ 51 is mnot satisfied

here.

Lemma. Let V = V be two bounded elements of Bl and 83 be the
closed subset of Bl defined as 33 A {V ¢ Bl[z <vV=V} If Q:B3+B3

and a €[0,1) are such that
0= o(Vy) = o(V)) = allv,-v,|l (.1)

for every pair V2 = V1 in B3, then there exists V in B3 such that for

any V € 83, we have

Limllo" (M)-V] = 0 (A.2)
n—*°
and
Q + ~ a +
- 1= 1= = V- o) = 1 M-V . (A.3)
Proof. First, we show that ¢ is contracting on B3. Let Vl and

V2 be two arbitrary elements of 33. Tor each x in X, let V3(x) é

max(Vl(x), Vz(x)). V3 is in 33, and from (A.1),

.

0 (V)-0(V,) = 0(V)-0(V,y) = allVy=Vy| = af[V;-V,

Since V., and V

1 o, can be interchanged, we obtain

leCV,)=o (Il = al[v,-v | | (4.4)
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53 being a closed subset of the Banach space.BO, the fixed point theorem

(see [5], page 55) implies that there exists V in B3 such that

limll™ (V) - V|| = 0

n->

for all V in 53 .



Let V be in 63 and Y1 in B] defined as

60 Emin TG0 - Ve, Iem-n") = o.

We have @(V)-V <V - V since ¢(V) 1is in 33, and also

PN~V = [[(o(V)-)"

e(V) =V + Y1 € 53.

Notice that we had to introduce Yy because we do not know if

v+ lom-NT|  is in Bj.

Using (A.5) and (A.1), we obtain

02 (V) = o(V + ) = o(M) + afly

=v+ @ +a) vl

This can be repeated, to show by induction that

. n
ot SV o+ Iy I 2 at .
i=

n+l o
oW =0 + vyl 2
i= 0

1

Taking the limit, we obtain

¥ = 1im o™ W) = 0@ + Tl eM-NT

n-
In a similar way, we can show that

¥z o - 75l (v-pm)|

and that completes the proof. ]

Proof of theorem 3.1. (a) First, we show that

- n
- =T 0(v)—v1 <.

. Hence ¢(V)-V = Y1 and since Y1 < V-V, we obtain

(A.5)

(A.6)
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1f n, = 1, (A.6) follows directly from the definitions. Assume that it

is true for all n, < n-1, where n = 2 is fixed. Then,

Tn(V)-Vl < ()-T" "L (v) + ™1y - v,

IA

Pam) - W + @D 8+ @-2) [0

A

IT)-07l + @1 8"+ @-2) 1N

< [a@=-vp*l + 10 + @1 87+ @=2) -0

IA

n s+ (a-1) H(Vl—V)+H

+
= &

and in a similar way,

'rn(V)—v1 < - g

It follows by induction that (A.6) holds.

On the other hand, if V2 = Vl are two functions in 82, then by
lemma 3 and 7 in [15], we have

< no nor <<
0<T (Vz) - T (Vl) < a; Hvz—vlﬂ . (A7)

~ *
Applying the preceding lemma (with B3 = 32, e =T © and V=V,

we obtain

v

Mo %1 Do +
LA e Iv=T =) |
v (A.8)

A

a
0 (V) - i:é—ncTn°(V)—V)+H .
1

Using (A.6) and (A.8), (18-19) follow easily.
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(b) The first statement follows from propo-
sition 7.50 in [ 5]. 1In (22), the first inequality is obvious by
definition of V#, and it remains to prove the second inequality. From
lemma 7.30 and proposition 7.48 in [5], we see that TH(V) € Bl for each
V in Bl’ For the version C of the model, by lemma 3 in [15], we also have

TH:BZ 4-32. For the version LC, define V = Kl + min(O,Kz),

V= (g, * (1+a) [[V[D A1-a) and BB as in the previous lemma. For each V

in 33, we have TM(V) > Tu(y) = T(V) =2V, and using (21), (13,14)
and (11,12), ‘
Tu(V) = TM(X) + Tu(V) - TH(Z)
=g + vl + allv-yl
= g, + vl + adliVll + 19D
=

(g + W) [¥DA + a/(1-a)) =V .

Thus, Tu:B3 - 83. For both versions of the model, the previous lemma

applies (with B3 = 32 for version C, B3 as defined above for version LC,

~

¢ = TM and V = %u). Further, as in the proof of lemma 10 in [15], we

can show that GM = Vu. We then obtain, since V € Bz_g 83 ,

a +
V =T (V) + =—|[(T (V)~V . A,
23T e, 4.9)
Using ( 20) in (A.9), we obtain

V SV, +¢ +1-f-gll(Vl+8 -0’

V8 1 0 0

and from (18-19), (22) follows. ]
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Proof of theorem 3.3. (a) Let ¢ > 0. Choose a positive integer i

such that
()" < ——
2|[v-vli

where V and V are the bounds of BZ’ and then k > i such that

o . (1-ap)e
max (6,, 8,) < —
J ] n

0
for all j = no(k—i). For each integer n > nO k, we obtain, using

lemma 3 and 7 in [13] and equations (12-15),

in in

% * 0 0
v v = v O o+l O )-v
0 0
in - in i jn (3=1)n
=fr C@H-r Ow o+ ozl Yy o CRPRN]
0 j=1 0 0
i % i i-1 n0
< @)V 2 e T T L )=V
1 n-in j=1 1 n-jng” ‘n & l)nO
. n
Yg—y) + 2 @i 2 I )= (v Yl
< (o) ||V=V} + a (s - o .
1 521 1 =1 n-(j 1)n0+r - (j 1)n0+r 1
. (l—al)s
< e/2 + n = g
1 ay 0] 2n0

Since e is arbitrary, this completes the proof.

(b) From (a), the sequence of values of

| * . .
|lv-v"|| obtained in the algorithm converge to 0, as well as the sequence
; q

of values of [|T(V)-V||, since ||T(V)-V| = HT(V)-V*H + Hv*—v” <2 ||v-v

The sequence of values of HVl—VH also converge to 0, since

1A

v, vl < JT=v] + lIT-v, |

IT(V)-v| + max (5 , 6+).

IA

*
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Therefore, since H(V—Vl)+H and H(Vl—V)+H are bounded by HVl—VH, the
values of ¢~ and ¢t also converge to 0. Taking a = ays the left-hand

expression in (23) is smaller or equal to

- oy

£ +
1—al

A=y )+ &+ vl + eglap).

This expression tends to 0, and will thus become smaller than e after

a finite number of iteration. [ |
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