Les cahiers du GERAD ISSN: 0711-2440

Approximative Solutions to
Continuous Stochastic Games

M. Breton, P. L’Ecuyer
G-90-25

May 1990

Les textes publiés dans la série des rapports de recherche H.E.C. n’engagent que la responsabilité de leurs
auteurs. La publication de ces rapports de recherche bénéficie d’une subvention du Fonds F.C.A.R.






Approximative Solutions to Continuous
Stochastic Games*

Micheéle Breton
GERAD and Ecole des Hautes Etudes Commerciales

Pierre L’Ecuyer
Dept. d’Informatique et de Recherche Opérationnelle
Université de Montréal

May 1990

*Research supported by NSERC-Canada, Grants #OGPIN020 and #A5463, and
FCAR-Québec Grants #90-NC-0252 and #EQ2831.






Abstract

In this paper, we suggest an approximation procedure for the solution of two-
player zero-sum stochastic games with continuous state and action spaces similar
to finite elements and modified policy iteration approaches used for the solution of
Markov Decision Problems.

Résumé

Dans cet article, nous suggérons une méthode d’approximation pour la solution
de jeux stochastiques & somme nulle ol les espaces d’états et d’actions sont con-
tinus; ’algorithme proposé s’apparente aux méthodes d’éléments finis ainsi qu’aux
procédures itératives modifiées utilisées pour la solution de processus de décision
markoviens.






1 Introduction

Zero-sum, two-player discounted stochastic games were introduced by L. S. Shapley [13]
who gave a (constructive) existence proof of saddle points in stochastic games with fi-
nite state and action sets which provided a first iterative algorithm for the computation
of the value of such games. Since then, other iterative algorithms have been proposed
(Pollatscheck and Avi-Itzhak [11], Filar and Tolwinsky [6], Tolwinsky [14]); all these al-
gorithms can be related to methods used for the solution of Markov Decision Problems,
i.e. value iteration, policy iteration and modified policy iteration.

We are interested in devising an approximation procedure to solve stochastic games
with continuous (or very large) state or action spaces. There already exists a large litera-
ture on discretization and approximation methods in dynamic programming (see [9] and
the references cited there). Approximation methods are used in order to define “smaller”
problems which can then be solved using any available algorithm for discrete problems.
For dynamic games, theoretical considerations pertaining to their approximation have
been presented by [15]; we will address here a general method for the computation of an
equilibrium point in a zero-sum game.

In this paper, we consider a two-player zero-sum stochastic game model with con-
tinuous state and action spaces as studied in [10] (the extension of the approximation
procedure to more general models, e.g. locally contracting renewal games (see [3]) is
straightforward). We describe a finite element computational approach to deal with con-
tinuous or very large state spaces. The algorithm used with the finite element approach
can be viewed as an extension of the “modified policy iteration” algorithm studied in [12]
for Markov Decision Problems.

The outline of the paper is as follows: In section 2, we state the basic stochastic
game model and its associated dynamic programming operators. In section 3, we briefly
recall some existing algorithms for the solution of discrete stochastic games. Finally, in
section 4, we describe a finite element computational approach, using an approximate
policy iteration algorithm.

2 Zero-sum Two-Player Stochastic Game model

Consider the following two-player game model with Borel state space S and separable
metric action spaces A and B. For each state s in S, let A(s) C A and B(s) C B be
the non empty compact set of admissible actions to player 1 and player 2 respectively
when the system is in state s. To allow for randomized strategies, we assume that each
action in A(s) and B(s) is in fact a mixed action, i.e. a probability measure over an
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underlying set of pure actions. At each of an infinite sequence of stages (decision times),
the players observe the state s of the system and independently select actions a € A(s)
and b € B(s). For the current stage, the expected return to player 1, paid by player 2,
is r(s,a,b) and the system moves to a new state s’ according to a probability measure
q(-|s,a,b) over S. A new action pair is then selected by the players, and so on. The
expected one-stage return function of player 1 r(s,a,b) is a bounded Borel-measurable
real valued function of s € S, a € A(s) and b € B(s) and the law of motion is given by
the family of probability measures {q(-|s,a,d) : s € S,a € A(s),b € B(s)} which form a
Borel-measurable stochastic kernel on S given s € S, a € A(s) and b € B(s).

A policy é for player 1 is a Borel-measurable function from s € S into his admissible
action set A(s) under which player 1 takes the mixed action 6(s) whenever the system
is in state s. In the same way, a policy v for player 2 is a Borel-measurable function
v:8 €S8 — 4(s) € B(s). Let A and I" denote the set of policies for player 1 and
2 respectively. A stationary strategy pair for players 1 and 2, denoted [8,7], consists
in using respectively the policies § and v at each stage of the game. In this paper, we
consider only stationary strategies.

Let vjs,j(s) denote the expected discounted sum of the rewards of player 1 when the
initial state of the system is s and the players use the stationary strategy pair [6,+]
with discount factor p, 0 < p < 1. Player 1 wishes to maximize the expected sum of
his discounted rewards as player 2 wishes to minimize the same. In zero-sum games,
an equilibrium point is called a saddle point; If it exists, a saddle point in stationary
strategies [6*,7*] is a strategy pair such that, for any strategy pair [6,~] and for all s € S,

Y5} (8) S vpse )(8) = v7(8) < wpse(s) (1)
and the function v* is called the value of the game. Sufficient conditions for the existence
of saddle points in continuous zero-sum games are given in [10].

Let V represent the Banach space of all Borel-measurable bounded functions v : § —
IR, endowed with the supremum norm. In order to use a dynamic programming operators
formalism, we define the local return function A by

h(s,a,b) = r(s,a,0) + p [ v(s)g(ds'|s,a,b) (2)

for v € V,s € S,a € A(s) and b € B(s). It represents the expected return to player 1 for
a fictive auxiliary game starting in state s, if the players use the action pair (a, b) and if
the expected returns to player 1 from the next stage on are described by the function v.
For every policy pair [6, ], the associated return operator Hs, : V — V is defined by:

His(v)(s) = h(s,6(s),7(s),v)- (3)



Finally, we define the operator F': V — V by

F(v)(s) = sup ( inf h(s,a,b,v)).

a€A(s) DEB(s)

His. and F' are both monotone contracting operators on V' with modulus p.

3 Value Iteration and Policy Iteration

(4)

Value iteration and policy iteration are two general methods for solving dynamic programs.

They operate as follows.

Value iteration.
Select initial vp in V;
For n:=1 to 7 do

U = F(vn_1);

Retain [6*,7*] such that His. yo(va) = F(va);
End.

Policy iteration.
Select initial policy pair 6o, 7o);
For n:=1to @ do
Policy evaluation: find v, such that

H[Sn-—-l "Yn—l](vn) = ’Un;

Policy update: find [8,,7.] such that
H[sny'Yn](vn) = F(vn);

Retain [6z,va];
End.

(6)

In both cases, the value of 7 may be chosen in advance or depend on some stopping

criterion.

The algorithm proposed by Shapley [13] corresponds to value iteration. Each step
requires the solution of |S| matrix games in equation (5). It converges to v* from any

starting vg.



The algorithm proposed by Pollatschek and Avi-Ithzak [11] corresponds to policy
iteration. Each step requires the solution of the system of |S| linear equations (6) and |S]|
matrix games (7). This algorithm does not converge in general for stochastic games.

It is well known that value iteration converges linearly (sometimes very slowly) while
policy iteration (when it works) is equivalent to applying Newton’s method to the equation
F(v) —v = 0 (see [11]). When v is not too far from v*, it typically has quadratic
convergence. Empirical evidence presented in [2] and [1] suggests that policy iteration is
the fastest method for solving stochastic games in cases when it converges. Motivated
by this fact, Filar and Tolwinsky [6] have recently proposed a modified Newton’s method
(MNM) which is guaranteed to converge and has the same rate of convergence as policy
iteration when the latter converges.

In the context of MDPs having large state spaces, Puterman and Shin [12] proposed
an adaptation of policy iteration, the so-called “modified policy iteration” method, where
at each iteration, (6) is solved approximately by applying only a few iterations of the value
iteration method with a fixed policy [6,-1,7n-1], starting from the previous v. Tolwinsky
[14] proposed a modified iteration algorithm combining the MNM scheme with the ideas
of [12]. In numerical experimentation, the modified policy iteration seemed to perform
better than the MNM in cases where the number of states was large relative to the number
of actions.

Modified policy iteration.
Select initial vg in V;
For n:=1 to @i do
Policy update: find [6,, y] such that

1] (Vn) = F(vn); | (8)
Set d := vp;
Search direction: select k and T Hpea,t k times
[5n,‘Yn] ) (9)

Choose a step size a ensuring descent and set vny1 1= vn + a(d — v,,);
Retain [z, Yx];
End.

For a descent criterion in the modified Newton method, in order to choose the step
size o according to Armijo’s rule, see [6].

Obviously, for continuous (or very large) state spaces, these algorithms cannot be
applied exactly in general. Some form of approximation must be used. From an approx-
imate solution to the functional equation (5), one can obtain bounds on »* and on the
suboptimality of a given policy pair (see [4]).
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4 A finite Element Approach

We now introduce an approximate policy iteration algorithm, with finite element approx-
imation of the value function. For more details on the finite element method, see e.g. [8].
Generally speaking, we assume that an expected “value-to-go” function v associated with
a fixed policy can be approximated reasonably well by a linear combination of a small set
of (simple) base functions wy,...,w:

v(s) = 3 djwi(s). (10)

=1

One particular finite element approach [9] is to select a finite number of points o4, ..., 04
in § and to express directly v(s) as a convex combination of the values of v at the J eval-
uation points: ’

v(s) = ;v(aj)wj(S) (11)

where, for all s € S,
0 < w;(s) <1, (12)
wj(gi) = bij (13)

(the Kronecker’s delta), and

ij(s) =1. (14)

The o;’s are in fact the nodes of the finite elements. The interesting point in this
particular scheme is that it permits the evaluation of v easily at any point in 5, and thus
on any set of nodes. In this setting, an analog to (9) is to apply pre-Jacobi iterations to
the linear system '

d=c+ Md, (15)
where d and ¢ are the column vectors (dy,...,d;) and (c1,...,cs) respectively and M is
the J x J matrix (m;;), with, for a given policy pair [6,7],

¢ = r(0j,6(0;),7(05)), (16)
and
mig = p [ w;(s)g(ds'|os, 6(0),7(0)- (a7

In general, policies must also be approximated: it is usually not possible to find [6,7]
such that (5) is satisfied exactly when the action space is very large or continuous. As we
did for the state space, we can define a finite dimensional subspace of the action spaces
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A and B and consider only the actions that belong to that subspace. Since the detailed
way to do that is rather problem-dependent, we will content ourselves with the following
description. For any v in V, € > 0 and o € SY, define

ge(v) = {[6,7] € A X T : |Hisy(v) — F(v)| < ¢} (18)

and
$e(v,0) = {[6,7] € A x T : |Hysy(v)(03) — F(v)(0)] < e} (19)

At every “policy update” step of the algorithm (equation (8)), we will in fact seek a new
policy in ¢(v) for some given value of e. Often, in practice, we will first find a policy pair
[6,7] and then estimate the smallest € for which [4,7] € ¢.(v).

Under this setting, the approximation algorithm is given by:

Approximate policy iteration

Select € > 0, initial vp in V and initial policy pair [éo,Yo];

If average cost, select § € S;

Outer loop: For n:=1 to 7 do
Select Jn,0 = (01,...,05) € 7 and {wy,...,ws} CV
such that (12-14) are satisfied;
For the policy pair [6,-1,7n-1], compute ¢ and M by (16-17)
and set d := (v(01),...,v(07));
Inner loop (search direction): select k and repeat k times: d := Md + c;
Choose a step size a ensuring descent (see [6]) and set
0us1(03) 1= a(7) + a(ds — 00 ()
Define v by (11);
Select €, and find a new policy pair [§,,7s] in @, (v,0);
If desired, perform a stopping test:
compute or estimate a bound € on ||v*, v[s, .1l
If € < ¢, or other stopping criteria satisfied, stop;
Endloop

End.

Obviously, as it stands, the approximation algorithm is not completely defined. For
instance, the stopping criteria, the way of choosing €, €, «,J and the base functions wj,
the method used to update the policy pair and to compute or estimate € are all left
open. These are usually problem dependent. In practice, they may vary from iteration to
iteration.



The stopping test can be costly and should not be performed at each iteration. The
bound & may have to be estimated heuristically, for instance as in [7]: Recompute F'(v)
and Hsq)(v) at a large nunber of new points, compute the approximation error at there
points and take the largest and smallest to estimate the bounds.

Notice that for k = 1, the modified policy iteration method becomes the value iteration
algorithm, as for £ = oo, it becomes policy iteration. A good choice for k is probably
problem dependent. It could be chosen adaptively, based on the previous iterations;
intuitively, the more costly it is to compute ¢ and M, the larger the value of k should
be. But the inner loop should also stop when progress gets too slow, i.e. when d is not
changing significantly enough anymore of if d does not appear to converge geometrically.

The choice of o determines a grid over the state space S. A coarser grid should be
chosen at the early stages of the algorithm and the grid should be refined only when
progress is stalling. Multigrid techniques [5] or various other techniques for the iterative
solution of linear systems can also be used.

We have described a finite element approach to solve stochastic game models with
continuous or very large state spaces. It can deal with most reasonably smooth value
functions, provided that the state space is bounded and has few (continuous) dimensions.
Numerical experiments with this approach are presently in progress.
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