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We propose, develop, and compare new stochastic models for the daily arrival rate in a call center. Following

standard practice, the day is divided in time periods of equal length (e.g., 15 or 30 minutes), the arrival

rate is assumed random but constant in time in each period, and the arrivals are from a Poisson process,

conditional on the rate. The random rate for each period is taken as a deterministic base rate (or expected

rate) multiplied by a random busyness factor having mean 1. Models in which the busyness factors are

independent across periods, or in which a common busyness factor applies to all periods, have been studied

previously. But they are not sufficiently realistic. We examine alternative models for which the busyness

factors have some form of dependence across periods. Maximum likelihood parameter estimation for these

models is not easy, mainly because the arrival rates themselves are never observed. We develop specialized

techniques to perform this estimation. We compare the goodness-of-fit of these models on arrival data from

three call centers, both in-sample and out-of-sample. Our models can represent arrivals in many other types

of systems as well. Estimating a model for the vector of counts (the number of arrivals in each period) is

generally easier than for the vector of rates, because the counts can be observed, but a model for the rates is

often more convenient and natural, e.g., for simulation. We examine and provide insight on the relationship

between these two types of modeling. In particular, we give explicit formulas for the relationship between the

correlation between rates and that between counts in two given periods, and for the variance and dispersion

index in a given period. These formulas imply that for a given correlation between the rates, the correlation

between the counts is much smaller in low traffic than in high traffic.

Key words : arrival process; arrival rate; doubly stochastic Poisson process; input modeling; copula;

correlation; call center

1. Introduction

The randomness of customer arrivals is a prime source of uncertainty in service systems such as

restaurants, retail stores, emergency services, and call centers, to name a few. In those systems,
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customers (or demands) arrive according to stochastic processes whose intensity (or rate) varies

with time in a stochastic way, often influenced by external events that are not always predictable,

and are generally difficult to model in a realistic way. This modeling is nevertheless essential to

study the performance of these systems and manage them effectively.

In this paper, we are concerned with modeling the arrival process in a call center for one day

of operation. Call centers (or contact centers) are a key component of many organizations. They

employ several million people in North America alone, and much of their operating costs is to pay

the agents who answer the calls (Gans et al. 2003, Akşin et al. 2007, Koole 2013). To optimize the

staffing and work schedules of these agents, good models are required to forecast the call arrival

volumes (the demand) and also to simulate the detailed operations of the call centers. Most large

call centers are indeed complicated stochastic systems whose realistic models can only be handled

via stochastic discrete-event simulation (Mehrotra 1997, Avramidis and L’Ecuyer 2005, Buist and

L’Ecuyer 2005, 2012, Ibrahim et al. 2015a,b).

Our discussion here targets call centers, but our models could apply to many other settings,

such as customer arrivals in retail stores, basket arrivals to cashiers in grocery stores, emergency

arrivals in healthcare services, demands for ambulances, for taxis, for pizza deliveries, demands for

a specific product in a store or online, party arrivals in restaurants, and many more. We leave it

to the readers to test how well our proposed models can fit data sets from these other areas.

Call arrivals can usually be assumed independent over a short time scale, because they are ini-

tiated by individuals who make decisions (approximately) independently in the short term. For a

given expected number of arrivals within a selected minute, say, the calls typically arrive (approx-

imately) independently of each other. It is then natural and quite standard to model arrivals by a

Poisson process, which is equivalent to assume that the arrivals occur one by one, independently

of each other, conditional on the arrival rate. There are many systems where this modeling choice

makes sense, at least to a good approximation, including call centers. It is supported mathemati-

cally by the Poisson superposition theorem and is ubiquitous in all the work on the modeling of call

centers and other similar service systems. For detailed justifications and some examples, we refer

the reader to Whitt (2001), Brown et al. (2005), Koole (2013), Kim and Whitt (2014b), Ibrahim

et al. (2015b) and the references given there. There are a few situations were call center arrivals

can hardly be seen as Poisson, e.g., when dozens of people call the police or ambulance at almost

the same time for the same accident, or if many people call to order an item immediately after

seeing a tv commercial for that item (Soyer and Tarimcilar 2008). These arrivals can be modeled

by a Poisson process whose arrival rate has large narrow peaks once in a while, when such events

occur. We do not model these special types of bursts in this paper.
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Empirical evidence shows that if arrivals are from a Poisson process, the arrival rate must change

with time and also be stochastic. Such evidence is given later in this paper and also in Tanir and

Booth (1999), Deslauriers (2003), Avramidis et al. (2004), Brown et al. (2005), Steckley et al.

(2009), Channouf and L’Ecuyer (2012), Ibrahim et al. (2015b) and references therein. If the arrival

rate is taken as a deterministic function of time, the Poisson process model implies that the variance

and the mean of the number of arrivals in any given time period are equal. This disagrees with

what is observed in call center data (and for many other systems): the variance of daily arrival

counts is typically larger than the mean, and often much larger. This is because the arrival rate

changes and depends on several factors that are too hard to predict.

A simple way of defining a stochastic arrival rate over a given time period is to assume that a

deterministic base rate over that period is multiplied by a single random factor with mean one;

see Whitt (1999b) and Avramidis et al. (2004). When the time period is one day, the base rate as

a function of time is called the daily profile and the random factor is the busyness factor for the

day. With a single factor for the day, however, the arrival rates over any two disjoint periods of the

day are perfectly correlated, which is more correlation than what is implied by observed data. At

the other extreme, Jongbloed and Koole (2001) proposed a model in which the day is divided into

periods, each period has its own random busyness factor, and these factors are independent. Call

center data strongly disagrees with this independence assumption: the arrival rates over disjoint

periods are typically positively correlated. The explanation is that factors that affect the arrival

rates (e.g., weather conditions, etc.) typically span over several periods of the day, so larger call

volumes in the morning are often associated with larger call volumes in the afternoon, for example.

Neglecting this dependence leads to an underestimation of the queue build up process and of

waiting times. Our aim is to develop more realistic arrival rate models that are between these two

extremes and for which the means, variances, and correlations of arrival counts better match those

observed in data. In the models we consider, the arrivals are Poisson with a stochastic rate. Under

such models, the variance of the arrival counts in any given period cannot be smaller than the

mean; i.e., underdispersion is not possible. We have never observed underdispersion, or negative

correlations between periods, in call center arrival data.

The daily profile can be taken in principle as any fixed function of time. Although a continuous

function may appear more realistic, the most popular choice by far is a piecewise-constant function,

for which the day is divided into time periods of equal length (usually 30 or 15 minutes) and the

arrival rate is assumed constant over each period (Gans et al. 2003, Avramidis et al. 2004, Brown

et al. 2005, Akşin et al. 2007, Channouf and L’Ecuyer 2012, Koole 2013, Kim and Whitt 2014a,

Ibrahim et al. 2015b). There are many reasons for this. For one, most call center managers determine

their required staffing by using approximations via Erlang formulas. For each time period, they
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would compute how many agents they need to achieve a given target performance measure (e.g.,

80% of the calls answered within 20 seconds, or less than 3% abandonment, etc.) by assuming a

steady-state model over that period and using the Erlang formula to approximate the performance.

This can be done even if the arrival rate over the period is random with a known distribution. The

random arrival rates do not have to be independent across periods, there can be global performance

targets for the day, and also multiple call types (Gans et al. 2003, Harrison and Zeevi 2005, Atlason

et al. 2008, Cez̧ik and L’Ecuyer 2008, Avramidis et al. 2009a, Gurvich et al. 2010, Koole 2013). If

one wishes to estimate the performance by a more detailed simulation instead of queuing formulas,

it is easier and faster to simulate a Poisson process with piecewise-constant rate than one whose

rate changes continuously. For the former it suffices to generate independent exponential inter-

arrival times in each period, and eventually reschedule the next arrival time when the arrival rate

changes at a period boundary (Buist and L’Ecuyer 2005, Ibrahim et al. 2012). A third justification

for using piecewise-constant rates is that exact call arrival times are rarely available in call center

data. Typically, the available data is in the form of number of arrivals (the arrival counts) in each

time period, and the call by call arrival process model must be constructed based on this data only.

Moreover, agents can typically be added or removed only at period boundaries.

It is of course possible to construct models in which the arrival rate changes continuously. For

example, Kim and Whitt (2014a) consider a piecewise-linear approximation and compare with a

piecewise-constant rate. Channouf (2008) developed a methodology that uses smoothing splines to

model the arrival rate function, together with a single random busyness factor for the day. The

process is simulated via a thinning technique. His methodology can estimate the parameters from

aggregated data (arrival counts per period) and is implemented in the ContactCenters software

(Buist and L’Ecuyer 2005, 2012). In numerical experiments with real data from three different call

centers, Channouf (2008) observed a small difference in simulated performance measures (a small

improvement) when switching from a piecewise-constant rate to a spline rate, both with a single

random busyness factor for the day. Note that if the (smooth) spline base rate is multiplied by

busyness factors that differ across periods, the resulting rate function will no longer be continuous.

One could think of a model in which some base rate is multiplied by different random busyness fac-

tors in different periods and the smoothing spline is fitted to the resulting random rates afterward,

or models in which both the base rate and the random busyness factor are continuous functions of

time, probably parameterized, and whose parameters would be fitted to call-by-call arrival times.

These types of models are beyond our scope; we leave them for future work.

Assuming a piecewise-constant rate is reasonable if the arrival rate does not change too rapidly

and the time periods are taken small enough so the arrival rate is approximately constant in

each period. Kim and Whitt (2014b,a) have studied this issue and developed tests for the Poisson
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process assumption (with either deterministic or random rates). When the individual arrival times

are available, their tests can be used to select an appropriate period length in which the rate

can be taken as approximately constant. They also provide practical guidelines for selecting this

length and discuss various other related issues. In their tests with real-life data, they found that

the Poisson assumption was quite reasonable with 30-minute periods for call center data, and with

60-minute periods for arrivals to a hospital emergency system. The choice of period length may

also depend on how much data is available to estimate the rate for each period: if the periods are

taken too short, the estimates can be too noisy and we can end up with an overfitting problem.

The methodology developed in this paper works for an arbitrary period length.

We focus on modeling the call center arrival process over one day of operation. This is useful

for simulating the call center one day at a time, more than a few days before the days that are

simulated, so the dependence between the currently available data and the days that are simulated

can be seen as negligible. This type of setting occurs when managers construct work schedules

one or more weeks in advance. The predictive power of known time-series forecasting models in

this scenario is weak, because the target day is too far ahead (Avramidis et al. 2004, Ibrahim and

L’Ecuyer 2013). These models can be useful not only for simulation, but also to obtain distributional

forecasts that can be used in other algorithms or formulas.

For the day-to-day management of real-life call centers, one would also need to model the depen-

dence across successive days, the seasonalities at weekly and yearly levels, special-day effects, and

in many cases the dependence between different call types (Brown et al. 2005, Jaoua et al. 2013,

Ibrahim et al. 2015b). This is beyond the scope of the present paper, but could be done in com-

bination with the models proposed here. Shen (2010) and Ibrahim et al. (2015b) give overviews

of existing models, which typically have a regression or time series flavor. For example, Weinberg

et al. (2007) used a Bayesian approach to sample from the forecast distributions based on a linear

regression data model, while Ibrahim et al. (2012), Aldor-Noiman et al. (2009), Brown et al. (2005)

used different variants of linear regression models to produce point forecasts of daily call volumes.

One common characteristic of these papers is that they all use different variants of the root-unroot

variance stabilizing transformation proposed by Brown et al. (2001), which approximates the square

root of the sum of 1/4 and a Poisson random variable with large mean, minus the square root of the

mean, by a normal random variable with mean 0 and variance 1/4. However, this approximation

is often questionable because (i) the expected count in a given time period is not always large

and (ii) the arrival counts are typically not Poisson, but have over-dispersion compared with the

Poisson distribution (the variance is larger than the mean). Most of these works focus on the point

forecasting of call volumes, i.e., estimating the expectation, to plug it eventually into an Erlang

formula to determine the required number of agents, rather than distributional forecasts.
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Models for the distribution of the vector of arrival counts over a given day, with the day divided

into equal-length periods, have also been proposed. Avramidis et al. (2004) introduced two such

models. In the first one, the vector of counts has a negative multinomial distribution whose param-

eters have a (multivariate) Dirichlet distribution. In the second model, the total number of arrivals

during the day has an arbitrary distribution (they take the gamma distribution in their exper-

iments) and the vector of proportions of arrivals in each period has an independent Dirichlet

distribution. The coordinates of the resulting vector of “counts” must then be rounded to obtain

integer counts. These models are more flexible and improve the matching of correlations compared

with the model with a single busyness factor that multiplies the daily profile, but the correlations

still remain too strong. Channouf and L’Ecuyer (2012) illustrate this with real call center data and

propose a general multivariate distribution model for the vector of counts in which the marginal

distributions are specified individually to match the distribution of counts in each period, and the

dependence between the counts is modeled separately via a Gaussian copula, that matches (approx-

imately) the pairwise rank correlations. They also have versions in which the correlation matrix

of the copula is parameterized, to reduce the number of model parameters. Their model provides

a much better match to data even after accounting for the fact that it has more parameters (via

the Akaike information criterion). These authors model the vector of arrival counts, whereas in the

present work we want to model the vector of arrival rates.

With a distributional model for the counts, assuming a piecewise constant rate, one can simulate

the arrivals by first generating the number of arrivals (the count) in each period, and then gener-

ating the arrival times uniformly and independently over the given time period. This is consistent

with the assumption that arrivals are from a Poisson process with unknown (perhaps random)

constant rate over the period. But this is much less convenient and efficient than generating the

arrivals one by one directly from the constant rate when this rate is known (Ibrahim et al. 2012).

The former requires generating, storing, and sorting all arrival times in the period before doing

the discrete-event simulation, whereas with the latter we only need to store the next arrival time.

Our preference is therefore for distributional models of the rates. In a simulation, we can then first

generate the (random) arrival rates for all periods of the day and then run the simulation with

those rates. Another important motivation for the rate-based models is that many staffing models

need the distribution of the rate as one of their inputs (Gans et al. 2003).

In this paper, the day is divided into periods of equal length and the arrivals are assumed to

be from a Poisson process with constant rate in each period. All our models are developed for the

setting in which data are aggregated in the form of arrival counts per period. For recommendations

on how to select the period length when detailed call by call arrival times are available, we refer

the reader to Kim and Whitt (2014b,a). We start from two simple models mentioned previously,
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in which a deterministic daily profile for the rate is multiplied either by a single busyness factor

for the day, or by independent busyness factors, one for each period. Our first idea is to combine

these two models: we take one random local busyness factor for each period plus a global one for

the day. This provides more freedom to control the correlations. As in Jongbloed and Koole (2001)

and Avramidis et al. (2004), our busyness factors have a gamma distribution. Then we generalize

this to a model in which the global gamma factor is raised to a different power (and normalized) in

each time period, which gives further flexibility in matching the correlations. Finally, we propose a

model in which the multivariate gamma random vector of busyness factors, rather than the vector

of counts as in Channouf and L’Ecuyer (2012), is determined by a Gaussian (normal) copula. This

gives even more flexibility to match both the correlations and the variance within each period, at

the expense of having many more parameters to estimate. To reduce (and control) the number of

parameters, we consider variants of this model for which the correlation matrices are restricted to

classes having a special structure. We compare the goodness of fit of these different models on real

data sets.

For the models of Jongbloed and Koole (2001), Avramidis et al. (2004), and Channouf and

L’Ecuyer (2012), parameter estimation was relatively easy, via maximum likelihood and correlation

matching. For our new models, it is much harder, mainly because we do not observe the arrival rates

themselves, but only the counts, which give only indirect information on the rates. An important

part of our contribution is to develop viable methods to estimate the parameters for all the proposed

models, via maximum likelihood.

The rest of the paper is organized as follows. In Section 2, we define our general setting with

busyness factors and piecewise constant arrival rates, and we examine some of its properties. In

Section 3 we introduce a two-level busyness factor model, which combines a single busyness factor

for the day and a busyness factor for each period. Section 4 generalizes this model by including

period-wise exponentiation of the daily busyness factors. In Section 5, we model the dependence

structure in the vector of stochastic arrival rates via a normal copula. Estimation methods for

these models are developed in the Online Supplement. They constitute an important part of our

contribution. Section 6 reports the results of our experiments. Additional results and plots are

given in the Online Supplement. All sections whose “numbers” start by a letter from A to E are

in the Online Supplement.

2. General Setting, Notation, and Relationships Between Rates and Counts

We consider one day of operation of a call center. The opening hours are divided into p time periods

of equal length. For example, if the center receives calls from 8:00 to 18:00 and the periods are 30

minutes long, we have p= 20. Let X = (X1, . . . ,Xp) be the vector of arrival counts in those p periods.
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We assume that the arrivals are from a Poisson process with a random rate Λj, constant over period

j. To simplify the notation, the time unit for this rate is assumed to be one period, i.e., the rate

is expressed in (expected) number of arrivals per period. The vector Λ = (Λ1, . . . ,Λp) can have an

arbitrary multivariate distribution over [0,∞)p. Taking its mean λ= (λ1, . . . , λp) as a scaling factor

(or base rate), we shall assume that Λj =Bjλj where Bj is a non-negative random variable with

E[Bj] = 1 for each j. We call Bj the busyness factor for period j and we denote B = (B1, . . . ,Bp).

Conditional on Λ, the Xj’s are independent and each Xj has a Poisson distribution with mean Λj.

To summarize, we have

Λj =Bjλj and Xj ∼Poisson(Λj), (1)

where Poisson(λ) denotes the Poisson distribution with mean λ. By taking the logarithm on each

side of the equation in (1), we obtain a linear model with mixed effects. However, this model is

non-standard because the rates Λj are hidden and can be inferred only indirectly through the

counts Xj, and its parameters are often hard to estimate for this reason. Note that this setting

does not capture trends or changes that might occur over time frames longer than a day.

The mean and covariance matrix of the counts X can be expressed in terms of those of the rates

Λ as follows. For each j, we have E[Xj] =E[Λj] = λj and

Var(Xj) =E[Var[Xj|Bj]] + Var[E[Xj|Bj]] =E[Bjλj] + Var(Bjλj) = λj(1 +λj Var(Bj)). (2)

The coefficient of dispersion, or dispersion index (DI), defined as the ratio of variance to the mean

(Cox and Lewis 1966), is then

DI(Xj) =
Var(Xj)

λj
= 1 +λj Var(Bj)≥ 1. (3)

We use the DI rather than the coefficient of variation to measure the relative variability because

it better indicates the overdispersion with respect to the Poisson distribution. Eq. (3) shows in

particular that the variance can never be smaller than the mean under a Poisson process model.

When Var(Bj) = 0, Xj has a Poisson distribution with mean λj, so DI(Xj) = 1. More interestingly,

for a fixed value of Var(Bj), DI(Xj) increases linearly with λj, and DI(Xj)→ 1 when λj→ 0. This

means that under this general model in which the rate λj is multiplied by a single factor over

the time interval, the arrival process behaves pretty much like a Poisson process over very short

time intervals, for which λj is small, and the overdispersion increases with the length of the time

interval, because λj is then larger. In particular, if the base rate is multiplied by a single factor

over the entire day, the count for the entire day under this model will typically have a much larger

DI than that for one hour or one half-hour.
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We also introduce a standardized version of the DI (SDI), defined as

SDI(Xj) =
DI(Xj)− 1

λj
, (4)

which under our model is equal to Var(Bj), so it measures the variability of the rate independently

of λj. Note that if we merge two periods j and k having a common busyness factor B =Bj =Bk,

the SDI of the merged periods is the same as that of the original ones: SDI(Xj +Xk) = SDI(Xj) =

SDI(Xk) = Var(B), and this applies as well to more than two periods. Thus, looking at how the

SDI behaves when we merge periods permits one to test the dependence between their busyness

factors. In particular, for the model with a single common busyness factor B =B1 = · · ·=Bp, the

SDI always remains the same when we merge periods. In general, we have

SDI(Xj +Xk) =
λ2
j Var(Bj) +λ2

k Var(Bk) + 2λjλk Cov(Bj,Bk)

(λj +λk)2

≤
(λ2

j +λ2
k + 2λjλk)max(Var(Bj),Var(Bk))

(λj +λk)2

= max(Var(Bj),Var(Bk)) = max(SDI(Xj),SDI(Xk)), (5)

with equality holding when Corr(Bj,Bk) = 1. This generalizes to more than two periods. On the

other hand, one can have SDI(Xj +Xk)<min(Var(Bj),Var(Bk)) = min(SDI(Xj),SDI(Xk)), so the

SDI of merged periods can be smaller than the smallest SDI of those periods. For example, if

Var(Bj) = Var(Bk)> 0 and Corr(Bj,Bk)< 1, then

SDI(Xj +Xk) =
Var(Bj)[λ

2
j +λ2

k + 2λjλk Corr(Bj,Bk)]

(λj +λk)2
<Var(Bj) = min(SDI(Xj),SDI(Xk)).

For j 6= k, we also have

Cov(Xj,Xk) =E[(Bjλj)(Bkλk)]−λjλk = λjλk Cov(Bj,Bk) (6)

and

Corr(Xj,Xk) =
Cov(Bj,Bk)

[(Var(Bj) + 1/λj)(Var(Bk) + 1/λk)]
1/2

=
Corr(Bj,Bk)

[((1 + 1/(Var(Bj)λj))(1 + 1/(Var(Bk)λk))]
1/2
. (7)

For a fixed distribution of B = (B1, . . . ,Bp), we have Corr(Xj,Xk)→ 0 when λj → 0 or λk → 0,

whereas Corr(Xj,Xk)→Corr(Bj,Bk) when both λj→∞ and λk→∞. That is, the process behaves

like a Poisson process over short time periods (the correlation between the counts over short disjoint

periods is near zero), while the correlation is higher over larger disjoint time periods. For fixed

values of λj and λk, Corr(Xj,Xk) is close to Corr(Bj,Bk) when Bj and Bk have large variance and

is smaller otherwise.
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Three special cases of this model, studied earlier, are defined as follows. We will use them for

comparison with our new models.

The first (simplest) case is the degenerate case where Bj = 1 for all j, so Var(Bj) = 0 and

Corr(Xj,Xk) = 0. It gives an ordinary nonhomogenous Poisson arrival process with piecewise con-

stant rate, as used in Brown et al. (2005) for example. We will refer to this case simply as Poisson.

It is well known that this type of model is unacceptable because it typically underestimates the

variability of the counts in a significant way; see, e.g., (Jongbloed and Koole 2001, Avramidis et al.

2004, Steckley et al. 2009, Shen 2010).

In the second special case, introduced by Whitt (1999a), one takes Bj = B for all j, where

E[B] = 1, so the base rate is multiplied by the same random busyness factor for the entire day.

Then the SDI over any union of periods is Var(B). Avramidis et al. (2004) further studied this

model in the case where B has a gamma distribution with Var(B) = 1/γ, which can take any value

in the range (0,∞), and Corr(Bj,Bk) = 1. In this case, the vector X has a negative multinomial

distribution whose parameters are easy to estimate from the counts. We call this model Poisson-

gamma-single-factor, or simply PGsingle. Two important drawbacks of this model are that (i) it

tends to overestimate the positive correlation between the counts in different periods and (ii) it

does not fit the variance equally well for all the periods of the day (see Avramidis et al. 2004

and Channouf and L’Ecuyer 2012). These problems are due to the fact that there is a single

busyness factor common to all periods of the day, and (given the λj’s) a single parameter γ to be

chosen that determines all the variances and correlations.

The third simplified setting, from Jongbloed and Koole (2001), uses independent busyness factors

Bj for the different periods of the day. This gives Corr(Xj,Xk) = 0. These authors use the gamma

distribution for the Bj and show that the parameters are easy to estimate by maximum likelihood.

We refer to this model as Poisson-gamma-independent, or PGindep. It has the important limitation

of neglecting the dependence (often strong) between counts across different periods.

In the remainder, we propose new instances of the general arrival process model outlined earlier,

which allow more flexibility for matching the variances within periods and correlations between

periods. First, we combine the PGsingle and PGindep models into a two-level busyness factor

model that includes both a daily busyness factor and a busyness factor per period. We then further

extend this model by introducing an exponentiation of the daily busyness factor in every period.

These new models are more flexible than the previous ones and they contain only a few extra

parameters compared to the PGindep model. Then we propose a normal copula model for B which

is even more flexible to fit the variances and correlations of the counts, at the expense of having

more parameters.
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3. Two-Level Busyness Factor Model

We consider the following two-level arrival process model, named PG2, based on the multiplicative

combination of independent period busyness factors B̃j and the busyness factor for the day, B̄.

Let Gamma(a, b) denote a gamma distribution with mean a/b and variance a/b2. We assume that

B̄, B̃1, . . . , B̃p are independent with

B̄ ∼Gamma(β,β) and B̃j ∼Gamma(αj, αj) for each j, (8)

for some positive parameters β,α1, . . . , αp, and we take

Bj = B̃jB̄ (9)

as the busyness factor of period j. This combination permits one to better control the correlation

between the Bj’s, in comparison with the previous special cases where it was either 0 or 1.

Simple formulas are available for the moments in this model:

Var(Bj) =
(1 +β+αj)

βαj
and Cov(Bj,Bk) =

1

β
.

Then, Var(Xj) and Cov(Xj,Xk) are easily obtained from (2) and (6). Table 1 summarizes some

statistical properties of this model and compares with the simpler special cases. We see how the

additional terms for this PG2 model provide more flexibility to match the variances and correla-

tions. Since we have simple formulas for the moments, moment-matching estimators (MMEs) for

this model are easy to compute (see Section A.1). However, in experiments where we generated

data sets by simulation from the model with known parameters, and then estimated these param-

eters by moment matching, we found that these MMEs often returned values far off the correct

ones, which indicates a lack of accuracy and robustness.

Table 1 Some statistical properties (moments) for the PGsingle, PGindep, and PG2 models.

Model E[Xj] Var(Xj) Corr(Bj,Bk) Corr(Xj,Xk)
PGsingle λj λj +λ2

j/β 1 [(1 +β/λj)(1 +β/λk)]
−1/2

PGindep λj λj +λ2
j/αj 0 0

PG2 λj λj +
(1+β+αj)λ

2
j

βαj
[(1 + 1+β

αj
)(1 + 1+β

αk
)]−1/2 [(1 + β

λj
+ 1+β

αj
)(1 + β

λk
+ 1+β

αk
)]−1/2

Maximum likelihood estimators (MLEs) are generally more robust and accurate. However, while

these estimators were readily available for the previous special cases, here they are much harder

to compute. More specifically, the available expression for the density of Xj, which appears in the

likelihood function for each j, involves an integral with respect to the realization of the vector B of

unobserved daily busyness factors (see (3) in Section A.2) and we do not know how to evaluate this
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integral in closed form. We opted to develop parameter estimation methods for this model based

on Monte Carlo estimation of the log-likelihood function. The stochastic optimization algorithm

that we use to approximate the MLEs for the PG2 model is described and studied in Section A.2.

When comparing the MLEs with the MMEs using simulation experiments as described earlier,

using mean square error in the parameter estimation, for various sets of parameter values, MLEs

were always clear winners.

In this PG2 model, the parameters α1, . . . , αp can be specified independently from each other,

without any functional relationship between them. Alternatively, one may impose as an additional

constraint that αj as a function of j belongs to some class of smooth functions, e.g., a cubic spline.

This can provide a more realistic model in the situation where αj does not vary with j too wildly

on a given day. Forcing αj to obey a spline as a function of j is a way to reduce the overfitting

of the model. We will examine the smoothing spline variant of the model named PG2sp in our

case studies. The additional ingredients required to compute the MLE for the PG2sp model are

described in Section A.6.

4. Extended Two-Level Busyness Factor Model

The PG2 model of Section 3 is more flexible than PGindep and PGsingle, but on close examination

we see that in comparison with PGindep, it has only one additional parameter β, so the additional

flexibility in matching all the variances and correlations is still limited. This is because the busyness

factor B̄ for the day affects all the periods in exactly the same way. To remove this restriction,

and to add flexibility in matching the correlations, here we raise the factor B̄ to some power pj in

each period j, where the exponents pj’s may differ across periods, and we normalize so that the

expectation of B̄pj remains equal to 1 in each period. The exponent permits one to modulate the

impact of B̄ differently across periods. For example, it could cover a situation where the busyness

factor for the day affects the arrival rates much more strongly in the middle of the day than in the

evening. According to our data, such types of situations do occur.

This yields the following model, which we call PG2pow :

Bj = B̃jB̄
pj/γ(pj) (10)

where γ(pj) =E[B̄pj ] = β−pjΓ(pj +β)/Γ(β) is the appropriate normalization constant. This model

remains in the class of gamma-Poisson processes as the distribution of B̄pj belongs to the class

of generalized gamma. For any fixed value of β > 0, when pj → 0 we have Var(B̄pj )→ 0 and B̄pj

becomes degenerate at 1, while when pj→∞, Var(Bpj )→∞. Therefore, the impact of the daily

busyness factor B̄ on period j can be made arbitrarily small by decreasing pj, eventually completely
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decorrelating this period j from the rest of the day, and arbitrarily large by increasing pj. The

variances and covariances of the counts are given by

Var(Xj) = λj +λ2
j

[
(1 +αj)Γ(β)Γ(2pj +β)

αjΓ(pj +β)2
− 1

]
, (11)

Cov(Xj,Xk) = λjλk

[
Γ(β)Γ(pj + pk +β)

Γ(pj +β)Γ(pk +β)
− 1

]
. (12)

We see that if either pj = 0 or pk = 0, then Cov(Xj,Xk) = Corr(Xj,Xk) = 0. Thus, in this extended

model, the correlations and the variances can be further disentangled compared to the PG2 model.

Parameter estimation for this model can be performed using techniques similar to those used for

the PG2 model. Further details are given in Section B.

5. A normal copula for the vector of rates

The most general way of modeling the distribution of B = (B1, . . . ,Bp) is to select an arbitrary

marginal distribution for each Bj, and to model the dependence by a copula (Nelsen 1999). Here

we propose a model that captures the dependence by a normal copula. The advantages of using

a normal copula are that it can match (approximately) all the correlations between the Xj’s, the

parameters are not too hard to estimate even when the dimension p is large, and it is not difficult to

generate the vector B from this model. The resulting model has much more flexibility to match the

variances and correlations than the previous ones, at the expense of having many more parameters.

This type of model based on a normal copula is also known as a NORTA (NORmal To Anything)

model (see, e.g., Hörmann et al. 2004, Avramidis et al. 2009b). We call it PGnorta. Channouf and

L’Ecuyer (2012) also proposed a normal copula model, but it was to model directly the vector

X of arrival counts instead of the vector B as we do here. Estimating the copula parameters is

more difficult in our case because B is unobserved. The marginal distributions of each Bj can

be arbitrary over [0,∞). In our development and experiments, we use a gamma distribution with

mean 1, as in the previous models.

5.1. Normal copula with arbitrary correlation matrix and gamma marginals

We assume that each Bj has a Gamma(αj, αj) distribution, with cumulative distribution function

(cdf) Gj. Each αj’s is estimated individually by MLE as in the PGindep model. The dependence

between the Bj’s is modeled by a normal copula, defined as follows. Recall that a copula is a

multivariate distribution whose marginals are all uniform over the interval (0,1). A normal copula

in p dimensions is a special type of copula that can be specified by selecting an arbitrary (valid)

p× p correlation matrix RZ. To generate a random vector U from that copula, we generate Z =

(Z1, . . . ,Zp) from the multinormal distribution with mean zero and covariance matrix RZ, then we
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put U = (U1, . . . ,Up) = (Φ(Z1)), . . . ,Φ(Zp)) where Φ is the standard normal cdf. Then to generate

B from this copula, we simply put Bj =G−1j (Uj)
def
= inf{x∈R :Gj(x)≥Uj} for all j. The choice of

RZ defines implicitly the covariance matrix of B, which in turn determines the covariance matrix

of X. We want to choose RZ to match the empirical correlations for X observed in the data. As

generally recommended because it is more robust (Hörmann et al. 2004, Avramidis et al. 2009b),

we want to match the Spearman (or rank) correlations between the Xj’s. With this approach,

the modeling of marginal distributions and correlations is highly decoupled, since the correlations

are estimated separately from the marginals. The variances and correlations of the Xj’s can be

matched very closely, as with the model of Channouf and L’Ecuyer (2012). Our results with real

data will confirm this.

For each j, let Fj be the cdf of Xj and σ2
Fj

= Var(Fj(Xj)). The Spearman correlation between

Xj and Xk is

rXj,k =
E{Fj(Xj)Fk(Xk)}−E{Fj(Xj)}E{Fk(Xk)}

σFjσFk
.

Here, Fj(Xj) is not a uniform random variable over (0,1), because Xj is a discrete random variable.

After the parameters αj have been estimated by MLE, we have estimates F̂j of the marginal dis-

tributions Fj (obtained by replacing each αj by its estimate in the function Fj), and the Spearman

correlation for the model that uses these estimates is

r̃Xj,k =
E{F̂j(Xj)F̂k(Xk)}−E{F̂j(Xj)}E{F̂k(Xk)}

σF̂jσF̂k
, (13)

Let r̂Xj,k be the (empirical) Spearman correlation coefficient in the data. For each pair (j, k), we

want to find ρZj,k for which

r̃Xj,k = r̂Xj,k. (14)

This is a root finding problem in which the left side, given in (13), contains an expectation defined

as a double integral inside a double sum: we must integrate with respect to the joint distribution

of (Bj,Bk), then sum with respect to the (conditional) Poisson distributions of Xj and Xk. This is

more complicated than in Channouf and L’Ecuyer (2012), who could use the root-finding method-

ology of Avramidis et al. (2009b), which does not apply to our case. To approximate the root, we

use a stochastic approximation (SA) root-finding method in which we estimate the multivariate

expectation by Monte Carlo for each value of ρZj,k that is considered. The algorithm is given in

Section C. For a recent coverage of stochastic root finding methods, see Pasupathy and Kim (2011).

As is typically the case when a large correlation matrix is estimated from data, the matrix

whose entries are the ρZj,k just obtained may not be a valid (positive definite) correlation matrix.
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In our experiments, these matrices were always either positive definite or only slightly negative

definite. Those that were not positive definite were modified slightly into positive definite ones by

applying a small perturbation using the heuristic of Davenport and Iman (1982), which finds a

valid correlation matrix which is as close as possible to the matrix with entries ρZj,k. This method

was also used successfully by Channouf and L’Ecuyer (2012).

5.2. Parametric models for the correlation matrix

In the PGnorta model presented so far, there are p(p− 1)/2 correlations to specify in RZ. This

can be too many when p is large, and may open the door to overfitting. To prevent this, we can

parameterize the matrix RZ by a small number of parameters, then estimate those parameters. Here

we consider two such parametric models, namely PGnortaAR1, where entries of the correlation

matrix RZ are assumed to obey an AR(1) process, ρZj,k = ρ|j−k|, and PGnortaARM, where the

AR(1) process is extended to ρZj,k = aρ|j−k| + c for j 6= k, and ρZj,j = 1. Channouf and L’Ecuyer

(2012) have used successfully similar parameterizations in their model for X and pointed our their

usefulness for the situation where the correlation between the counts may drop sharply between

lag 0 and lag 1, then decays slowly as a function of the lag |j − k|, and does not approach 0. We

have observed this type of behavior in some of our data sets. It can happen when some factor

has a strong impact over the entire day. The parameters of these two new models are estimated

by matching the models to the correlation matrix estimated by the algorithm of Section C, using

least-squares fitting.

6. Case Studies

In this section we report the results of fitting the different models discussed previously to real data

sets obtained from three call centers located in Canada. The first one is a 24-hour emergency call

center, the second one is the commercial call center considered in Ibrahim and L’Ecuyer (2013) and

the third one is the call center of the Quebec electricity provider, Hydro-Québec. In all cases, our

data comprises only a subset of the call types. We distinguish the different days of the week, but

assume otherwise that the arrival rates have the same distributions across successive weeks. We

will see that notwithstanding the different nature of these call centers and the fact that the data

they generate have different statistical patterns, the results of the fit are qualitatively consistent

across different datasets. We compare the statistical performance of the following nine models

defined earlier: Poisson, PGindep, PGsingle, PG2, PG2sp, PG2pow, PGnorta, PGnortaAR1, and

PGnortaARM.
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6.1. An Emergency Call Center

The emergency call center operates 24 hours a day for 7 days a week. We had access to the call-

by-call data (exact arrival time of each call) over 616 successive days. The center receives calls

categorized in several dozen types. For the results reported here, we selected a subset of those types

for which the daily patterns were similar and we consider the aggregated arrival process for those

types. These results are representative of a larger set of statistical analyzes performed over different

subsets and over individual call types having sufficiently large volume. Confidentiality agreements

prevent us from providing further details.

The days are divided into p = 48 half-hour periods. At first, our days started and ended at

midnight, but we found in the data that there is often significant positive correlation between the

call volume in the evening (say between 8 p.m. and midnight) and the call volume during the

following night (say between midnight and 5 a.m.), which could not be captured well by our models

when starting the days at midnight. This type of dependence across successive days was in fact

causing estimation artifacts such as spurious humps in the correlation curves between past and

future arrival volumes during the day, due to the correlations between parts of different days in

the training dataset and not by the within-day effects. This problem was resolved by starting the

days at 5 a.m. instead of midnight. Around 5 a.m., the traffic is usually very low and there is very

little correlation between the arrival volumes before and after 5 a.m. Holidays are an exception

to this rule: the call volumes are usually larger during the night before a holiday, and smaller in

the morning of the holiday. For this reason, in a preprocessing phase before fitting our models, we

removed the data corresponding to special days (Quebec statutory holidays), for which the arrival

volumes and patterns differ significantly from the ordinary days. The arrival process for those days

would have to be modeled separately.

Some descriptive statistics. Preliminary analysis of data revealed that Friday, Saturday

and Sunday have particular statistical patterns different from the rest of the dataset. On the other

hand, statistical characteristics of weekdays from Monday to Thursday are very similar. The results

reported here are for the data from Monday to Thursday regrouped in a single dataset. This data

represents normal weekdays of the call center. Figure 1 shows the average number of calls received

per half-hour period.

To see how the DI and SDI behave when we aggregate periods, we define

Yj,d =Xj + · · ·+Xj+d−1

for j ≥ 1 and d ≤ p− j + 1. This represents the count for an aggregation of d successive periods

starting at period j. Fig. 2 shows DI(Yj,d) and SDI(Yj,d) as a function of j, for d= 1,2,4,8 (i.e., time
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Figure 1 Mean count per period for the emergency center.
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Figure 2 DI(Yj,d) (left panel) and SDI(Yj,d) (right panel) as a function of j, for d= 1, 2, 4, 8, for the emergency

center.

slots of 30 minutes to 4 hours). When we increase d for a fixed j, we find that DI(Yj,d) increases

as expected from (3), and that SDI(Yj,d) remains pretty stable, which suggests that the Bj’s are

strongly correlated (we are close to a single busyness factor model; see (5)) at least within 4-hour

time slots. The SDI also depends much on j, which shows that there is much more overdispersion

(for the selected call types) in early morning, the evening, and during the night, than in the middle

of the day. We also see in the figure that the curve for d= 8 is higher than the other three for j

between about 30 and 37. This may appear to contradict (5). The explanation is that SDI(Yj,8) is

for a time slot of 8 periods that extends on the right of period j, and the maximum of each of the

other three curves over this time slot is indeed larger than SDI(Yj,8).

Fig. 1 in Section E provides a picture of all the correlations between pairs of periods, and also

between aggregated periods in blocks of 1, 2, and 4 hours. The correlations are quite small in this

case compared with other (typical) call centers. They are larger in the evening than in the rest of

the day.
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Figure 3 Comparison of DI(Xj) as a function of j for different models and for the data, for the emergency call

center.

How the models fit the data. Fig. 3 compares the DI obtained for the six models with the

sample DI calculated from the data (also given as the lower curve in Figure 2(a)), in each 30-minute

period j. For the latter, we also provide a 95% confidence interval for the DI (indicated by the

solid lines) calculated using bootstrap from a kernel density estimator (KDE) of the data sample,

with a Gaussian (normal) kernel and a bandwidth chosen so that the variance associated with the

estimated density is equal to the sample variance in the data; see Section D for the details.

The Poisson and PGsingle models are far from matching the empirical DI; they both give an SDI

that is always too low. For PGsingle, this is due to the fact that a single parameter is available,

namely the variance of the single busyness factor, which is the SDI common to all periods in the

model. This parameter also affects the correlation between the counts across periods. If it was

set higher, so that the average SDIs would match the average SDI in the data for example, then

these correlations would be much too large compared with those in the data. The MLEs make a

compomise. The PG2 model improves the DI, but the values differ from those in the data and

wander around the boundaries of the confidence interval. The PG2pow and PGnorta provide a

much better fit.

Fig. 4 shows the correlation between the demand Y1,j in the first j periods and the demand

Yj+1,p−j in the remaining p− j periods, as a function of j, for the data and for the models where

this correlation is nonzero. The solid lines indicate 95% confidence intervals calculated from the

data using the same KDE bootstrap methodology as in the previous plot, but with a KDE based

on a two-dimensional Gaussian kernel (see Section D). We see that only PGnorta has sufficient
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Figure 4 Comparison of the sample coefficient of correlation of past and future demand for the models with

correlation, for the emergency call center.

flexibility to fit the correlations. The simplified model PGnortaARM also does well, with much

fewer parameters, while PGnortaAR1 significantly underestimates the correlations. PGsingle and

PG2 are significantly off. PG2pow does better and captures the shape of the correlation curve, but

it does not fit the correlations accurately.
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Figure 5 Comparison of the empirical coverage probability of a 95% PI of the partial demand Yj,4, for different

models, for the emergency call center.
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To test the quality of fit of both the dispersion and correlation in a combined way, we compare

some quantiles of the distribution of the partial demand over the two-hour interval (four periods)

starting at j, Yj,4, for the empirical distribution of the data and the distributions implied by the

models. For each model, we computed a prediction interval (PI) (Geisser 1993) whose boundaries

are the 0.025 and 0.975 quantiles of the implied distribution, and then computed the empirical

coverage probability of this PI, defined as the fraction of observations of Yj,4 in the data that fall in

the interval. This coverage should be close to 0.95. A coverage smaller than 0.95 indicates that the

model underestimates the dispersion, and vice-versa. Larger positive correlations across periods, or

larger variances of the counts within periods, tend to increase the variance of Yj,4, so if a model fails

to properly capture any of these two effects, the coverage should deviate from 0.95, signalling an

incorrect distribution for Yj,4 in the model, which in turn would lead to an incorrect distribution of

the waiting time distribution and of performance measure estimates when we simulate the model.

Fig. 5 shows the empirical coverage probability for each model. We see that PG2pow and PGnorta

best capture the distribution of the partial demand, and PGnorta is the best performer. For the

other four models, the PI coverage is too small in intervals 30 to 45, which correspond to the counts

in periods 30 to 48. These are the periods with the largest DIs (see Fig. 3). Recall that a larger

DI is associated with a stronger departure from the Poisson distribution and larger correlations

between the Xj’s for given correlations between the Bj’s, as we have seen earlier. As expected,

PGindep performs poorly here even though it models well the DI for one period at a time (see

Fig. 3), because it totally neglects the correlation across periods. PGsingle fails because it largely

underestimates the DI in this region. PG2 provides only a small improvement. The PG2pow model,

even though it does not exactly capture the correlations of the partial demand (see Fig. 4), is

reasonably close to the 95% percent target in all segments. This suggests that this model, whose

number of parameters remains small, could be a reasonable choice in some situations such as the

one illustrated here.

An out-of-sample goodness-of-fit analysis. In what we have seen so far, PGnorta appears

to be the best performer overall. It is the only model that matches both the variances and corre-

lations in the data, and provides 0.025 and 0.975 quantiles of the partial demand Yj,4 that match

those of the data, in all cases. On the other hand, this model has many more parameters (the entire

correlation matrix RZ) than the other ones, so it could perhaps overfit the data. For a fairer com-

parison, we now examine how the models perform for out-of-sample distributional forecasts, using

a leave-one-out technique as follows. For each i, we remove day i from the data set, re-estimate the

model without that day, and compute a PI [Li,j,d,Ui,j,d] with integer bounds, in which Yj,d will fall

with probability Pi,j,d ≈ 1−α under this model, where 1−α is a fixed number selected in advance.
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We do this for each i, j, and selected values of d. The PI boundaries are integers because Yj,d is

always an integer, and for this reason it is generally not possible to select the bounds so that the

probability of falling in the interval is exactly equal to 1− α. The difference can be significant

when Yj,d has a small mean. Then we compute the proportion of days i for which the realization

Yi,j,d of Yj,d for the removed day falls in the interval, and we compare this proportion with our best

estimate of Pi,j,d, using a sum of squares criterion, as we now explain.

To estimate the quantiles Li,j,d and Ui,j,d, we simulate n= 105 replicates of the vector of counts

(Xi,1, . . . ,Xi,p) for day i from the model estimated with day i removed, compute Yi,j,d for each

(j, d) of interest and each replicate, say yi,j,d,k for replicate k, then we compute the integers Li,j,d

and Ui,j,d so that the proportion of the n realizations yi,j,d,k that fall below Li,j,d is approximately

α/2, and the proportion that fall above Ui,j,d is approximately α/2. After that, we estimate the

average over i of the true probability Pi,j,d under the estimated model by the sample average

CVMj =
1

I

1

n

I∑
i=1

n∑
k=1

I(Ŷi,j,d,k ∈ [Li,j,d,Ui,j,d]), (15)

where I is the number of days. On the other hand, the proportion of observations in the data that

fall in the interval is

CVDj =
1

I

I∑
i=1

I(Xi,j ∈ [Li,j,Ui,j]). (16)

To measure the overall difference between the values of CVMj and CVDj, we compute the following

root mean squares deviation (RMSD) between them, averaged over the periods, scaled by a factor

of 100 (just for better readability):

RMSD = 100

√√√√1

p

p∑
j=1

(CVDj−CVMj)2. (17)

Table 2 reports this scaled RMSD for the various models, for α = 0.50, 0.25, and 0.10, and

for d = 1, 2, 4, 8. The RMSD for one period at a time (d = 1) measures the out-of-sample fit of

the marginal distributions, while those for larger d also measure the adequacy of the correlation

structure, which affects the distributions of the sums of counts over successive periods, for given

marginals. The ability to match the distribution of Yj,d for d > 1 is then related to the ability of

modeling the dependence.

Table 2 reveals that the models in which the busyness factor in each period has a gamma

distribution (PGindep, PGnorta, PGnortaAR1, PGnortaARM) have the best ability to fit the

marginal distributions (d = 1). For these models, the marginal distribution of the count in each

period is negative binomial. The PG2pow model is almost as good in fitting the marginals. The
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Table 2 RMSD for various models and pairs (j, d), for the emergency call center.

1−α= 50% 1−α= 75% 1−α= 90%
0.5 h 1 h 2 h 4 h 8 h 0.5 h 1 h 2 h 4 h 8 h 0.5 h 1 h 2 h 4 h 8 h

Poisson 10.4 14.2 19.5 24.2 27.8 10.7 16.6 23.5 31.3 37.5 8.5 13.8 21.0 30.1 38.7
PGsingle 7.1 8.9 11.3 12.4 9.9 7.2 10.0 12.5 13.5 12.0 5.3 7.8 10.1 11.4 9.0
PGindep 1.8 5.3 11.6 17.8 22.5 1.3 5.3 12.7 21.4 29.9 0.8 4.1 10.2 18.7 29.1

PG2 2.6 5.2 8.6 11.2 9.7 2.1 4.9 8.7 11.4 11.6 1.6 3.8 6.8 9.4 8.8
PG2sp 2.7 5.1 8.6 11.2 9.8 2.2 4.8 8.7 11.4 11.6 1.6 3.8 6.8 9.4 8.8

PG2pow 2.0 3.2 4.6 5.0 5.4 1.5 2.9 4.4 5.1 5.0 1.0 2.0 3.1 3.4 3.0
PGnorta 1.8 2.3 2.2 2.8 3.0 1.3 1.7 1.7 1.7 1.3 0.8 1.1 1.2 1.3 0.8

PGnortaAR1 1.8 3.3 4.6 6.2 5.5 1.3 2.4 4.5 6.1 5.9 0.9 1.4 2.4 3.5 3.6
PGnortaARM 1.8 2.8 3.8 5.3 5.3 1.3 2.4 3.4 4.3 4.5 0.9 1.5 2.2 2.7 2.8

models with strong daily busyness factor (PGsingle, PG2) do not fit well the marginal distributions,

because they are unable to track the changes in the variance of the stochastic rate over the whole

day. For d> 1, PGnorta is the best model to capture the behavior. Its simplified parametric versions

PGnortaAR1 and PGnortaARM give significantly more error in the distributional forecast. We

attribute this to the fact that the correlation between counts within the day for this particular center

varies from period to period in a more complicated way than what is assumed by these models.

In particular, there is much more correlation between nearby periods in the evening than between

nearby periods during the day; this can be seen clearly in Fig. 1 of the Online Supplement, which

shows the correlations between counts in all pairs of periods. PG2pow has a quality of fit comparable

to that of the latter two parametric models. The other models, Poisson, PGindep, PGsingle, and

PG2, do not model the correlations well and provide poor joint distributional forecasts.

6.2. A Commercial Call Center

Our second data set is from the call center of a major Canadian company, and is taken from

Ibrahim et al. (2012) and Ibrahim and L’Ecuyer (2013). The center operates from 8 a.m. to 7 p.m.

on weekdays and 8 a.m. to 6 p.m. on Saturdays. We have arrival counts data over half-hour periods

(p= 22 periods per day on weekdays) for 394 days from October 13, 2009 to November 11, 2010. In

a preprocessing step, we removed the special days (Quebec and Ontario statutory holidays). The

call center handles several call types; for our study, we have selected one of these call types having

a large volume. Preliminary data analysis revealed that Monday and Saturday have particular

statistical patterns that differ from the other days, whereas Tuesday to Friday have a very similar

pattern. Thus, we have retained the data from Tuesday to Friday, in a single dataset. It represents

a normal weekday in the call center. We will perform the same empirical analysis, model fitting,

and goodness-of-fit assessment as for the previous data set.

Figure 6 shows the average number of arrivals per period. Note that the vertical scale starts at

100. The DI and SDI as functions of the period index j for different aggregation levels d are shown

in Fig. 7. They behave similarly to those of Fig. 2, although the DI here is roughly 10 to 20 times
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Figure 6 Mean arrival count per period for the commercial call center.

larger, depending on the j and d, whereas the SDI is slightly smaller than in Fig. 2(b) on average

(about half of it in the evening). The call volumes here are about 12 to 20 times larger, and we

can conclude from (3) that this is the main reason for the larger DI. The SDI appears larger for

d= 8 than for the lower aggregations from j = 4 to j = 14, which seems to contradict (5). but this

is because the height of the d= 8 curve at j is for the aggregation of periods j to j + 7, and this

height remains smaller than the maximum height of the 30-minute curve over those 8 periods. The

correlations between counts over all pairs of periods, and for aggregated periods in blocks of 1, 2,

and 4 hours, are pictured in Fig. 2 of Section E. These correlations are much larger than for the

emergency center. There are somewhat stronger between the periods in the middle of the day, and

weaker between the early morning periods and the rest of the day.
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Figure 7 DI(Yj,d) (left panel) and SDI(Yj,d) (right panel) as functions of j, for d= 1,2,4,8, for the commercial

call center.

Fig. 8 shows the DIs per period for different models and for the data, with 95% confidence

intervals computed as in Fig. 3. Despite the larger DI here, the qualitative ranking of models

remains the same: PGindep, PG2pow, and PGnorta provide the best fit for the DI. Fig. 9 shows
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Figure 8 Comparison of DI(Xj) as a function of j for different models and for the data, for the commercial call

center.
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Figure 9 Comparison of the sample coefficient of correlation of past and future demand, for the models with

correlation, for the commercial call center.

the quality of fit for the correlation between past and future demand (the confidence interval for

this quantity is calculated as for Fig. 4). Here we observe more correlation than for the emergency

center. This is not only due to the larger volumes; the correlations are also larger between the

underlying busyness factors in our NORTA model. Only PGnorta gives a good fit here.
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Figure 10 Comparison of the empirical coverage probability of a 95% PI of the partial demand Yj,4, for different

models, for the commercial call center.

Fig. 10 presents the PI coverage for the partial demand, calculated as for the emergency center.

The Poisson and PGindep are doing very poorly, because they neglect the positive dependence

across periods. All other models perform somewhat reasonably, but PGnorta is clearly the best.

The other models fail to properly cover the data either near the beginning or near the end of the

day, or both.

Table 3 RMSD for various models and pairs (j, d), for the emergency call center.

1−α= 50% 1−α= 75% 1−α= 90%
0.5 h 1 h 2 h 4 h 8 h 0.5 h 1 h 2 h 4 h 8 h 0.5 h 1 h 2 h 4 h 8 h

Poisson 31.7 36.1 40.2 42.5 44.8 43.1 50.9 57.5 61.9 66.7 44.7 55.8 64.4 71.3 77.7
PGsingle 6.3 5.4 4.6 2.8 1.6 7.6 7.1 6.1 4.0 2.3 5.8 6.1 5.4 4.0 3.4
PGindep 3.4 11.2 20.6 28.1 35.0 3.1 13.2 27.3 39.3 48.7 2.0 12.1 26.4 41.2 51.9

PG2 5.0 4.1 3.4 2.4 1.5 4.8 4.1 5.1 4.3 2.6 3.0 2.9 3.3 2.9 2.3
PG2sp 4.7 4.2 3.4 2.4 1.3 4.5 3.9 5.2 4.3 2.7 2.8 2.7 3.5 3.1 2.8

PG2pow 3.0 3.1 2.8 2.9 1.4 2.5 3.3 4.1 2.0 0.8 1.7 3.3 3.7 2.8 2.7
PGnorta 3.3 3.5 3.1 2.0 2.3 3.2 3.0 2.7 1.2 1.3 2.0 2.4 2.2 1.7 2.0

PGnortaAR1 3.3 3.6 3.4 1.7 0.9 3.2 3.1 2.9 1.8 0.5 2.0 2.4 2.2 2.3 2.8
PGnortaARM 3.4 3.6 3.4 1.8 1.1 3.2 3.1 2.8 1.9 0.5 2.0 2.4 2.3 2.2 2.8

The results of the out-of-sample test of fit, in Table 3, are similar to those of the emergency

center. The main difference is that here, the parametric models PGnortaAR1 and PGnortaARM

perform almost as well as the PGnorta, due to the fact that the correlations between periods in

the data vary much less and are in better agreement with those parametric models. The single

busyness factor model also provides a more adequate model here than for the emergency center,
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especially when periods are aggregated, due to the fact that the correlations between periods are

significantly larger here. Finally, the PG2pow model provides a better fit for the marginals than

the models in which the marginal busyness factors are gamma distributed.

6.3. A call center from a Quebec utility society

Our third example is based on data from the call center of Hydro-Québec, a governmental society

that produces and provides all the electricity for the province of Quebec. The center operates from

8 a.m. to 6 p.m. on weekdays. We have arrival counts data over 15 minute periods (p= 40 periods

per day) for 247 days from January 1, 2011 to December 31, 2011. In a preprocessing step, we

removed the special days (Quebec statutory holidays and 29 August 2011, corresponding to the

Monday immediately following August 28, 2011 when hurricane Irene hit province of Quebec).

The call center handles several call types; for our study, we have selected one of these call types

having a large volume. Preliminary data analysis revealed that weekdays from Monday to Friday

have similar statistical patterns. Thus, we have retained the data from Monday to Friday, which

represent a normal weekday in the center, in a single dataset. We do the same analysis as for the

previous two cases.

5 10 15 20 25 30 35 40
60

70

80

90

100

110

120

130

140

150

Period

M
ea
n
Co

un
t

Figure 11 Mean arrival count per period for the utility call center.

Fig. 11 shows the average number of calls per period, while Fig. 12(a) gives the DI and SDI.

The arrival volumes here, as well as the DI and SDI, all lie between those of the two previous

call centers, except for the SDI in the middle of the day, which is slightly higher here. Again, the

numbers agree with (3). The call volumes are about half of those of the commercial center The

correlations between counts are pictured in Fig. 3 of the Online Supplement. They are slightly

smaller overall than for the commercial center.

Fig. 13 shows DI(Xj) as a function of j, for different models and for the data, with a confidence

interval computed for the data as in Fig. 3. PG2 provides a better fit for the DI here than for the

other datasets. Overall, all models have more difficulty fitting the DI here than in the previous
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Figure 12 DI(Yj,d) (left panel) and SDI(Yj,d) (right panel) as functions of j, for d= 1,2,4,8, for the utility call

center.
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Figure 13 Comparison of DI(Xj) as a function of j for different models and for the data, for the utility call

center.

cases, but they stay within the confidence interval most of the time. Fig. 14 shows the quality of

fit for the correlation between past and future demand, similar to Fig. 4. Only PGnorta gives a

good fit. Fig. 15 gives the PI coverage for the partial demand Yj,4, calculated as in Fig. 5. The

Poisson and PGindep models are doing very poorly as usual. All other models perform somewhat

reasonably, but PGnorta is the best among them. The other models miss the proper coverage near

the beginning or the end of the day, or both.

Table 4 presents the results of the out of sample analysis. The PG2pow model again provides a

bit better fit for the marginals than the models based on gamma marginals for the busyness factors.

This suggests that one could improve the modeling by selecting alternative marginal distribution
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Figure 14 Comparison of the sample coefficient of correlation of past and future demand for the models with

correlation, for the utility call center.
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Figure 15 Comparison of the empirical coverage probability of a 95% PI of the partial demand Yj,4, for different

models, for the utility call center.

of the counts (i.e., explore alternatives to the gamma distribution for the rates). For the tails of the

distribution (75% and 90% target cover), PG2pow provides the best coverage (smallest RMSD)

for all aggregation levels. This can be explained by the fact that in this dataset we have a strong

influence of the daily busyness factor, as could be seen in Fig. 14 and in Fig. 3(a) of the Online

Supplement. which show that the correlations between periods rarely falls below 0.4 or 0.5, even
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Table 4 RMSD from the model cover, for the utility call center.

1−α= 50% 1−α= 75% 1−α= 90%
0.25 h 0.5 h 1 h 2 h 4 h 0.25 h 0.5 h 1 h 2 h 4 h 0.25 h 0.5 h 1 h 2 h 4 h

Poisson 29.5 34.2 38.3 41.4 44.2 38.9 47.1 53.9 59.6 64.6 39.2 50.9 59.7 67.5 74.4
PGsingle 8.1 7.6 6.1 4.4 2.1 8.6 8.0 6.9 4.0 1.7 7.3 7.0 5.4 3.1 1.4
PGindep 5.4 9.4 18.6 26.5 33.6 4.5 10.5 24.6 36.5 46.3 1.8 8.4 22.3 37.8 51.2

PG2 5.1 4.1 4.6 4.1 3.2 4.4 3.4 3.8 3.3 2.2 2.0 3.0 3.5 2.5 1.7
PG2sp 5.1 4.0 4.6 4.1 3.1 4.4 3.3 3.8 3.2 2.1 2.1 3.0 3.5 2.4 1.7

PG2pow 4.8 3.4 3.1 3.1 2.5 4.0 2.3 2.4 2.7 2.0 1.5 1.7 1.6 1.1 1.1
PGnorta 5.3 4.7 3.5 2.6 1.6 4.4 4.1 3.9 3.4 2.7 1.8 2.2 2.4 2.3 2.4

PGnortaAR1 5.2 5.9 6.1 5.6 4.7 4.4 5.4 6.0 6.6 5.7 1.8 2.8 3.7 4.0 3.6
PGnortaARM 5.3 4.8 4.3 3.5 2.2 4.4 4.0 4.2 4.0 3.2 1.8 2.3 2.5 2.7 2.2

for periods that are far away in the day. At the same time, Var(Bj) varies significantly over the

day (see Fig 12(b)); this cannot be captured by PG2 or PG2sp, but can be captured by PG2pow,

which then provides a better cover. The parametric model PGnortaARM is close to PGnorta here,

but it still fails to capture some of the variability in the intraday correlations. It performs better

than PGnortaAR1 because it better captures the slowly decreasing correlation profile. Overall, the

data here seems to agree quite well with PG2pow.

7. Impact of the Model on Performance Measures: An Illustration

In this section, we illustrate the impact of the choice of the arrival process model on the service

level (SL) and the average waiting time (AWT) of calls, in each period of the day. The SL in a

period is defined in our example as the percentage of calls with waiting time less than 120 seconds,

among those that arrived in that period and did not abandon before 120 seconds. The SL and

AWT are averages per call in the long-run (i.e., over an infinite number of days). We took exactly

the same data as for the Quebec utility society of Section 6.3, and the same estimated arrival

process models. There is a single call type and the service times have a lognormal distribution

with mean 206.44 and variance 23667 (in seconds), as estimated from the data. Each waiting call

abandons (if not yet served) after an exponential time with mean 2443 seconds. We computed

a reasonable staffing vector (the number of agents answering the calls in each period) using the

optimization tools in ContactCenters (Buist and L’Ecuyer 2012), with the Poisson arrival-rate

model. The retained staffing vector for the 40 time periods is (16, 24, 31, 36, 43, 48, 51, 52, 56, 60,

62, 65, 67, 67, 66, 65, 62, 61, 60, 61, 64, 64, 63, 63, 64, 64, 64, 64, 65, 65, 64, 64, 62, 60, 58, 56, 53,

49, 48, 44).

We performed 10,000 simulation runs to estimate the SL and AWT for each period of the day, for

each of the following five arrival-process models (independently across models): Poisson, PGsingle,

PGindep, PG2, PG2pow, and PGnorta. The results are in Figure 16. We see that the choice of

model makes a significant difference on both the SL and AWT. For example, the average AWT

for the day is below 100 seconds with the PG2 and PG2pow models, and over 180 seconds with
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Figure 16 Evolution of the SL (left) and AWT in seconds (right) during the day for the Quebec utility society.
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Figure 17 Histogram of the distribution of the daily SL (left) and daily AWT (right), with different models, for

the Quebec utility society.

the PGnorta model. The quality of service is the worst with PGnorta, and this is particularly

true around the end of the day. Note that the correlations are much higher with PGsingle than

PGnorta (Figure 14), so the worst quality of service with PGnorta could seem surprising. It can

be explained by fact that the variance of the busyness factor is smaller with PGsingle than with

PGnorta (Figure 13). In view of Figures 14 and 13, PGnorta seems the most appropriate model.

We also computed the SL and the AWT for each day separately (they are now random variables),

over the 10,000 days. Histograms of the corresponding empirical distributions are given in Figure 17,

for PGsingle, PG2, PG2pow, and PGnorta. We find that the percentage of days in which the SL

is very low (e.g., less than 30%) or the AWT is very small (e.g., more than 300 seconds) is much

larger with PGsingle and PGnorta than for the other models.

8. Conclusions

In this paper we have proposed several new models for the daily arrival process in a call center.

These models are based on a doubly stochastic process for which the daily rates are assumed to



Oreshkin, Régnard and L’Ecuyer: Rate-Based Arrival Process Models for Call Centers
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 31

have an arbitrary joint distribution and the arrival counts are Poisson given the rates. They include

the two-level busyness factor model, its extended version, and a normal copula model for the vector

of rates. The proposed models generalize existing rate-based models for daily arrival processes

and offer different degrees of complexity and detail in modeling daily arrivals. We have developed

statistical parameter estimation approaches for these models and tested the quality of fit of the

proposed models on three data sets from real call centers. Our study reveals that the proposed

models are capable of better fitting the data and capturing their important statistical characteristics

such as overdispersion and strong correlations across the day than the existing models. According

to our out-of-sample analysis, among the proposed models the extended two-level busyness factor

model and the normal copula for the vector of rates model are the best models overall over our

three datasets. An important message coming out from our study is that none of the models is

universally good and model selection should be made based on the available data for a specific call

center. For example, in our study the extended two-level busyness factor model outperformed the

more complex copula model for the vector of rates on the utility call center dataset, which seems

to exhibit the statistical patterns closely mimicking those of the extended two-level busyness factor

model.
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