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Abstract

The effective management of call centers is a challenging task mainly because managers
are consistently facing considerable uncertainty. Among important sources of uncertainty
are call arrival rates which are typically time-varying, stochastic, dependent across time
periods and across call types, and often affected by external events. Accurately modeling
and forecasting future call arrival volumes is a complicated issue which is critical for making
important operational decisions, such as staffing and scheduling, in the call center. In this
paper, we review the existing literature on modeling and forecasting call arrivals. We also
discuss the key issues in building good statistical arrival models. Additionally, we evaluate
the forecasting accuracy of selected models in an empirical study with real-life call center
data. We conclude by summarizing future research directions in this important field.

1. Introduction

Call center is a large and important service industry with more than 2.7 million agents
working in the United States and 2.1 million agents working at Europe, the Middle East,
and Africa ([1]). Efficiently managing a call center is a challenging task because managers
have to make staffing and scheduling decisions to balance between staffing cost and service
quality, which always contradict, in the presence of uncertain arrival demands. Most staffing
or scheduling plans start with forecasting customer call arrivals, which is highly stochastic.

Accurately forecasting call arrivals is one of the keys to achieve optimal operational efficiency,



since under-forecasting leads to under-staffing and then long customer waiting, while on the
other hand over-forecasting results in a waste of money on over-staffing.

The process of customer arrivals is nontrivial. This process can be modeled as a Poisson
arrival process and has been shown to possess several features ([1, 13, 18, 20, 50]). One of the
most important features is that the arrival rate is time varying, which adds complexity to
the forecasting process. Call arrival rates may exhibit intra-day, weekly, monthly, and yearly
seasonalities. Given the time-varying arrival rate, the doubly stochastic arrival process can
be modeled as a non-homogeneous overdispersed Poisson process. Call center arrivals also
show different types of dependencies including intra-day (within-day), inter-day, and inter-
type dependence. A reasonable forecasting model needs to appropriately account for some
of all types of dependencies that exist in real data.

In the presence of intra-day and inter-day dependence of call arrival rates, standard time
series models may be applied to forecast call arrivals, for example Autoregressive Integrated
Moving Average Models and Exponential Smoothing ([22]). In addition, some recent papers
have proposed Fixed Effect Models and Mixed Effect Models to account for within-day
dependence, inter-day dependence, and inter-type dependence of call arrivals. Dimension
reduction or Bayesian techniques are also adopted in the existing literature. Detailed review
of various existing forecasting approaches is given in Sections 3 and 4.

We then conduct a case study and implement several recently proposed forecasting ap-
proaches on a Canadian call center data set, which reveals the practical features of those
approaches.

The remainder of the paper is organized as follows. In Section 2, we discuss the key
features of call center arrival process. In Section 3, we review some relevant theories that
can be applied to forecasting call center arrivals. In Section 4, we review forecasting methods
that are proposed in the existing literature. We then conduct a case study to compare several

models proposed in the recent literature in Section 5.



2. Key Properties of Call Center Arrival Processes

A natural model for call arrivals is the Poisson arrival process ([1, 13, 18, 20, 50]). This
model is theoretically justified by assuming a large population of potential customers where
each customer independently makes a call with a very small probability; the total number
of calls made is then approximately Poisson. As mentioned in [27], the so-called Poisson
superposition theorem is a supporting limit theorem, e.g., see [8].

Recent empirical studies have shown multiple important properties of the call arrival
process, many of which are not consistent with the Poisson modeling assumption. In this

section, we describe those properties in detail; for a more abridged description, see §2 in [24].

Time dependence of call arrival rates. One of the most important properties of call
arrival rates is that they vary with time. In particular, call arrival rates typically exhibit
intraday (within-day), daily, weekly, monthly, and yearly seasonalities. We illustrate this
time-dependence property in Figures 1, 2, and 3 (taken from [23]), which show arrival pat-
terns that are commonly observed in call centers.

In Figure 1, we plot the number of calls per day arriving to the call center of a Canadian
company between October 19, 2009 and September 30, 2010. Figure 1 shows that there exist
monthly fluctuations in the data. For example, the moving average line in the plot, which is
computed for each day as the average of the past 10 days, suggests that there is an increase
in call volume during the months of January and February, i.e., days 54 to 93 in the plot.

In Figure 2, we illustrate weekly seasonality by plotting daily arrival counts, of the same
call type as in Figure 1, over two consecutive weeks in the call center. The call center is
closed on weekends, so we have a total of 10 workdays in the plot. Figure 2 clearly shows that
there is a strong weekly seasonality in the data. Such weekly patterns are very commonly
observed in practice, e.g., see Figure 1 in [47] and Figure 2 in [48].

For a more microscopic view of arrivals, we plot half-hourly average arrival counts, per

weekday, in Figure 3. These intraday averages constitute the daily profile of call arrivals.



-
8000 T T . — —©— Arrival Counts

o T © (r @ Moving average
il

7000 |t | 600
« 6000 500
5
3
© 5000 «» 400
= 2
:
= ©
‘T 4000 = 300
© £
E <
(s}
= 3000} © 1 200

]
2000 b 100 -
cc
O] 0]
1000 L L . . . 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 0 20 40 60 80 100 120 140 160 180 200 220
(10/19/09) Day (09/30/10) Number of half-hour periods
Figure 1: Daily call arrival counts over succes-  Figure 2: Daily call arrival counts over two
sive months in a Canadian call center. consecutive weeks in a Canadian call center.

Figure 3 shows that call volumes are higher, on average, on Mondays than on the remaining
weekdays. Figure 3 also shows that all weekdays have a similar daily profile: there are two
major daily peaks for call arrivals. The first peak occurs in the morning, shortly before
11:00 AM, and the second peak occurs in the early afternoon, around 1:30 PM. (There is
also a third “peak”, smaller in magnitude, which occurs shortly before 4:00 PM on Mondays,
Tuesdays, and Wednesdays.) Such intraday arrival patterns are also characteristic of call
center arrivals; e.g., see [3, 6, 16, 18, 45].

Given that arrival rates are time-varying, which is not accounted for in a Poisson arrival
process, a natural extension is to consider a nonhomogeneous Poisson process with a deter-
ministic and time-varying arrival-rate function. For simplicity, it is commonly assumed that
call arrival rates are constant in consecutive 15 or 30 minute intervals during a given day;
e.g., see [11, 21, 31].

Nevertheless, it is important to perform statistical tests to confirm that it is appropriate
to model call center data as a nonhomogeneous Poisson process. [11] proposed a specific
test procedure based on Kolmogorov-Smirnov test and did not reject the null hypothesis
that arrivals of calls are from a nonhomogeneous Poisson process with piecewise constant

rates. [28] examined several alternative test procedures which have greater power compared
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Figure 3: Intraday profile of call arrival counts per weekday in a Canadian call center.

to the one suggested in [11]. [27] applied Kolmogorov-Smirnov tests to banking call center
and hospital emergency department arrival data and showed that they are consistent with
the nonhomogeneous Poisson property, but only if certain common features of data have
been accounted for including: data rounding, interval partition and overdispersion caused

by combining data.

Overdispersion of arrival counts. A consequence of the Poisson modeling assumption
is that the variance of the arrival count in each time period is equal to its expectation during
that period. However, there is empirical evidence which invalidates this assumption. Indeed,
it has been observed that the variance of an arrival count per time period is usually much
larger than its expected value; see [3, 6, 26, 43]. One way of dealing with this overdispersion
of count data is to assume that the Poisson arrival process is doubly stochastic, i.e., that the
arrival rate itself is a stochastic process; e.g., see [3, 6, 23, 26, 37, 41, 42, 51].

A doubly stochastic Poisson process can be viewed as a two-step randomization: A

stochastic process (for the arrival rate) is used to generate another stochastic process (for



the call arrival process) by acting as its intensity. We now illustrate why a doubly stochastic
Poisson process is a way to deal with a higher variance in the arrival count data. Denote
by X, the number of arrivals in a given period j, and let A; denote the cumulative arrival
rate (its integral) over period j. Then, assume that conditional on A;, X, has a Poisson
distribution with mean A;. To simplify notation, we assume in this paper that all periods
have the same length and also that the time unit is equal to one period. Then, when the
arrival rate is constant over each period, this rate is the same as the cumulative rate A;, and

we denote both by A;. By conditioning on A;, the variance of X; is given by:

Var[X;] = E[Var[X;|A;]] + Var[E[X;|A;]] = E[A;] + Var[A;] . (2.1)

With a random arrival rate function, we have that Var[A;] > 0 on the right-hand side of
(2.1), which accounts for the additional variance in Var[X}].

To model the doubly stochastic Poisson process, [33] proposed a Poisson mixture model
with a parametric form of the random Poisson arrival rate. They then incorporated the
Poisson mixture model into the M/M/n + G queue and derived asymptotically optimal

staffing levels (c-staffing).

Interday and Intraday dependencies. In real-life call centers, there is typically evi-
dence for dependencies between the arrival counts, or arrival rates, in different time periods
within a single day, or across several days; e.g., see [3, 6, 15, 40, 45, 53]. Those interday
(day-to-day) and intraday dependencies typically remain strong even after correcting for de-
tectable seasonalities. Indeed, it is important to do such a correction to avoid erroneously
overestimating dependencies in the data.

In Tables 1 and 2 we illustrate interday and intraday correlations in the same call center as
in Figures 1-3. Tables 1 and 2 illustrate several properties which are very commonly observed
in practice: (i) correlations are strong and positive between successive weekdays; (ii) interday

correlations are slightly smaller with longer lags; (iii) Mondays are less correlated with the



Weekday | Mon Tues. Wed. Thurs. Fri.
Mon. 1.0 048 035 035 0.34
Tues. 1.0 0.68 0.62 0.62
Wed. 1.0 0.72  0.67

Thurs. 1.0 0.80
Fri. 1.0

Table 1: Correlations between arrival counts on successive weekdays in a Canadian call
center.

Half-hour periods | (10, 10:30) (10:30, 11) (11, 11:30) (11:30, 12) (12, 12:30)
(10, 10:30) 1.0 0.87 0.80 0.73 0.66
(10:30, 11) 1.0 0.82 0.74 0.71
(11, 11:30) 1.0 0.83 0.80
(11:30, 12) 1.0 0.81
(12, 12:30) 1.0

Table 2: Correlations between arrivals in consecutive half-hour periods on Wednesday morn-
ing in a Canadian call center.

remaining weekdays; (iv) correlations are strong and positive between successive half-hourly
periods within a day; and (v) intraday correlations are slightly smaller with longer lags.

There are different measures that could be used to capture interday and intraday de-
pendencies in call arrival data. The most commonly used measure is Pearson’s correlation
coefficient which captures linear dependence in the data; e.g., see [3, 6, 23, 40]. However,
since dependencies may not be linear, it is also useful to consider alternative measures such
as rank correlation coefficients; see [15] and references therein. For example, Spearman’s
rank correlation coefficient measures how well the relationship between two variables can be
described using a monotonic, but not necessarily linear, function.

Mixed-effects models ([3, 23]) and, more generally, copulas ([15, 25]) are ideally suited to



Type B Type A1 10, 10:30) (10:30, 11) (11, 11:30) (11:30, 12) (12, 12:30)
(10, 10:30) 0.75 0.72 0.67 0.60 0.59
(10:30, 11) 0.76 0.73 0.72 0.64 0.62
(11, 11:30) 0.66 0.65 0.67 0.67 0.63
(11:30, 12) 0.60 0.56 0.63 0.63 0.63
(12, 12:30) 0.58 0.54 0.58 0.65 0.62

Table 3: Correlations between Type A and Type B arrivals in consecutive half-hour periods
on Wednesday in a Canadian call center.

easily capture interday and intraday dependencies in call center arrival data. Models that
fail to account for positive interday and intraday dependence in call arrivals may give an
overoptimistic view of call center performance measures, and the resulting errors can be very

significant; see [6, 7, 43, 44].

Intertype dependencies. In multi-skill call centers, there may be positive dependencies
between the arrival counts, or arrival rates, corresponding to different call types. For one
example, this could occur in multilingual call centers where the same service request is
handled in two or several languages. For another example, this may be due to promotions
or advertisements which affect several services offered by the same call center. Neglecting
dependencies between different call types may lead to overloads, particularly when the same
agent handles several correlated call types.

In Table 3 (taken from [23]), we present estimates of correlations between half-hourly
arrival counts for two different call types, Type A and Type B. In Table 3, we focus on
the same consecutive half-hour periods as in Table 2. Table 3 illustrates that intertype
correlations can be strong and positive. Here, call arrivals to the Type A queue originate in
the province of Ontario, and are mainly handled in English, whereas arrivals to the Type B

queue originate in the province of Quebec, and are mainly handled in French. Otherwise,



arrivals to both queues have similar service requests. Thus, it is reasonable that there exist
correlations between their respective arrival processes. There has been some recent effort to

model intertype dependencies in the data; see [23] and [25].

Using auxiliary information. Auxiliary information is often available in call centers to
improve point or distributional forecasts considerably. For example, when a company sends
notification letters to customers, or makes advertisements, this may trigger a large volume
of calls; see [30]. Also, large sporting events or festivals can bring a significant increase of
calls to emergency systems; see [16].

The past service level in the call center may also be a valuable source of information
for predicting future arrivals. For example, long previous delays may lead to a high call
abandonment rate, which in turn may lead to more redials in the future. Moreover, when
the quality of service is poor, callers may not have their problems resolved during the first call
that they make, and they may need to reconnect later. Ignoring such redials and reconnects
may lead to considerably underestimating call arrival counts; see [17].

Finally, in certain types of call centers, for example where people may call to report
power outages or those designated to emergency services, bursts of high arrival rates over
short periods of time do occur. In this context, an important accident may trigger several
dozen different calls within a few minutes, all related to the same event, resulting in a much
larger than expected number of calls during that time frame; e.g., see [29] for the modeling
of peak periods in a rural electric cooperative call center.

In recent years, there have been a few studies on forecasting call arrivals. In §3, we review

some relevant theoretical background, and in §4 we review the relevant literature.

3. Theoretical Background

In this section, we review some relevant theory. Let X; denote observations taken at equally-

spaced intervals. Usually, X; is the number of call arrivals per time period, such as a half-hour



interval or a day. Alternatively, X; may also be the rate of call arrivals per time period.

3.1. Autoregressive Integrated Moving Average (ARIMA) Models

ARMA Models. Since an ARIMA model is a generalization of an autoregressive moving
average (ARMA) model, we begin by describing the latter.
We say that the process {X;,t > 0} follows an ARMA model of orders p and ¢, denoted

by ARMA(p, q), if it can be written in the following form:

Py (B)(Xi — ) = Og(B)er (3.1)
where:
P, q are non-negative integers,
B is  the backshift operator defined by BX; = X, 1,
$,(B) = 1-¢:B—..— B,
0,B) = 1-6B—..—-0,B",
€ are independently and identically distributed (i.i.d.) as N(0,0?).

We call ¢;, 1 <@ < p, the autoregressive parameters and ¢;,1 < j < ¢, the moving-average
parameters. We call p the location parameter. We assume that all roots of the polynomials
®,(-) and ©4(+) lie outside the unit circle. This will guarantee that the process X; is both
stationary and invertible; see [10] for additional details. In what follows, we consider special

cases of (3.1) by assigning specific values to the parameters p and g.

MA Models. Letting p =0 and ¢ =1 in (3.1) yields:

Xe—pu=(1—-0B)es =€ — br1e11 . (3.2)

This is called a moving-average model of order 1, and is denoted by MA(1). Intuitively, ¢

and ¢_; in (3.2) can be interpreted as shocks that disturb X; and move it away from the

10



level p. The model in (3.2) means that ¢, and ¢;_; affect X; in the proportions 1 and —#6,,
respectively. However, for a fixed s, each e, will have no effect on the process beyond time
s + 1. That is, the effect of each shock in the model does not persist with time.

In order to obtain MA models of higher orders, simply let ¢ > 1 and p = 0 in (3.1). For

example, the expression for an MA(g) model is given by:

Xt = € — 91675,1 - 92675,2 — .. Qth,q . (33)

AR Models. Letting p=1and ¢ =0 in (3.1), along with |¢;| < 1, yields:

1—gB)Xi—p) =Xs —p— 1 Xe1 =€ . (3.4)

This is called an autoregressive model of order 1, and is denoted by AR(1). Expanding (3.4)

by exploiting the relation between X; and X;_; yields the following expression:

Xt — U= € -+ ¢€t71 -+ ¢26t72 + ... y (35)

which is a special case of an MA model where the effects of all previous shocks, €, for s <,
persist at time ¢; however, their respective influences decay exponentially since |¢1] < 1.
In order to obtain AR models of higher orders, simply let p > 1 and ¢ = 0 in (3.1). For

example, the expression for an AR(p) model is given by:

Xt = U -+ ngt_]_ + 92Xt—2 + ...+ ert—p + € . (36)

Differencing and ARIMA Models. The modelsin (3.1), (3.2), and (3.4) are all station-
ary models. This means that, for every k, the distribution of the vector (X, Xyi1, ..., Xitk)
is independent of ¢ and depends only on k. For example, the assumption that |¢| < 1 in

(3.4) ensures for the stationarity of the process. For example, to see why it is a necessary

11



condition, consider the same AR(1) model but let ¢; = 1. Then, based on (3.5), we obtain
that:

Xt — U= Xt—l + € — €+ €1 + €t—9 + .. s (37)

where the effect of each €5, s < ¢, is permanent. It is not difficult to see that (3.7) implies
that the distribution of X; changes with ¢ (e.g., the variance of X} increases with t), which
means that the process is nonstationary.

Although the process defined in (3.7) is nonstationary, the process Y; defined as

Yi=Xi—Xi1=¢,

clearly is. This subtraction operation is called differencing and, more generally, it is common
to difference a nonstationary time series to transform it into a stationary one.

We are now ready to give the definition of an ARIMA(p, d, ¢) model, which is given by:

D, (B)(1 - B)d(Xt — 1) = 64(B)er (3.8)

using the same notation as in (3.1) and letting d be the differencing degree parameter; for
example, with d = 2, we first difference the original series X; and then difference the resulting
differenced series Y;. In general, d is chosen so that the differenced time series is stationary.
Time series that can be made stationary by differencing are called integrated processes.

It is also possible to accommodate for multiple seasonalities (e.g., daily, weekly, monthly,
etc.) in an ARIMA model. The resulting model is a seasonal ARIMA model. For example,

the general form of an ARIMA(p, ¢,d) % (p1, ¢1,d;) model with one seasonality period, s, is:

@, (B)Ts(B°)(1 = B)'(1 = B*)" (X, — p) = Oy(B)Qu(B)er , (3.9)

where I'y(+) is a polynomial of some order p;, Q,(-) is a polynomial of some order ¢, and d;

is a differencing parameter.

12



3.2. Exponential Smoothing

Another important special case of ARIMA modelling emerges from letting p = 0 and d =

¢ =1in (3.8). In this case, we obtain the following series:

V=X —Xia=6+0Y, 1 +0°Y, 0+ 0°Y, 5+ ... ;

in other words, Y; is equal to an exponentially weighted sum of its past observations. This

corresponds to the well-known and widely used practice of exponential smoothing.

Holt-Winters Smoothing. The Holt-Winters method is an extension of exponential
smoothing which accommodates both a trend and a seasonal pattern; see [54]. The Holt-
Winters method has two versions, additive and multiplicative, the use of which depends on
the characteristics of the particular time series at hand. To illustrate, here are the smoothing

equations for the additive Holt-Winters method:

M, = oo(Xi— Si—s) + (1 — ap)(Mi—y + Bi—1)

By = ai(My—M1)+(1—oq)Bi—y (3.10)

Spo= Xy — M)+ (1 —a)S—s ,

where B, is the slope component, M; is the level component, .S; is the seasonal component,
and s is the period of seasonality. The constants «g, aq, and ay are smoothing parameters,
whose values are between 0 and 1. In [47], Taylor extended the Holt-Winters method to
accommodate multiple seasonalities in the data.

The early work on call forecasting relied mostly on standard techniques such as ARIMA
modeling and exponential smoothing; we review these papers in §4.1. More recently, such

traditional forecasting methods are often used as benchmarks against more advanced mod-

13



elling approaches. For a newly proposed call arrival model to be worth serious consideration,

it should at least outperform those standard forecasting techniques.

3.3. Fixed-Effects and Mixed-Effects Models

Gaussian linear fixed-effects and mixed-effects models are useful models which usually build
on ARMA models. Indeed, the residuals in fixed-effects and mixed-effects models are often
modeled using some ARMA(p, q) process with appropriately chosen p and ¢. Fixed-effects
and mixed-effects models are used in several recent papers on modeling call arrivals; see §4.2.

In general, a linearly additive fized-effects (FE) model for X, is given by:

k
X, = Z T + € (3.11)
u=1

where ¢ are i.i.d. N(0,0?) variables and Z, are explanatory variables assumed to be known
with certainty. The parameters a,,, 1 < u < k, are to be estimated from data.

For a linearly multiplicative FE model, simply replace the sums in (3.11) by products.
Multiplicative models are appropriate when the variance of the variable X; increases with
its mean. In order to model a series using a multiplicative model, it is common to proceed
indirectly by modeling its logarithm using an additive model.

A linearly additive mized-effects (ME) model is an FE model which includes additional
random effects: These are normally distributed random variables which quantify random

deviations. The general expression for such an ME model is given by:

k l
Xt - Z BuZu + Z Bv’}/v + €, (312)
u=1 v=1

where 7, are normally distributed variables which are assumed to be independent from ¢, and
the parameters 3,, 1 < u <[, are to be estimated from data. For example, 7, may represent

the daily deviation for X;, whereas ¢; may represent the normal intradaily noise associated

14



with X;. Then, imposing specific covariance structures on v and € would allow modeling
interday and intraday dependencies in the data, respectively. For additional background on
linear mixed models, see [34]. In §4.2, we illustrate how linear fixed-effects and mixed-effects

models are used in the context of modelling call arrivals.

4. Call Forecasting Approaches

Ideally, we want arrival models that seek to reconcile several objectives. For an arrival
model to be realistic, it needs to reproduce the properties that we described in section 2.
Simultaneously, for an arrival model to be practically useful, it needs to be computationally
tractable. That is, it needs to rely on a relatively small number of parameters so as to avoid
overfitting. Moreover, these parameters need to be easy to estimate from historical data.
Finally, parameter estimates should not be hard to update (e.g., via Bayesian methods)
based on newly available information, e.g., throughout the course of a day. These updated
estimates would then be used to update operational decisions in the call center.

In this section, we review alternative models proposed in the literature which aim to
reconcile those objectives. We first review early papers which rely mostly on standard
forecasting methods (§4.1). Then, we focus on more recent models for arrivals over several

days or months (§4.2). Finally, we move to models for arrivals over a single day (§4.3).

4.1. Standard Forecasting Techniques

The early work on forecasting call arrivals usually focused on modeling daily or even monthly
total call volumes. Part of the reason for this is due to the lack of relevant data. In addition,
only point forecasts of future arrival rates or counts were produced.

One of the earliest papers on forecasting call arrivals is [49], where the authors modeled
monthly call arrivals for two different call types. Interestingly, they noted that there may

be an interdependence between the arrival streams of these two call types, but they did
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not explore this issue further. They used seasonal ARIMA models to forecast future call
volumes, and relied solely on the past history of call arrivals in their models.

In [32], Mabert relied on multiplicative and additive regression models, including co-
variates for special events and different seasonalities, to forecast daily call arrivals to an
emergency call center. He also considered model adjustments which exploit previous fore-
casting errors to yield more accurate forecasts. He found that such models yield the most
accurate forecasts, and are superior to ARIMA models.

Other early papers also relied on standard time series models. For example, [4] modeled
daily call arrivals to the call center of a retailer. The authors considered ARIMA models with
transfer functions and incorporated covariates for advertising and special-day effects. They
showed that using such information can dramatically improve the accuracy of their forecasts,
and may have a significant impact on the operational decision-making in the call center.
Similarly, [9] used ARIMA models with intervention analysis to forecast telemarketing call
arrivals. In this paper, the authors found that such models are superior to additive and
multiplicative Holt-Winters exponentially weighted moving average models.

More recently, [5] modeled the daily number of applications for loans at a financial services
telephone call center. The authors also went beyond standard ARIMA models by including
advertising response and special calender effects; they did so by adding exogenous variables in
a multiplicative model. In [16], the authors developed simple additive models for the (small)
number of ambulance calls during each hour, in the city of Calgary. Their models capture
daily, weekly, and yearly seasonalities, selected second-order interaction effects (e.g., between
the time-of-day and day-of-week), special-day effects (such as the Calgary Stampede which
leads to increased call volumes), and autocorrelation of the residuals between successive
hours. Their best model outperforms a doubly-seasonal ARIMA model for the residuals of

a model which captures only special-day effects.
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4.2. Models Over Several Days

To describe more recent arrival modelling approaches, we need some additional notation.
Let X; ; denote the number of call arrivals during period 7,1 < j < P, of day i, 1 <7 < D.
The standard assumption is that call arrivals follow a Poisson process with a (potentially)
random arrival rate A; ;, which is taken to be constant over each period j. The cumulative
arrival rate over period j is also A, ; if a unit time period is assumed. Thus, conditional on
the event A; ; = \;;, X;; is Poisson distributed with rate A ;.

Several papers ([3, 11, 23, 51]) exploit the following “root-unroot” variance-stabilizing

data transformation:

Vi, = (X, +1/4)V%. (4.1)

Conditional on the event A; ; = J; j, and for large values of ), ;, Y; ; is approximately normally
distributed with mean /; ; and variance 1/4; see [12]. The unconditional distribution, with
random 4A; ;, is then a mixture of such normal distributions; therefore, it has a larger variance.
Nevertheless, it can be assumed (as an approximation) that the square-root transformed
counts Y; ; are normally distributed, particularly if Var[A, ;] is not too large. The resulting
normality is very useful because it allows fitting linear Gaussian fixed-effects and mixed-
effects models to the square-root transformed data; for background, see §3.3.

A better alternative than modelling the arrival counts X;; would be to model the rates
A; ; directly. The reason is that it is considerably easier to simulate the system with a dis-
tributional forecast for the rates rather than one for the counts. Indeed, to simulate arrivals
based on a distributional forecast for counts, one has to generate the number of arrivals
in each period, and then generate the arrival times by splitting the counts uniformly and
independently over the given time period. (This is consistent with the Poisson assumption.)
In contrast, given a distributional forecast for the rates, one can generate the arrival times
directly. Nevertheless, most arrival models in the literature are for the counts X ;, rather

than the rates A; ;. The reason being that, in practice, we do not observe the arrival rates
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themselves but only the counts which give only partial information on the rates. This makes
estimating arrival rates a more complicated task.

Multiple papers, such as [23, 40, 47, 51], consider a linear fixed-effects model as a bench-
mark for comparison. To illustrate, let d; be the day-of-week of day i, where i = 1,2,..., D.
That is, d; € {1,2,3,4,5} where d; = 1 denotes a Monday, d; = 2 denotes a Tuesday, ...,

and d; = 5 denotes a Friday. In [23], the authors considered the following fixed-effects model

for the square-root transformed arrival counts:

5 22 5 22
Yig =D euld + D AL+ > ) Oulidi+pis . (4:2)
k=1 =1

k=1 I=1

where [ fji and Ijl- are the indicators for day d; and period j, respectively. That is, [ fji (Ijl)
equals 1 if d; = k (j = [), and 0 otherwise. The products Igifjl- are indicators for the
cross terms between the day-of-week and period-of-day effects. The coefficients ay, 3;, and
01, are real-valued constants that need be estimated from data, and p;; are independent
and identically distributed (i.i.d.) normal random variables with mean 0. Equation (4.2)
simplifies to

Yij = ad; + 85 + 0a, 5+ pij - (4.3)

Fixed-effect models seem hard to beat in terms of accuracy of long-term point forecasting

(e.g., 2 weeks or more); see [23] and [47]. Nevertheless, with short forecasting times, one can

exploit interday and intraday dependencies in the data to obtain more accurate forecasts.
As an improvement, and based on real call center data analysis, [3] proposed the following

linear mixed-effects model:
Yi;=aq +Bj + 04, +7 + €,

where 7; denotes the daily volume deviation from the fixed weekday effect on day i. Then, ~;

is the random effect on day i. Let G denote the D x D covariance matrix for the sequence of
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random effects. The random effects, v;, are identically normally distributed with expected
value E[y] = 0 and variance Var[y] = o%. The authors assume that these random effects
follow an AR(1) process. Considering an AR(1) covariance structure for G is both useful and
computationally effective, because it requires the estimation of only two parameters, o and
pc- The residuals ¢; ; are also assumed to have an AR(1) structure within each day. As such,
this model captures both interday and intraday dependencies in the data. [11] proposed an
earlier version of this model, also based on call-center data, without intraday correlations
and without special-day effects.

In [23], the authors extended this ME model to two bivariate ME models for the joint
distribution of the arrival counts to two separate queues, which exploit correlations between
different call types. These models account for the dependence between the two call types
by assuming that the vectors of random effects or the vectors of residuals across call types
are correlated multinormal. This corresponds to using a normal copula; see [29]. The choice
of copula can have a significant impact on performance measures in call centers, because
of the strong effect of tail dependence on the quality of service [25]. A strong upper tail
dependence for certain call types, for example, means that very large call volumes tend to
arrive together for these call types. When this happens, this produces very large overloads.

To reduce the dimensionality of the vectors (Yii,...,Y;p), [38] proposed the use of
singular-value decomposition to define a small number of vectors whose linear transfor-
mations capture most of the information relevant for prediction. Based on this, [40] then
developed a dynamic updating method for the distributional forecasts of arrival rates. [39]
proposed a method to forecast the latent rate profiles of a time series of inhomogeneous Pois-
son processes to enable forecasting future arrival rates based on a series of observed arrival
counts. [51] also used Bayesian techniques in their forecasts. They exploited the (normal)
square-root transformed counts to include conjugate multivariate normal priors, with specific
covariance structures. They used Gibbs sampling and the Metropolis Hastings algorithm to

sample from the forecast distributions, which requires long computational times. Moreover,
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it is unclear how to incorporate exogenous covariates in such a model.

2] recently proposed a model based on a Poisson-Gamma process, where A; ; = W, ;A\, ;
for fixed A;;’s, and where the multiplicative factors W;; have a gamma distribution and
obey a gamma process. [41] analyzed the effect of advertisement campaigns on call arrivals.
Theirs is a Bayesian analysis where they model the Poisson rate function using a mixed
model approach. This mixed model is shown to be superior to using a fixed-effects model
instead. [51] propose an adaptation of [11] to enable it to update the forecasts of a day
defined from the previous days using newly available observations during this day.

[51] also used Bayesian techniques in their forecasts. They exploited the (normal) square-
root transformed counts to include conjugate multivariate normal priors, with specific co-
variance structures. They used Gibbs sampling and the Metropolis Hastings algorithm to
sample from the forecast distributions, which unfortunately requires long computational
times. Moreover, it is unclear how to incorporate exogenous covariates in such a model.

In the empirical analysis of [47], several time-series models are compared including ARMA
and Holt-Winters exponential smoothing models with multiple seasonal patterns. The latter
method was adapted by [46] for modeling both the intraday and intraweek cycles in intraday
data. In [48], Taylor extended his model and considered the density forecasting of call
arrival rates. To this aim, he developed a new Holt-Winters Poisson count data model with
a gamma distributed stochastic arrival rate. He showed that this new model outperformed
the basic Holt-Winters smoothing model. [36] comments about Taylor’s work, highlighting
the difference between modeling arrivals as a single time series, and as a vector time series

where each day is modeled as a component of that vector.

4.3. Models Over a Single Day

In this section, we focus on modeling arrivals over a single day. The day is divided into p
time periods. We denote by X = (X1,...,X,) the vector of arrival counts in those periods.

It is commonly assumed that intraday arrivals follow a Poisson process with a random
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arrival rate. [52] proposed to do that by starting with a deterministic arrival rate function
{A(t), to <t < t.}, where ¢y and t, are the opening and closing times of the call center
for the considered day, and to multiply this function by a random variable W with mean
E[W] = 1, called the busyness factor for that day. The (random) arrival rate process for
that day is then A = {A(t) = WA(t), to <t < t.}.

Under this model, the arrival rates at any two given times are perfectly correlated, and
Corr[Aj,Ay] = 1 for all j,k. We also expect the X;’s to be strongly correlated. More
specifically, let I; denote the time interval of period j, let 5\]- = 1 A(t)dt, and let X; be the
number of arrivals in I;. Using variance and expectation decompositions, one can find that

Var[X;] = A\j(1 + A;Var[W]) and for j # k:

Corr[X;, X] = Var[W][(Var[W] + 1/X;)(Var[W] + 1/x)] 2.
This correlation is zero when Var[WW] = 0 (a deterministic rate) and approaches 1 when
Var[W] — oo. [6] studied this model in the special situation where W has a gamma dis-
tribution with E[W] = 1 and Var[W] = 1/vy. Then, each A; has a gamma distribution,
X has a negative multinomial distribution, the parameters of this distribution are easy to
estimate, and the variance of the arrival counts can be made arbitrarily large by decreasing
7 toward zero. The model’s flexibility is rather limited, because given the \;’s, Var[X;] and
Corr[X;, Xj| for j # k are all determined by a single parameter value, namely Var[W]. In
an attempt to increase the flexibility of the covariance matrix Cov[X], and in particular to
enable a reduction of the correlations, [6] introduced two different models for X, based on
the multivariate Dirichlet distribution.

[26] examined a similar model, but with independent busyness factors, one for each
period of the day. Under their model, the A;’s are independent, as are the X;’s, which is
inconsistent with intraday dependence of call center arrivals. [14] considered a variant of

the model where A(t) is defined by a cubic spline over the day, with a fixed set of knots,
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and also shows how to estimate model parameters. This can provide a smoother (perhaps
more realistic) model of the arrival rate. [14] and [15] proposed models that account for
time dependence, overdispersion, and intraday dependencies with much more flexibility to
match the correlations between the X;’s, by using a normal copula to specify the dependence
structure between these counts. In principle, similar copula models could be developed for
the vector of arrival rates, (Ay,...,A,), instead of for the vector of counts. [35] examined
the relationship between modeling for the vector of counts and for the vector of rates. In
particular, they gave explicit formulas for the relationship between the correlation between
rates and that between counts in two given periods, which implied that for a given correlation
between rates, the correlation between counts is much smaller in low traffic than in high

traffic.

5. Case Studies

In this section, we present empirical results from a case study using real data collected at
a Canadian call center as described in Section 2. We use the data based on two call types
and 200 consecutive workdays (excluding weekends). For each call type, we implement the
following four methods to forecast the arrival counts based on 6-week historical data. The

four methods used in our case study are discussed in [3], [23] and [19].

MU: the multiplicative univariate forecasting model in [19]

e ME: univariate mixed effect model in [3]

BMEL: bivariate mixed effect model in [23]

BME2: bivariate mixed effect model in [23].

Each method is applied to the data for an out-of-sample rolling forecasting experiment.

To compare different models, we use the Root Mean Squared Error (RMSE) to assess the

22



point forecast accuracy as defined below:

1 ~
RMSE = = Z(Xm — Xi,)2,
1,J

where )A(i,j is the predicted value of X;; by the model, and K is the total number of pre-
dictions. We also report the coverage probability for the 95% prediction interval to evaluate

the forecasting distribution, which is defined as:

1 PN
Cover = E ZH(XZJ € (Lm‘, Um‘)),
2%
where (L, ;, U; ;) is the 95% prediction interval for X, ; given by the model.
Tables 4 and 5 summarize the comparisons among the four methods. For both call types,
ME is most accurate in point forecasts in most scenarios. BME1 and BME2 has better
coverage probability when the leading period is one day or one week, and MU has better

coverage probability when the leading period is 2 weeks.

Type A

MU | ME | BME1 | BME2
1 day ahead forecast RMSE | 23.51 | 21.76 | 22.59 | 22.69
Cover 0.89 | 0.91 0.93 0.93
1 week ahead forecast | RMSE | 30.63 | 29.59 | 31.37 | 31.10
Cover 0.88 | 0.88 0.88 0.86
2 weeks ahead forecast | RMSE | 37.64 | 37.51 | 38.04 | 37.07
Cover 0.84 | 0.82 0.80 0.79

Table 4: Forecasting comparison among five methods for call type A.

6. Conclusions

Forecasting call center arrivals plays a crucial role in call center management such as de-
termining staffing level, scheduling plan and routing policy. Call center arrival process is

complex and has to be modeled appropriately to achieve better forecasting accuracy, and as
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Type B

MU | ME | BME1 | BME2
1 day ahead forecast RMSE | 16.80 | 16.31 | 16.46 | 16.49
Cover 0.93 | 0.92 0.95 0.95
1 week ahead forecast | RMSE | 1855 | 17.95 | 17.99 | 18.12
Cover 0.95| 091 0.94 0.94
2 weeks ahead forecast | RMSE | 21.05 | 20.55 | 20.81 | 20.75
Cover 0.93 | 0.86 0.90 0.90

Table 5: Forecasting comparison among five methods for call type B.

a result, more efficient operational decisions. In this survey paper, we reviewed the existing
literature on modeling and forecasting call center arrival process. We also conducted a case
study to evaluate several recently proposed forecasting methods with real-life call center
data.

An interesting future research direction is to extend the existing forecasting models or
develop new models to forecast more than two call types simultaneously. As some stochastic
optimization models for staffing and scheduling rely on the joint forecasting distribution
of multiple types of arrivals, such multi-type forecasting models with full distributional
forecasts have the potential to better meet the quality of service level and improve operational
efficiency.

Another research question worth pursuing is to examine the operational impact of im-
proved forecasts, as most existing literature about call center forecasting evaluate forecasting
approaches based on only traditional statistical measures such as RMSE and coverage proba-
bility without looking at how those improved forecasting models affect call center operations.
By looking at the operational effect of forecasting models, managers can obtain more insight
regarding forecasting model selection and system performance evaluation. [19] has tried to

tackle this problem for one call type. More research is needed in this direction.
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