


n the mind of the average 
computer user, the problem 
of generating uniform 
variates by computer has been 
solved long ago. After all, 
every computer :system offers 

one or more function(s) to do so. 
Many software products, like com- 
pilers, spreadsheets, statistical or 
numerical packages, etc. also offer 
their own. These functions suppos- 
edly return numbers that could be 
used, for all practical purposes, as if 
they were the values taken by inde- 
pendent random variables, with a 
uniform distribution between 0 and 
1. Many people use them with faith 
and feel happy with the results. So, 
why bother? 

Other (less naive:) people do not 
feel happy with the results and with 
good reasons. Despite renewed cru- 
sades, blatantly bad generators still 
abound, especially on microcom- 
puters [55, 69, 85, !aO, 1001. Other 
generators widely used on me- 
dium-sized computers are perhaps 
not so spectacularly bad, but still 
fail some theoretical and/or empiri- 
cal statistical tests, a.nd/or generate 
easily detectable regular patterns 
[56, 651. 

Fortunately, many applications 
appear quite robust to these de- 
fects. But with the rapid increase in 
desktop computing power, increas- 
ingly sophisticated simulation stud- 
ies are being performed that re- 
quire more and more “random” 
numbers and whose results are 
more sensitive to thle quality of the 
underlying generator [28, 40, 65, 
901. Sometimes, using a not-so- 
good generator can Igive totally mis- 
leading results. Perhaps this hap- 
pens rarely, but can be disastrous in 
some cases. For that reason, re- 
searchers are still actively investi- 
gating ways of building generators. 
The main goal is to design more 
robust generators without having 
to pay too much in te:rms of port- 
ability, flexibility, and efficiency. In 
the following sections, we give a 
quick overview of the ongoing re- 
search. We focus rnainly on effi- 
cient and recently proposed tech- 
niques for generating uniform 

pseudorandom numbers. Stochastic 
simulations typically transform 
such numbers to generate variates 
according to more complex distri- 
butions [I 3, 251. Here, “uniform 
pseudorandom” means that the 
numbers behave from the outside 
as if they were the values of i.i.d. 
random variables, uniformly dis- 
tributed over some finite set of 
symbols. This set of symbols is often 
a set of integers of the form (0, . . . , 
m - l} and the symbols are usually 
transformed by some function into 
values between 0 and 1, to approxi- 
mate the U(O,l) distribution. Other 
tutorial-like references on uniform 
variate generation include [ 13, 23, 
52, 54, 65, 84, 891. 

Views ofi Rondomnerr 

Glesslcel Deunltlons 

In the classical (Kolmogorov) sense, 
a string of bits is ran,dom if it cannot 
be described by a shorter string 
than itself. A generalization is that 
it cannot be produced efficiently 
(e.g., in polynomial time), by a pro- 
gram smaller than itself. For refer- 
ences and other definitions, see [43, 
521. These definitions do not tell us 
how to generate such bits on com- 
puters. 

In the early days, physical devices 
(like noise diodes, Geiger counters, 
etc.) have been attached to comput- 
ers with the aim of producing such 
“true” random bits (see the refer- 
ences in [ 181). These methods were 
abandoned for many reasons, in- 
cluding the following: using such 
specialized hardware is not conve- 
nient; a sequence of numbers can- 
not be repeated without storing it; 
and the numbers produced are not 
necessarily uniformly distributed 
[ 12, 181. Work is still being done on 
ways to extract “random-looking” 
bits from imperfect physical 
sources of randomness [18], but at 
the present time, these techniques 
are not practical enough for stan- 
dard simulation applications. 

a mamework iar PRlyGI 

The so-called “random number 
generators” that are used in prac- 
tice are in fact deterministic func- 

tions that produce a periodic se- 
quence of numbers. When their 
initial state (called the seed) is truly 
random, they can be viewed as ex- 
tensors of randomness, whose pur- 
pose is to save “coin tosses.” They 
stretch a short truly random seed 
into a long sequence of values that 
is supposed to appear and behave 
like a true random sequence. For 
this reason, they are often called 
pseudorandom. We now sketch a 
framework for studying such gen- 
erators. In [60] a pseudorandom num- 
ber generator (PRNG) is defined as a 
family {G,, n 2 1) of structures, in- 
creasing in size. This will be dis- 
cussed a little further in the next 
subsection, but for the remainder 
of the paper, we adopt a simplified 
definition, in which we fix the size 
(as is always the case in practice). 
We simply use the term generator. 

DEFINITION 1. A generator is a 
structure G = (S,/+f,U,g), where S is 
a finite set of states, /.L is a probability 
distribution on S, called the initial 
distribution, f : S * S is the transition 
function, U is a finite set of output 
symbols, and g : S + U is the output 
function. 

A generator operates as follows: 
(1) Select the initial state SO E S 

according to CL; let uo := g(s0); 
(2) for i := 1,2, . . . , let Si := 

f(si- t) and ui : = g(si). 
The sequence of observations (uo, 

Ul, up, . . .) is the output of the gen- 
erator. The initial state SO is called 
the seed. We assume that efficient 
procedures are available to com- 
pute f and g and to generate the 
seed so according to /.L. Sometimes, 
in practice, the seed is a fixed con- 
stant, which means that real ran- 
domness is completely eliminated. 
In other cases, some people would 
determine the seed by reading for 
example the computer’s clock; this 
is not necessarily a good idea be- 
cause it makes replication and de- 
bugging hard. Of course, the aim of 
a generator will be to output a 
much longer sequence than its 
input seed so. The output sequence 
should also look to some extent 
(when the seed is random) as if the 
u;s were the values of i.i.d. random 
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variables, uniformly distributed 
over CJ. In practice, this should be 
supported by a sound theoretical 
basis and assessed empirically by 
powerful statistical tests. Since S is 
finite, the sequence of states is ulti- 
mately periodic. The period is the 
smallest positive integer p such that 
for some integer n 2 0 and for all 
n 2 T, spin = s,. The smallest zr that 
satisfies this is called the transient. 
When zr = 0, the sequence is said to 
be purely periodic. 

PT-peHect genemters 
In an idealized generator, nobody 
using reasonable computing re- 
sources and reasonable time, could 
distinguish between the generator’s 
output and a sequence of truly i.i.d. 
uniform variates over U better than 
by flipping a fair coin to guess 
which is which. Note that this is 
reminiscent of Turing’s test for in- 
telligence. 

L’Ecuyer and Proulx [60] (and 
other references given there) give a 
more precise definition, based on 
computational complexity. This 
definition applies to a family {G,, 
n 2 1) of generators. Informally, 
the family is called PT-perfect if G, 
“runs” in polynomial-time (in n) 
and if no polynomial-time (in n) sta- 
tistical test can distinguish the out- 
put of the generator from a truly 
random sequence (or equivalently, 
no polynomial-time algorithm can 
predict ui+i from (uo, . , ui)) sig- 
nificantly better than by picking a 
value uniformly from Ii. Also see 
[6, 9, 43, 871. 

The generators used most often 
in simulation-linear congruential, 
multiple recursive, GFSR, . . .- 
are not PT-perfect. “Efficient” algo- 
rithms have been designed to infer 
their sequence by looking at the 
first few numbers [lo, 911. But in 
practice, they remain the most use- 
ful generators for simulation. They 
are efficient and show good statisti- 
cal behavior with respect to most 
reasonable empirical tests. Binary 
(or m-ary) expansions of algebraic 
numbers (roots of polynomials with 
integral coefficients) or of some 
transcendental numbers (including 

VT) do not define either PT-perfect 
generators. Kannan et al. [51] give 
efficient algorithms to compute 
further digits given a long enough 
initial segment of the expansion. 

PT-perfect generators were in- 
troduced by researchers in cryptol- 
ogy. These people proposed vari- 
ous generators that are conjectured 
to be PT-perfect. Typically, those 
generators (at least those currently 
proposed) are much too slow for 
simulation use. Also, the very exis- 
tence of any PT-perfect generator 
has not been proven. 

Matrix Linear 
Congruentlal Recurrencer 
Most generators used in practice 
are based on linear recursions with 
modular arithmetic. Typically, they 
are special cases or variants of the 
following matrix formulation. For 
some positive integers m and k, let F 
be the set of integers (0, 1, . . , m - 
1) and S the set of k-dimensional 
vectors with components in F, i.e., 
S={X=(x,, . ) Q)’ 1 x, integer 
and 0 5 xi < m for 1 pi % k}. Let 
A = (as) be a k X k matrix with ele- 
ments in F and C E S a constant 
vector. Define a linear transforma- 
tion f:S -+ S by f(X) = (AX + C) 
mod m (where the modulo opera- 
tion is taken elementwise). Let p be 
an initial distribution on S. Choos- 
ing /.L, U and g:S -+ U defines a 
generator in the sense of Definition 
1 (we will examine ways of defining 
U and g later). Here, the genera- 
tor’s state evolves as 

X n := (AX,-, + C) mod m, (1) 

where the initial state X0 is the seed. 
Equation (1) defines a linear con- 
gruential generator (LCG) in matrix 
form. In the simulation literature, 
the term LCG usually refers to the 
case k = 1, but here, we adopt the 
more general definition. When C = 
0 (the most popular case), the gen- 
erator is called multiplicative 
(MLCG) and (1) becomes 

X ,, := AX,-, mod m. (2) 

Here, obviously, the vector X, = 0 

must be avoided. MLCGs in matrix 
form have been studied, for exam- 
ple, in [3,44,45,58,76,83]. In fact, 
any LCG of order k can be ex- 
pressed as a MLCG of order k + 1 
as follows: add to A a (k + I)-th col- 
umn that contains C, then a (k + 
1)-th line that contains a 1 in posi- 
tion (k + 1) and zeros elsewhere; 
add a 1 as the (k + I)-th component 
of x,,. 

Suppose m is prime and C = 0. 
(When m is prime, taking C # 0 has 
no significant interest.) In that case, 
F and S can be identified respec- 
tively with GF(m) and GF(mk), where 
for any e > 0, GF(m’) denotes the 
Galois field with me elements [63, 
761. GF(mk) can also be viewed as a 
field of polynomials of degree 
smaller than k, with coefficients in 
GF(m). Let S* be the set obtained by 
removing the vector 0 from S. The 
maximal possible period for the 
X,‘s is the cardinality of S*, i.e., p = 
mk - 1. It is attained if and only if 
all powers of A in arithmetic mod m, 
plus the matrix 0, form a vector 
space with mk elements, isomorphic 
to GF(mk). An equivalent condition 
is that the characteristic polynomial 
of A. 

f(x) = 1x1 - Al mod m 

= (2 - $ajxkei) mod m,(3) 

with coefficients a2 in GF(m), is a 
primitive polynomial modulo m, 
which means that all powers of x 
modulo f(x) and modulo m consti- 
tute S*. 

Let r = (mk - l)l(m - 1). The fol- 
lowing conditions are necessary and 
sufficient for f(x) to be primitive 
modulo m [52]: 

COYYUYICITIONSOFTI(EliCY/October 199O/Vo1.33, No.10 87 



(a) ((- l)k+‘uk)(‘n-‘)‘9 mod m # 1 for 
each prime factor q of m - 1; 

(b) ((x’ mod f(x)) mod m) = 
((- 1)k” uk) mod m; 

(c) ((~“9 mod f(x)) mod m) has de- 
gree >0 for each prime factor q 
of r, 1 < y < r. II 

For large values of mk, factorizing 
r is often very difftc:ult. It becomes 
the bottleneck in checking the 
above conditions [57, 581. It is a 
good idea then to seek couples 
(m, k) such that r is prime, since 
checking primality is much easier 
than factoring [71]. Given m, k and 
the factorizations of m - 1 and r, it 
is relatively easy to find primitive 
polynomials simplv by random 
search for proper ai’s. For prime m, 
there are exactly 

N(m, k) = (mk - I){1 - l/q,) 
( 1 - l/qz)’ . .( 1 - llqh)lk 

choices of (al, . , a.3 that satisfy 
the above sufficient conditions, 
where q,, . . , qh are the distinct 
prime factors of mk - 1 [52]. In the 
case k = 1, a primitive polynomial 
x - ai means that al is a primitive 
element modulo m, and whenever 
one such al has been found, all oth- 
ers can be found easily, since they 
are exactly all the integers of the 
form u$ mod m where j is relatively 
primetom- 1. 

For the maximal period to be at- 
tained, A must be nonsingular in 
arithmetic modulo m, since other- 
wise AX mod m = 0 for some vector 
X f 0. Then, if A-’ denotes the in- 
verse of A, we have X,-, = A-’ X, 
mod m, so that the s,equence can be 
generated in reverse order. The 
matrix A-’ = AP-’ mod m can be 
computed using “divide-to-con- 
quer” as we will see later. 

composite Modulws 

When m is not prime and C = 0, the 
maximal period is typically much 
smaller than mk. For m = p”, p prime 
and e 2 1, the maximal possible 
period is (pk - l&“-i, except for 
p = 2 and k = 1, where it is 2’-’ [33, 
521. Sufficient conditions under 
which this period is attained and a 
simple method for constructing 

matrices A giving maximal period 
generators are given in [33]. The 
exception p - 1 = k = 1 is treated 
in [52]. The case where p = 2 has 
some interest in terms of imple- 
mentation, but the cost in terms of 
period length, for a given approxi- 
mate size of m, is important. For 
example, for p = 2 and k = 1, the 
maximal period is m/4, while it is 
m - 1 for prime m. Form = 2”’ and 
k = 5, the longest possible period is 
(25 _ 1)231-l = 235 - 230, while 
mk - 1 = 2155 - 1 is about 2120 
times longer! This is one reason 
why it is often recommended that 
only prime values of m be used. 
There are also other important rea- 
sons. A major one is that for small 
p, the low order bits do not look 
random at all. For /) = 2 and k = 1, 
the i-th least significant bit of X, has 
period equal to max( 1,2’-2) [13, 
241. If the period of such a genera- 
tor is split into 2d equal segments, 
then all segments are identical ex- 
cept for their d most significant bits 
[24, 281. For i = 2r-d-2 > 0, all 
points (x,,x,+;) lie on at most 
max(2,2d-‘) parallel lines [24]. For 
k > 1 (still with p = 2), the maximal 
period for the d-th least significant 
bit is (2k - 1)2d-‘. 

With C # 0, for k = 1, it is possi- 
ble to obtain a period length of m. 
Conditions are given in Knuth [52]. 
For p = 2 and k = 1, the period of 
the i-th least significant bit of X, is 
at most 2’ and the pairs (x,,x,+~), for 
i = 2’-d, lie in at most max(2, 2d-1) 
parallel lines [24]. For k > 1, since 
any k-th order LCG is equivalent to 
some (k + I)-th order MLCG, a 
general upper bound on the period 
length is (pk” - 1)/r-‘. Again, for 
large e and k, this is much smaller 
than mk. 

JemDlng AheOU, Spllttlng, and 
l&CtOlW~lOll 

Jumping ahead in the sequence of a 
MLCG can be done efficiently 
using 

X,+j = (A’X,) mod ‘m 
= (Almod m)X, mod m. 

The matrix (A-’ mod m) can be pre- 

computed using the divide-to- 
conquer algorithm [ 1 11: 

AJ mod m = 
A ifj= 1; 
A XAJ-’ mod m 
Ajp2 X Aj’ mod m 

if j > 2, j odd; 
ifj > 1, j even, 

Such “jumping ahead” facilities are 
required for splittilzg the sequence 
into long disjoint subsequences. 
This is useful for many simulation 
applications [13, 28, 591. 

On parallel computers, vectoriza- 
tion techniques can be used to gen- 
erate many subsequences simulta- 
neously [16, 24, 531. Given J 
processors, one can precompute AJ 
mod m and use it as a multiplier on 
all the processors, starting with seed 
Xj-i on processor j. This way, each 
processor generates values that are 
J positions apart in the basic se- 
quence. A second approach is to 
use multiplier Ai mod m on proces- 
sor j, with a common seed on all the 
processors, and use the “new state” 
of processorJ as a seed for the next 
step. This way, the successive seeds 
are J values apart in the basic se- 
quence and the processors generate 
exactly the same values as in the 
first approach. One drawback is 
that all processors must have access 
to the state of processor J. A third 
approach which we recommend, 
called splitting, is to keep multiplier 
A on each processor, but to start 
with different seeds that are far 
apart in the basic sequence. This is 
more appealing in practice, since it 
does not change the multiplier A 
whose choice, typically, is dictated 
by ease of implementation criteria. 
The first approach is in fact equiva- 
lent to splitting, but combined with 
a change of multiplier. To generate 
the (far apart) seeds, we use multi- 
plier A” mod m for some huge value 
of v, often a power of two (but be- 
ware if m is itself a power of two; see 
following). New seeds could be 
computed only as needed. Imple- 
mentation with this “jumping” mul- 
tiplier could be more complicated 
and much slower than for A, but it 
is used only to produce the seeds. 
(Also see [59].) 

88 October 199OlVo1.33, No lOICOYYUNICITIONSQFT”E~~.CY 



One concern with splitting is that 
long-range correlations become 
important. Vectors formed by out- 

put values from different 
substreams should be well distrib- 
uted in the unit hypercube. For in- 
stance, if seeds are spaced v values 
apart, we might have special inter- 
est for lag v correlation. As men- 
tioned, if m and v are powers of 
two, the substreams are identical 
except for their (few) most signifi- 
cant bits. Further, for c such that 2” 
is smaller than the number of 
substreams, each substream has 2’ 
companion substreams that differ 
only in their c most significant bits. 
Clearly, in this case, v should not be 
equal to (or near) a power of two. 
Durst [28] suggests choosing seeds 
randomly, after comparing that to 
regular spacing with v = 1,000,OOl 
for m = 24”. For prime m, k = 1, 
and full period, all pairs of the 
form (x,,x,,+(,- t),p) lie on a line with 
slope -1 [24]. 

Another approach, suggested for 
instance in [49, 861, is to use differ- 
ent additive constants C (and the 
same A and m) for the different 
substreams. But in fact, as men- 
tioned by Durst [28], changing the 
constant does not really change the 
generator. As we will see below, the 
multidimensional lattice structure 
of a LCG is independant of C (ex- 
cept for some shifting). Also, con- 
sider the LCG (1) and let 

Y, = (X, - D) mod m (4) 

for some constant vector D. Then, 
one has 

Y ,,+, = (AY,, + C + (A - I)D) mod m 

(5) 

where I is the identity matrix. That 
is, all generators with additive con- 
stant of the form C + (A - I)D for 
D E S produce the same sequence 
as (l), except for a shift of -D, 
modulo m. For maximal period 
generators with k = 1 for which a 
mod 8 = 5, there are only two such 
sequences (one for c = 1 and one 
for c = 3) and they are in fact anti- 
thetical. 

Of course, one can use com- 
pletely different generators on the 
different processors (or for the dif- 
ferent substreams), or simply dif- 
ferent multipliers. This appears 
more troublesome in terms of man- 
agement. However, finding mil- 
lions of good generators is not 
really a problem [28]. 

ImplementcatIons 
Implementing (1) in a portable way, 
in high-level language, is tricky in 
general, because m is typically near 
the largest integer representable on 
the machine and the products in- 
volved in computing (1) will over- 
flow. We now discuss ways of com- 
puting ax mod m for integers a 
and x. 

If m = 2’ where e is the number 
of bits on the computer word, and 
if one can use unsigned integers 
without overflow checking, the 
products modulo m are easy to 
compute: just discard the overflow. 
This is quick and simple. For that 
reason, MLCGs with moduli of this 
form are used abundantly in prac- 
tice, despite their serious draw- 
backs. Some nuclear physicists, for 
instance, perform simulations that 
use billions of random numbers on 
supercomputers and are quite re- 
luctant to give up using them [28, 
491. Usually, they also generate 
many substreams in parallel. In 
view of the above remarks, all this 
appears dangerous. Perhaps some 
people like playing with fire. 

For more general m, represent- 
able as an integer on the target 
computer, [ 13, 56, 851 give an effi- 
cient and easily implementable way 
to compute ax mod m, for 0 < x < 
m, when 

a(m mod a) < m. (6) 

If we decompose m = aq + r where 
r < a, that condition becomes r < q, 
in which case a = (m - r)/q = I-m/q]. 
It is then easy to see that all multi- 
pliers a satisfying r < q are of the 
form a = i or a = I_mliJ for i < V&. 
Note that in view of this condition, 
it might be worthwhile considering 
negative multipliers a. Using a < 0 

. . . . . . . . . ..~~..~........~.~-.~..... 
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is equivalent to using a + m, but 
condition (6) might hold for -u and 
not for a + m. In the following 
Pascal-like code to perform x := ax 
mod m, if r < 9, all values during 
the computations will remain be- 
tween -m and m. 

k:=xDlVq; 
x := a * (x - k :* q) - k * r; 
IFx<OTHENx:=x+m 

For small a, another approach 
is to perform the computations 
in double-precision floating-point 
[56]. This could be faster on some 
computers with floating-point co- 
processors. Carta [ 151 describes a 
different low-level implementation 
technique for m = 2b-’ - 1 on b-bit 
machines. The smaller is a, the 
faster it goes (in average). He also 
introduces a faster “alternative al- 
gorithm” which ac:tually changes 
the generator. We believe that this 
is dangerous and should be 
avoided. Techniques for computing 
ax mod m in a high-level language 
for the more general case are stud- 
ied in [59], which also gives porta- 
ble codes. 

MultIpIe Recurrive Generators 

For a given prime m, whether a 
MLCG has full period or not de- 
pends only on the characteristic 
polynomial of its matrix. Any poly- 
nomial of the form (13) has a com- 
panion matrix 

0 1 ‘.. 0 

0 0 ‘.. 1 (7) 
a&1 “’ a, 

whose&) is the characteristic poly- 
nomial. When the matrix A has this 
special structure, the first k - 1 
components of X, are obtained by 
shifting the last k -. 1 components 
of X,-t, and the last component of 
X, is a linear combination of the 
components of X,- t. This can be 
viewed as producing a sequence of 
integers, each one defined as a lin- 
ear combination module m of the k 
previous ones. This kind of genera- 

tor is called multiple recursive (MRG) 
[46, 521. With a matrix of this form, 
and denoting 

Lattlee Structure and 
Spectral met 

Consider a maximal period MRG, 
of the form (9), and let 

x, = (% . . , x,+k-l)‘, (8) 

Tt = {(x,,, > x,+t-I), n 2 0) u WI 
equation (2) is equivalent to the re- 
cursion 

Jcn := (a,~,,-t +...i- up,-k) modm. 

(9) 
Restricting our search to genera- 

tors of this class is certainly sup- 
ported by their ease of implementa- 
tion. It is further reinforced by the 
following property [45, 58, 761: for 
any generator defined by (2), with 
the characteristic polynomial of A 
defined by (3), the sequence of 
states obeys the recursion 

Xn:=(a,X,-, + . . . f C&&-k) mod m. 

(10) 

In other words, each component of 
X,, evolves according to the same 
recursion (9), which means that we 
just have k copies of the same MRG 
evolving in parallel (hopefully, with 
different and “far apart” seeds). 
This gives a good argument sup- 
porting the direct use of (9). 

Another interesting special case 
in terms of implementation is when 
the characteristic polynomial f(x) is 
only a trinomial, of the form&) = 
xk - uixk-’ - &, for 1 5 j < k. Prim- 
itive trinomials of this form are easy 
to find [57, 581. The corresponding 
recursion becomes: 

x, : = (u+, + uk&-k) mod m. 

(11) 

The generator can be implemented 
directly in this form, with its state 
redefined as the vector (x,-t, . . , 
x,-k). The “vectorized” recursion 
(10) becomes 

X n : = (u$,-~ + akXn-A) mod m. 

(12) 

The state then becomes the matrix 
s, = (Xn-*, . . . , X,-,). It can have 
interest for parallel computers 
(Also see section on GFSR and 
Lagged-Fibonacci generators) 

be the set of all overlapping t-tuples 
of successive values, plus the zero 
vector. It is well known [26, 45, 46, 
52, 57, 58, 641 that the periodic 
continuation of T, with period m, 

L, = Tt + mZ’, 

forms a lattice with unit cell volume 
of max(1, mfek). Recall that a t- 
dimensional lattice is a set of the 
form 

i z,Vi, each zi integer 
1=1 I 

wherev,,. . ., V, is a set of linearly 
independent vectors called a basis. 
A set of vectors Wt, . . , W1 such 
that the scalar products obey 
Vi . Wj = 6q form a basis of the dual 
lattice. Bases for Lt and its dual can 
be constructed easily as explained 
in [45, 481. 

For t 5 k, the lattice L, contains 
all possible integer vectors and the 
unit cell volume is one. For t = k, 
each vector except the zero vector 
occurs once and only once over the 
period. For t > k, the unit cell vol- 
ume can be huge compared to 1, 
which is the value that one would 
expect from truly random integer 
vectors. This can be viewed as a 
strong limitation of simple LCGs 
(with k = 1) and suggests using 
large values of k. A unit cell of the 
lattice is determined by the vectors 
of a Minkowski-reduced lattice base 
(MRLB) [2, 3,451. It is traditionally 
accepted that “better” generators 
are obtained when the unit cells of 
the lattice are more “cubic-like” (i.e. 
when the vectors of the MRLB have 
about the same size). The ratio 9t of 
the sizes of the shortest and longest 
vectors of a MRLB is called the 
Beyer-quotient. It can be used to as- 
sess the quality of the lattice. Values 
near one are said to be more desir- 
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able. Note however that reducing 
the unit cell volume (by increasing 
m, or k, or both) can be much more 
effective in improving the quality 
than getting a larger Beyer- 
quotient with fixed m and k. Affler- 
bath and Grothe [2, 451 give effi- 
cient algorithms to compute a 
MRLB and the Beyer-quotient for a 
given lattice. A figure of merit can 
be Qr = mink,,,r yI for some large 
enough T. 

The lattice structure also means 
that all points of TI lie in a family of 
equidistant parallel hyperplanes. 
Among all such families of hy- 
perplanes that cover all the points, 
choose the one for which the suc- 
cessive hyperplanes are farthest 
apart, and let DI be the distance be- 
tween them. The smaller that dis- 
tance, the better, since this implies 
thinner empty “slices” in the lattice. 
Dieter [26] (see also [52]) gives an 
algorithm to compute DI, which is 
in fact equal to one over the length 
of the shortest vector in the dual lat- 
tice to L,. This shortest vector can 
also be computed using the algo- 
rithms of [2, 451, which are faster 
for large t. For given m and k, the 
number of hyperplanes in the cho- 
sen family cannot exceed (t!(mk - 
1))“f and there is also a theoretical 
lower bound 0:: on D, [36, 52, 561. 
One can define the figures of merit 
S, = DjVD, and MT = minkslsT S,, 
which lie between 0 and 1. For k = 
1 and using M6 as a criterion, com- 
puter searchs to find good genera- 
tors have been done by Fishman 
and Moore [36] (for m = 231 - 1), 
by Fishman [35] (for m = 232 and 
m = 248), by L’Ecuyer [56] (for dif- 
ferent values of m near 231 and af < 
m), and by Park and Miller [85] (for 
m = 231 - 1 and at (m mod at) < 
m). L’Ecuyer and Blouin have per- 
formed more extensive searchs, for 
1 % k 5 7 and different values of m 
up to near 263, first using MB as a 
criterion [57], then using a,, [58]. 

The results of [58] show that for 
k > 2, generators of the special 
form (11) have Beyer quotients 
much smaller than 1. But these 
generators are faster than those of 
the general form. In fact, for a 

given generator of the general 
form (9) with k > 2, one can usually 
find a generator of order k’ > k, of 
the special form (1 1), that will be 
faster and will have smaller DI for 
all t > k. Its Beyer quotients might 
be smaller, but this is compensated 
for by much smaller unit cell vol- 
umes. In that case, D, appears to be 
a better “absolute” criterion for 
comparing generators with differ- 
ent values of k and m. 

Table I gives a few values. For 
the first 3 columns, all multipliers ai 
satisfy condition (6): a, (m mod a,) < 
m. (The last column will be dis- 
cussed later.) For m = 2”’ - 1 and 
k = 1, the multiplier given is the 
one with the largest 420 among all 
those that satisfy this condition. 
Those in columns 2 and 3 (for k > 
1) were obtained by extensive ran- 
dom search and are believed to be 
close to the best ones with respect to 
f&r. For comparison, for m = 2”’ - 

1 and k = 1, the multiplier a = 
742938285 recommended Fishman 
and Moore [36] has Q. = .5808, 
while for a = 16807, a = 4827 1 and 
a = 69621, which are mentioned in 
Park and Miller [85] and satisfy (6), 
the respective values are .13 15, 
.4563 and .5373. 

A similar lattice structure ap- 
pears when all components of X, 
are used at each iteration [3, 44, 
451. It can be analyzed in a similar 
way. When the generator is not 
multiplicative (C # 0), the lattice is 
shifted by a constant vector, yield- 
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ing what is called a @d. The corre- 
sponding lattice can b,e analyzed in 
the same way, since its structure 
does not depend on C. When T( is 
replaced by the set OF non-overlap- 
ping t-tuples, L, does not form a lat- 
tice in general [l]. 

muswartRe, GFSKr, Lagged- 
Flbanaccl 

When a, = ]ak] = 1, the recursion 
(12) is a special case of the so-called 
lagged-Fibonacci generator (LFG) 
[65, 661. A LFG is defined by 

X” : = (X,-j 0 X,.-k) mod m (13) 

where 0 is any componentwise bi- 
nary operation (sum, product, sub- 
traction, etc.) and X, is a vector of 
any size, with components in (0, . . . , 
m - I}. These generators are ana- 
lyzed in [65,66], for different oper- 
ators 0, and m = 2”. For such values 
of m, their maximal period lengths 
are typically much smaller than 
mk- 1. 

Increasing the period of a LCG 
can be done by taking a larger m or 
a larger k. Typical MLCGs use m 
near 2s’ and small k. An opposite 
extreme is to take m = 2, with large 
k. In this case, X, is a vector of k bits. 
For b 5 k, one can interpret, say, 
the last b bits of X, as a b-bit integer. 
The generator thus obtained is 
called Generalized Feedback Shift Reg- 
ister (GFSR) [37, 38, 39, 40, 41, 42, 
62,66,93,94,95,96]. For the “effi- 
cient” special case (12), with aj = 
ak = 1, it becomes a special kind of 
lagged-Fibonacci generator, with 
operator 0 = @ (the bitwise exclu- 
sive or). Since the first k - b bits (if 
any) are unused, X, can be viewed 
as a b-bit vector. The generator’s 
state s, is a b x k mat.rix of bits. Rec- 
ommended values are for example 
b = 31 and k = 521 or 607 [37]. 

For b = 1, one gets a MRG which 
produces a sequence of bits (also 
called a M-sequence, for maximal 
period generators). Tausworthe 
[92] suggested regrouping blocks of 
successive bits to form integers or 
reals. These Tausworthe (or simple 
shift register) generators are rather 
slow and are almost not used any- 

more in practice. But see also [96]. 
GFSR generators are faster but use 
more memory. Since a GFSR gen- 
erator corresponds in fact to b cop- 
ies of the same M-sequence evolv- 
ing in parallel, one should use 
“jumping ahead” techniques to 
compute an initial matrix of bits so 
that these b bit-generators have 
their seeds far enough apart. (This 
also applies to LFGs in general.) 
Initialization procedures have been 
proposed (e.g., in [8, 21, 421). But 
Fushimi [39] gives a much simpler 
and faster procedure, which guar- 
antees equidistributivity in all di- 
mensions t 5 Lk/bJ and good auto- 
correlation properties for lags up to 
L(2k - 1 - b)lb]. The basic idea is to 
find a Tausworthe generator that is 
equivalent to the target GFSR and 
use the former to compute an initial 
matrix of bits. 

Marsaglia [65, 661 argues against 
the use of GFSR generators. He 
describes a statistical test, based on 
the ranks of random binary matri- 
ces, that some GFSR generators 
fail. But in fact, such specific tests to 
“catch-up” generators of a given 
class can be built for most classes of 
generators currently in use. Recent 
studies [7, 38, 41, 77, 93, 94, 951 
indicate that GFSRs with large 
order and properly chosen param- 
eters have excellent statistical prop- 
erties in general. One problem, 
though, is that they use a large 
amount of memory. This is particu- 
larly true when many generators 
have to be run in parallel. A better 
idea could be to stay away from the 
two extreme cases k = 1 and m = 2. 
Pick a large but practical m and in- 
crease k as needed. 

Other Wmlants 

while the matrix A has identical ele- 

The ACORN generator proposed 
recently in [ 1011 is in fact equiva- 
lent to a MLCG with matrix A such 
that a~ = 1 for i 2 j, aq = 0 other- 
wise. Generators based on cellular 
automata are discussed in [22, 981 
and other references given there. 
The generators proposed by Tindo 
[98] are equivalent to LCGs where 
the constant C is a vector of ones, 

ments a0 on its diagonal, identical 
elements at on its subdiagonal, and 
zeros elsewhere. The maximal pos- 
sible period is mk - m and finding 
generators that reach it is relatively 
easy. The elements of the vectors 
X, are combined to produce the 
output. 

Non-Linear Generators 
LCGs can be generalized to quad- 
ratic generators of the form 

X n : = (X;-,AX,-l + BX,ml + C) 
mod m, 

where A and B are k x k matrices, 
or more generally to 

X, : = P(X,-1) mod m 

where P is some multivariate poly- 
nomial. See [74]. For k = 1, quad- 
ratic generators are analyzed in [52, 
301. The latter authors show that 
for maximal period generators (p = 
m), the non-overlapping t-tuples de- 
termine a union of grids (shifted 
lattices). 

A class of generators based on 
Tchebychev mixing are known to 
have bad statistical properties [50]. 
Classes of LCGs with randomly 
varying multipliers and/or additive 
constants are discussed in [ 17, 191. 
They have interesting theoretical 
properties, but they require truly 
random bits at each step. 

A Class # Generatan by 
Invenlan 

is equivalent to jumping ahead p-l 

Eichenauer et al. [29, 311 intro- 
duced a class of “non-linear” gener- 
ators using a sequence {x,, 12 2 0) 
that obeys (9) for prime m. Let %i be 
the i-th non-zero value x, in that 
sequence. Define z, = &+$;l) 
mod m, where ii’ denotes the in- 
verse element of f, in GF(m). The 
Z,‘S are then used to produce the 
u,‘s. A version of Euclid’s algo- 
rithm, whose average running time 
is approximately 12(1n2)(1nm)la 
[52], can be used to compute the 
inverse %; ‘. Divide-to-conquer can 
also be used as mentioned previ- 
ously, since jumping back one value 
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values. Computing this inverse in 
software on a standard computer is 
slow, which makes these generators 
somewhat inefficient. However, if 
implemented in hardware, the in- 
version procedure can be practi- 
cally as fast as an ordinary floating- 
point division [29, and persona1 
communication from D. E. Knuth 
to J. Lehn]. 

For prime m, the maximal possi- 
ble period length for the z,‘s is mk- ‘. 
Sufficient conditions for it to be at- 
tained are given in [31]. Maxima1 
period generators are easy to find. 
For k = 2 or 3, one can write a re- 
cursion directly for the 2,‘s. For k = 
2, it is 

72,= 
1 

(ai + a&ji)modmif z,-~ # 0; 
al if .2,-I = 0. 

The main motivation behind these 
generators is that the sequence they 
produce does not share the lattice 
property of the usual LCGs. Their 
structure is highly non-linear: any 
t-dimensional hyperplane contains 
at most t overlapping t-tuples of 
successive values [34, 78, 79, 841. 
Niederreiter [82] shows that they 
behave very much like truly ran- 
dom generators with respect to dis- 
crepancy. Therefore, their theoret- 
ical properties look quite good. 

These non-linear generators can 
also be viewed as a way of imple- 
menting g : S+= U for a LCG, (i.e. 
as a supplementary step when 
transforming the state of the LCG 
into a value between 0 and 1). 
Other ways of defining g will be dis- 
cussed later. 

Combined Genemtorm 
To increase the period and try to 
get rid of the regular patterns dis- 
played by LCGs, it has often been 
suggested that different generators 
be combined to produce a “hybrid” 
one [20, 47, 48, 52, 56, 65, 67, 73, 
99, 1001. Such combination is often 
viewed as completely heuristic and 
is sometimes discouraged. Ripley 
[go], for instance, views it as “better 
the unknown than the devil we 
know” attitude. But besides being 
strongly supported by empirical 

investigations, combination has 
some theoretical support. First, in 
most cases, the period of the hybrid 
is much longer than that of each of 
its components, and can be com- 
puted. Second, there are theoretical 
results suggesting that some forms 
of combined generators generally 
have better statistical behavior. For 
instance, suppose two random se- 
quences {x,, n 2 0) and cm, n 2 0) 
are combined elementwise to form 
a third sequence {z,, n 2 0}, where 
Gl = xn 0 yn and 0 denotes some 
binary operator. Assume the three 
sequences are defined over the 
same finite set. Then, under fairly 
reasonable conditions, the t-tuples 
of successive values are “more” (or 
at least as much) uniformly distrib- 
uted in some sense for the third 
sequence than for any of its two 
constituents. See [14, 651. Recall, 
however, that the generators used 
in practice produce completely de- 
terministic sequences. In that con- 
text, the above results might raise 
optimism, but give no guarantee of 
quality. As pointed out in [13], 
combination can conceivably 
worsen things. Niederreiter (per- 
sonal communication) points out 
that if x, and yn have inverses with 
respect to 0, which is often the case 
in deterministic settings, then X, = 
z,Oy;’ and y,, =x;’ 0 z,, and the 
same argument as above suggests 
that x, and yn have “better” statisti- 
cal properties than z,! 

Some combination approaches 
are based on shuffling [13, 52, 54, 
731. In one of the variants, two sim- 
ple generators are used, one to fill 
the cells of a buffer and the other to 
select which cell the next output 
value will be taken from. At each 
step, the second generator selects a 
cell, outputs its content, then the 
first generator fills it back. Shuf- 
fling is not so well understood and 
has some practical drawbacks [ 131. 
For instance, there is no obvious 
efficient way to jump ahead in the 
sequence. 

L’Ecuyer [56] proposed a combi- 
nation method for MLCGs of order 
k = 1 with distinct prime moduli 
ml,. . . , mJ. If xjn denotes the state 

of generatorj at step n, define the 
combination (slightly more genera1 
than in [56]): 

z, = (J$P, mod ml (14) 

for some integers 8~ In [56], Sj = 
(- lp-’ is suggested. This is related 
to the following generalization of 
the combination approach pro- 
posed by Wichmann and Hill [99], 
which is a bit slower because it re- 
quires more divisions: 

un = (J$+jn~mj) mod 1. (15) 

If each individual MLCG has full 
period mj - 1, then the period of 
the latter is always equal to the least 
common multiple of ml - 1, . . . , 
mJ - 1 [61]. 

It turns out [61, 971 that there 
exists a MLCG with modulus m = 
g=imj whose lattice structure ap- 
proximates quite well the behavior 
of (14) in higher dimensions, and 
which is exactly equivalent to (15). 
This MLCG does not depend on 
the 6,‘s. The equivalence of the 
Wichman and Hill generator to a 
MLCG was already pointed out by 
Zeisel [99]. Such structural proper- 
ties are not so deceptive as it might 
appear. In fact, it shows that these 
combinations can be viewed as effi- 
cient ways of implementing (some- 
times with added noise) generators 
with moduli much larger than the 
largest integer representable on the 
target computer. However, these 
large moduli are not prime. 

One generator suggested in [56] 
had J = 2, ml = 2147483563, m2 = 
2147483399, al = 40014, as = 
40692, 6i = 1 and 82 = - 1. Its “ap- 
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proximating” MLCG has m = 
4611685301167870637 and a = 
1968402271571654650 (see Table 
I) [61, 971. The approximation is 
quite good in dimensions t z 3. Fig- 
ures of merit for the lattice associ- 
ated with this MLCG are given in 
the last column of Table 1. They 
show that for t z 3 (where the ap- 
proximation is good), the combined 
generator has a bsetter structure 
than the best MLCG of order one 
(and modulus m = Z3’ - l), and is 
quite comparable to the best 
MLCGs of order 2. In two dimen- 
sions, the combined generator is 
also more “noisy” than these 
MLCGs. Before suggesting that 
generator, the author had been 
unable to detect graphically, with 
reasonable computer time, any two- 
dimensional structural property. 
For the same size, o.ne can also find 
better combined generators than 
this one. See [61]. 

Tranriormlng lint0 u(O,W 

uarlates 

There are different ways of using 
the state vector X, =: (:c,t, . . . , x,k)’ 
of a LCG to produce real values 
between 0 and 1, that is of defining 
g : S + U where U is some finite 
subset of [O,l]. When m is large, a 
component x,; can be simply di- 
vided by m, yielding a result in [O,l). 
But it is often nec,essary to make 
sure that the result lies strictly be- 
tween 0 and 1. This can be accom- 
plished by dividing instead by 
m + 1, replacing first x,i by m when 
JC,, = 0. Other slightly more in- 
volved techniques are proposed in 
[68, 701. 

Afflerbach and Grothe [3, 44, 
451 use all the components of X, to 
obtain k U(O,l) varia.tes at each iter- 
ation. L’Ecuyer and Bl.ouin [57, 581 
use only x,k (the last component), 
which is equivalent to using a MRG. 
As discussed previously, the former 
is equivalent to splitting. 

When dividing x,~ by (m + l), the 
mesh size (or “granularity”) of the 
output is Il(m + 1). For some appli- 
cations, a smaller mesh size might 
be necessary (see, e.g., [29, 881). 
One can then use a digital method, in 

which a value u, E (0,l) is pro- 
duced by 

24, = (i*-%n+i- 1) mod (1 - p-r), 
i=l 

wherep 5 m + 1 and t 2 1 are inte- 
gers (p could be for instance a 
power of two), and {xi, i 2 0) is the 
sequence of all used vectors compo- 
nents (or a sequence produced by 
(9)). Other variants are discussed in 
[72, 76, 801. Tausworthe and GFSR 
generators use a similar technique 
with p = 2. In the MRG case, the 
period of the U,‘S always divides 
mk - 1. When mk - 1 and t are rela- 
tively prime, it is almost always 
mk - 1. 

StatIstIcal mmtlnm 

Knuth [52] describes a set of empir- 
ical statistical tests, usually viewed 
as the “standard” ones. Many of 
them are included in the package of 
Dudewicz and Ralley [27]. Mar- 
saglia [65] describes others, suppos- 
edly more powerful. Statistical tests 
are rather easy to design: any func- 
tion of a finite set of i.i.d. uniform 
random variables can be used as a 
statistic to define a test of hypothe- 
sis, if its distribution is known. To 
gain power, the test can be repeated 
N times, and the empirical distribu- 
tion of the values of the statistic can 
be compared to its theoretical dis- 
tribution, using, for instance, the 
Kolmogorov-Smirnov test [27, 561. 
Of course, the quality of a genera- 
tor can never be proven by any sta- 
tistical test. 

DlsCCeDanCY 

Besides empirical tests, some theo- 
retical tests can give information 
about the statistical behavior of cer- 
tain generators, often over the full 
period but sometimes also for just 
part of the period. Examining the 
lattice structure of LCGs yields such 
tests. Other tests are based on the 
notion of discrepan,cy. Informally, 
the discrepancy 08 in t dimensions 
is the absolute difference between 
the expected number and actual 
number of vectors (x,, . . . , x,+r- t), 

0 5 n <N, falling into a hyper- 
rectangular region with sides paral- 
lel to the axes, maximized over all 
such regions (or in some defini- 
tions, over those regions with a cor- 
ner at the origin). Intuitively, a dis- 
crepancy that is “too high” should 
be avoided. Also, a discrepancy that 
is “too low” can indicate a sequence 
that is “too regular”. Some “very 
regular” (so-called quasirandom) 
sequences, whose discrepancy has 
an order of magnitude lower than 
that of genuinely random se- 
quences, are useful for some appli- 
cations [12, 75, 841. For many dif- 
ferent classes of generators, bounds 
on 08 are available [72, 75, 76, 77, 
80, 81, 82, 84, 94, 951. These 
bounds can give some sort of “pro- 
tection”. But only in rare cases, 
exact values can be computed. For 
instance, two-dimensional discrep- 
ancy can be computed efficiently 
for a class of LCGs [5]. As pointed 
out in [4, 521, the discrepancy is 
very sensitive to rotations of the 
axis, in contrast to the Beyer- 
quotient or spectral test. This sug- 
gests that rating generators on the 
basis of their discrepancy bounds is 
not necessarily the best idea. On the 
other hand, discrepancy is a useful 
measure for getting error bounds 
in numerical integration or for ran- 
dom search procedures. Further, 
bounds on some statistical quanti- 
ties such as serial correlation can be 
obtained in terms of bounds on the 
discrepancy. Niederreiter’s survey 
[84] puts more emphasis on dis- 
crepancy and quasirandom se- 
quences. 

conclumlon 

A lot has been written on uniform 
variate generation, but certainly, 
the last word has not been said. As 
computing power gets progres- 
sively cheaper, applications will 
require increasingly robust genera- 
tors. Classical LCGs of order 1 are 
becoming unsatisfactory for some 
applications. For example, my lap- 
top computer needs less than 6 
hours to loop around the whole 
period of a MLCG with modulus 
m = 232 (and period length 230). 
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Supercomputers do the same in a 
few seconds. Increasing the modu- 
lus leads to implementation prob- 
lems. At the other extreme, GFSR 
generators, which use modulus 2, 
can attain much longer periods and 
good statistical properties by using 
a large order k. However, they use 
more space. But why stick to these 
two extreme cases? 

MRGs with a trinomial charac- 
teristic function, large m and say 
k 2 5, appear to be an excellent 
choice in terms of efficiency and 
statistical quality. The unit cell vol- 
ume of the associated t-dimensional 
lattice, for t > k, can be reduced by 
increasing k. The mesh size can be 
reduced without increasing m by 
using a digital method to produce 
the output. Note that the digital 
method can be implemented using 
different MRGs (evolving in paral- 
lel) for different digits. Non-linear 
transformations can also be used at 
this stage, but at the expense of 
reduced speed if no hardware im- 
plementation is at hand. PT-perfect 
generators offer a good stimulus 
for further research. 
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