
IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 4. APRIL 1988 49 1

Computing Optimal Checkpointing Strategies for Rollback and
Recovery Systems

PIERRE L’ECUYER AND JACQUES MALENFANT

A bstruct-This paper presents a numerical approach for computing
optimal dynamic checkpointing strategies for general rollback and
recovery systems. The system is modeled as a Markov renewal decision
process. General failure distributions, random checkpointing durations,
and reprocessing dependent recovery times are allowed. The aim is to find
a dynamic decision rule to maximize the average system availability over
an infinite time horizon. We propose a computational approach to
approximate such a rule. This approach is based on value iteration
stochastic dynamic programming with spline or finite element approxima-
tion of the value and policy functions. Numerical illustrations are
provided.

Index Terms-Availability, checkpointing, dynamic programming,
Markov decision processes, numerical approximation, performance opti-
mization, rollback and recovery.

I. INTRODUCTION
Rollback and recovery with checkpointing is a commonly used

technique in computer systems to ensure system integrity in spite of
transient failures 161, [I l l , [12], 1201. Periodically, the state of the
system is saved on stable storage; this operation is called checkpoint-
ing. Meanwhile, the sequence of actions performed by the system (or
sufficient information to be able to redo these actions) is also
recorded on stable storage (usually in a file called the audit trail). In
the advent of a failure, the system reloads the state saved at the most
recent checkpoint, and resumes execution (replays the audit trail)
from that time on, in order to bring itself back to the correct state that
immediately preceded the failure. This is called error recovery. In
fact, the above description is somewhat simplified, but other details
are not really necessary for our analysis.

The error recovery duration is usually dependent on the reprocess-
ing time, which is defined as the time during which the system has
been in production state since the most recent checkpoint. Produc-
tion state is defined as the state in which the system is available to
users, i.e. neither performing error recovery nor checkpointing.

The tradeoffs involved in choosing an appropriate checkpoint
frequency are the following. Very frequent checkpoints cause high
overhead due to the checkpointing durations, while too rare check-
points also cause high overhead by giving rise to longer recovery
periods. The problem of placing the checkpoints “optimally” in time
has received considerable attention. The most frequently used
objectives are to maximize system availability [4], [8], [9], [14],
[16], [20] or to minimize the mean response time per transaction [I],
[9], [16]. Major applications of the rollback and recovery technique
include database system recovery [6], [20], checkpointing programs
[121, [131, [2 I], [191, synchronizing parallel or distributed processors
[1 11, and database reorganization. Various alternative optimization
criteria are also suggested [131. See [151 and [20] for more complete
surveys. Transient error recovery algorithms for distributed systems
are discussed in [1 I]. Most of the investigated models assume
instantaneous failure detection and constant failure rate. However.

Manuscript received June 4, 1987: revised December 8, 1987. This work
was supported by NSERC-Canada Grant A5463 and FCAR-Quebec Grant
EQ2831 to P. L’Ecuyer.

P. L’Ecuyer is with the Dtpartement d’informatique, Universitt Laval, Ste-
Foy, P.Q., Canada, G1K 7P4.

J . Malenfant was with the Dtpartement d’informatique, Universite Laval,
P.Q., Canada GIK 7P4. He is now with the Dtpartement d’informatique et de
recherche optrationnelle, Universitt de Montreal, Montreal, P.Q., Canada
H3C 157.

IEEE Log Number 8719339.

experimental evidence [31, [5] shows that the constant failure rate
assumption is not realistic.

Tantawi and Ruschitzka [20] have proposed a model with general
interfailure time distributions, random checkpointing durations, and
reprocessing dependent recovery times. In contrast to most previous
models, failures are also allowed during either checkpointing or error
recovery. Their model is a Markov decision process whose state
transitions correspond to the failures that occur during either normal
processing or checkpointing. At each transition, the system state is
the reprocessing time at that point, and the decision to be made is the
sequence of production times between the forthcoming successive
checkpoints. This sequence should be followed until the next state
transition, at which a new decision should be taken, and so on. A
checkpointing strategy is a rule for selecting a decision, based on the
current system state.

For such a model, one can obtain a general expression for system
availability, where the availability is defined as the proportion of
time the system is in production state, over an infinite horizon.
Unfortunately, evaluating this expression is very demanding, since it
requires computing an infinite number of imbedded integrals, and
solving an integral equation. Computing an optimal policy with this
expression is generally out of reach. The expression can be simplified
by assuming that failures cannot occur during either error recovery or
checkpointing, but even then, finding an optimal strategy still
requires the solution of an infinite set of nonlinear equations, giving
rise to a computationally intractable problem.

Instead of trying to compute an optimal strategy, Tantawi and
Ruschitzka [20] analyze two restricted classes of strategies, under the
additional assumption of no failures during either error recovery or
checkpointing. These strategies, which are generally suboptimal, are
called equidistant and equicost, respectively. The equidistant
strategy assumes that the production time between successive
checkpoints is constant, whereas the equicost strategy places the
checkpoints so that the expected reprocessing time (cost) between any
two successive checkpoints equals the mean checkpointing time
(cost). The equicost strategy also forces checkpoints immediately
after every error recovery, thus transforming the Markov process to a
renewal process to ease the computations, but introducing still further
suboptimality . Tantawi and Ruschitzka provide an iterative algorithm
to compute an approximation of the best equicost strategy, and give a
numerical illustration using the Weibull failure rate. They also
derived a simple formula for the “optimal” value of the constant
checkpointing interval for the case where one is restricted to the class
of equidistant strategy. It depends on the interfailure and checkpoint-
ing duration distributions only through their means. Gelenbe [8] had
previously shown that under Poisson failures, and assuming that no
failure would occur during checkpointing or error recovery, the
equidistant strategy is optimal. But these assumptions are not very
realistic [3], [5] and in the general case, the best equidistant strategy
is not optimal. For the example considered in [20], the best
equidistant strategy is better than the best equicost strategy for some
parameter values of the Weibull law (e.g., for the exponential case),
and the reverse is true for other values.

The model considered in this paper generalizes the model proposed
in [20] by considering a component of the failure rate that depends on
the current time in a cyclic way. More importantly, we take a
different solution approach, based on stochastic dynamic program-
ming, which permits the computation of an optimal strategy in the
general case. Our model is a Markov Renewal Decision Process
(MRDP), and the optimal strategy is computed using a heuristic
extension of Schweitzer’s algorithm [181, which solves the dynamic
programming functional equations iteratively by successive approxi-
mations. Since the state and action spaces of our MRDP are
continuous, the problem must be discretized. It is often suggested to
approximate such a model by a Markov decision process with finite
state and action spaces [141, [161. But realistic approximations based

0018-9340/88/’0400-0491$01 .OO O 1988 IEEE

492 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO. 4, APRIL 1988

on that approach usually require these spaces to be very large, leading
to an intractable computational problem. A more satisfactory
approach consists in solving directly the continuous state and action
MRDP, using numerical approximation techniques for the value and
strategy functions. This kind of approach has been proposed and
analyzed in [IO] for MRDP’s with discounting. Here, we suggest
using spline [7] or finite element approximations of the value function
(at each iteration), and of the retained strategy.

The general model is stated in Section 11. In Section 111, we give the
dynamic programming formulation, propose a computational al-
gorithm, and discuss some efficient heuristics to accelerate its
convergence. In Section IV, we provide numerical illustrations,
while in the conclusion, we discuss possible extensions and the
practical usefulness of our work.

11. THE MODEL

Our model is an undiscounted Markov Renewal Decision Process
(MRDP) model [IO], [18] with average reward criteria and with
continuous state and action spaces. We first recall briefly the general
definition of an MRDP, and then give a more precise description of
our model. In an MRDP, the system is observed at random (discrete)
points in time, called the transition times, denoted by r0 = 0, r l , r2,
. . . . At time ri , a decision maker observes the state si of the system
and picks a decision d, from the set D(si) of admissible decisions in
state si. Let S be the set of all possible states, called the state space,
and D = USEsD(s) be the set of all possible decisions, called the
decision space.

The dynamics of the system are described by a family { p (. Is,
d) (s E S, d E D(s) } of probability laws on [0, 00) x S, and
rewards are cumulated according to a real-valued reward function q
defined on {(s, d) Is E S, d E D(s) } . If the system is in state si at
time 7i and decision di is chosen, then the expected one-stage reward
for stage i (from 7; to 7i+ I) is q(si, di), while the next state si+ and
the time 5; = ri+l - 7i until the next transition are generated
according to the probability measure p (. Is,, di). Let T(si, di) =
E [{i I s,, d,] denote the mean holding time until the next transition. A
policy is a function p which associates to each state s E S a decision
d = p(s) E D(s) . The aim of the decision maker is to find a policy to
maximize the average reward per unit of time, over an infinite time
horizon.

For the checkpointing-rollback-recovery model considered here,
the transition times correspond to failure times, recovery comple-
tions, and checkpoint completions. Empirical evidence [3] suggests
that for real-life systems, the failure rate has a cyclic behavior,
related to the variation in time of the workload, and also varies
(decreases) with the time since the last failure. Thus, we assume in
our model that the failure rate is given by a function h(r, y) of the
current time r and of the time y since the last failure. This function
depends on r in a cyclic fashion: X(r, y) = h((7 mod K) , y) , where
K is the period of the cycle. It is also assumed to be bounded, and
bounded away from zero: m I X(7, y) 5 M for some constants M
2 rn > 0. Let E (u (r , y) denote the corresponding conditional
reliability function, which gives the probability of no failure during
the next U units of time, given 7 and y , andf(u 17, y) = X(7 + U, y
+ u) E (u I r , y) the corresponding conditional failure density

function. We also have E(u (7 , y) = E(u I(7 mod K) , y) andf(u 17,

y) = f(u I(7 mod K) , y) . Proper definitions of these quantities, in
general, are given in most probability texts (see, e.g., [22]). As in
most earlier works [l], [8] , [9], [16], [20], we assume instantaneous
failure detection. This implies that the state saved by a checkpoint is
always correct. In practice, failure detection is not always instantane-
ous. A checkpoint may sometimes be contaminated, and the system
may have to roll back to an earlier checkpoint. In principle, our
model could be extended to take this possibility into account, but this
would complicate the optimization problem significantly. We do not
consider it in this paper.

Checkpoint durations are independent identically distributed
(i.i.d.) random variables, with distribution F,(.). The error recovery
time after a failure is a random variable whose probability distribu-

tion F,(. Ix) depends on the reprocessing time x, i.e., the production
time since the most recent checkpoint completion preceding the
failure. The mathematical expectations of all these random variables
are assumed to be finite and bounded away from zero: rnl 5 i,”
cdF,(c) < 00 and m2 5 1,” rdF,(r(x) < 00 for all x 2 0 , for some
constants rnl > 0 and m2 7 0.

The state of the system at any transition time is described by a
vectors = (t , x , y , ;) , where t is the current time modulo K , x i s the
reprocessing time, y is the time since the last failure, and; = 1, 2 , or
3 depending on whether this transition corresponds to a failure, a
recovery completion, or a checkpoint completion. The state space is
S = SI U S2 U S3 , where

SI = { (t , x, 0, I) l O I t I K , O I X }

s*= { (t , x, y , 2) 1 0 5 t 5 K , O I X , O s y }

When j = 3, then x = 0. When j = 1, then y = 0 and the only
admissible decision is to initiate a recovery. We denote this decision
by p. When; = 2 or 3 , a decision d corresponds to the production
time from now until the beginning of the next planned checkpoint.
The set of admissible decisions in that case is D(s) = [O, 00). Thus,
the decision space is D = { p } U [0, 00).

The possible transitions from any given state s = (t , x, y , j) in S
are given below. The next state is denoted by s’ = ((t + U) mod K ,
x ’ , y’ , ; ’) , where U is the elapsed time before transiting t o s ’ , and c
denotes the duration of the next checkpointing operation. I f s E SI
(failure point), let r denote the value of the recovery time. In this
case, the next transition may be triggered by a new failure during the
recovery (0 I U < rand (x ’ , y ’ , ; ’) = (x, 0, I)) , or correspond to
the normal recovery completion (U = r and (x’ , y ’ , j ’) = (x, U, 2)) .
I f s E Sz U S3 (i . e . , j = 2 or 3) , then a decision d 2 0 is chosen, and
the next transition may correspond to a failure before the beginning of
the next planned checkpoint (0 5 U < d and (x ‘ , y’ , ; ’) = (x + U ,
0, l)), or a failure during the checkpoint operation d 5 U < d + c
and (x ’ , y’ , ; ’) = (x + d, 0, l)), or the normal completion of the
checkpoint (U = d + c and (x ’ , y ’ , ; ’) = (0, y + U , 3)).

The expected time T(s, d) = T(t , x , y , j , d) until the next
transition, which is the mathematical expectation of U given s and d,
is given by

T(t , x, 0, 1, O)= Srn uf(uI t , OM1 - F , (u (x)) du

+ S r n uE(uIt , O)dF,(ulx) (2)

In (2) , the first term corresponds to a failure during recovery, while
the second term corresponds to normal recovery completion. In (3),
the last term corresponds to a failure during production (before the
beginning of the checkpoint), and in the first term, the two parts
correspond to a failure during the checkpointing operation and to a
normal checkpoint completion, respectively. The one-stage expected
reward q(s, d) is the expected production time until the next
transition, which is given by

q(t , x , 0, 1, 0) = 0 (4)

IEEE TRANSACTIONS ON COMPUTERS. VOL. 37, NO. 4, APRIL 1988 493

When j = 1, the production time is zero, since the system is
recovering. In (9, the first term corresponds to a failure during
production, while the second term corresponds either to a failure
during the next checkpointing operation or to normal checkpoint
completion.

The decision maker seeks a policy p to maximize the system’s
availability, i.e., the proportion of time, over an infinite horizon, that
the system is in production state. At time 7,, the system is in states, =
(t i , xi, y i , j i) , and following policy p , a decision di = p(s,) E D(si) is
taken. The time ti until the next failure follows the distribution Pr (E ,
5 () = 1 - E((l t i , y i) . The next transition occurs at 7i+ I = ~i +
U , , where

(6)
min (t, , r ,)
min ([,, d,+c,)

if j , = 1;
if j , = 2 or 3

and where r, and c, denote the respective values of the random
recovery duration and random checkpoint duration. The next state
si+ I is generated according to the probability laws given above. The
aim of the decision maker is to find a policy p that maximizes

(7)

where E, denotes the mathematical expectation, conditional on the
use of policy p . We assume that the above mathematical expectation
does not depend on the initial state so. Let A , = supp A (p) be its
optimal value. A policy p is called optimal if A (p) = A , , and E-

optimal, for E > O, if A (p) >_ A , - e . In practice, one will try to
compute an e-optimal policy for a small enough value of E .

111. A DYNAMIC PROGRAMMING COMPUTATIONAL PROCEDURE

In this section, we develop a numerical approximation method to
approximate A , and to compute an €-optimal policy. It is based on
dynamic programming. For a modern treatment of dynamic program-
ming and Markovian decision problems, see Bertsekas [2]. Schweit-
zer [18] devised a successive approximation algorithm to solve an
MRDP with finite state space S = { 1, . . . , N } and finite decision
space D. In this case, the law of transition from state to state is given
by a set of transition probabilities: at any stage, p(s’ Is, d) is the
probability that s,, = s‘ given that s, = s and d, = d. Schweitzer
assumes that the mean holding time T(s, d) is finite, and that there
exists a constant y > 0 such that for all admissible pairs (s, d) , 0 < y
< T(s, d) / (l - p(sls , d)) . He also assumes that for each policy, the
associated Markov chain has a unique subchain, plus possibly some
transient states feeding this subchain.

Without loss of generality, let s = N be a recurrent state. For
every real-valued function Vdefined on S, let the constant k (V) and
the real-valued function J (V) on S be defined, respectively, by

policy p* defined by

(10)

is optimal. Here, “arg maxdED(s)” denotes a value of d for which the
maximum is attained. Schweitzer’s algorithm simply computes
iterativelyk,and V,,forn = 1 , 2 , 3 , . . . , until(V,,(s) - V,-,(s)I
is smaller than a given E for all s in S. The retained policy is the one
obtained by replacing V* by V, in (10).

The above algorithm is in fact an iterative method for solving the
functional equation J(V,) = V,. The interpretation of V, is as
follows. Let R[*, “(s) be the total expected reward for period [0, f),
under an optimal policy, when s is the initial state at time 0. Then, it
can be shown that V,(s) = liml+m (R[*x‘I(s) - [A ,) . Thus, V,(s)
represents a “differential gain” due to state s.

We now go back to our model of Section 11. Schweitzer’s
assumptions do not hold for this model, since it has continuous state
and action spaces. But our approach will be to generalize his
algorithm in a heuristic way, replacing the set of transition
probabilities by more general probability laws and the sums by
integrals, putting aside all measurability issues. For practical
purposes, we assume that for all policies of interest, each of the state
variables x and y will always come back to zero, and that the expected
duration between any two successive visits to zero is finite. This
implies that the associated Markov chain has only one subchain.

Let y be a positive constant such that

y s i n f (T(s, d) J s E S, d E D(s)}, (1 1)

and let s* = (t , , 0 , y,, 3) E S1 be a selected state. We replace (8)
and (9) by

J (V) (s) = V(s) + y max
d E D(s)

where V is any real-valued function defined on S , and

H(w, x, 0, 1, P)

J (V) (s) = V(s) + y max

q(s, d) +

(I € D(s) = q(t , x, y , j , d) + Si
N- 1

V(s’)p(s’ Is, d) - V(s) - k (V) T(s, d)
s’ = I] . . [1;’‘ V((t+ U) mod K , x+d, 0, l)f(ult, y) du

+ V((t+d+c) mod K , O ,y+d+c , 3)F(d+cI t , y)

T(s, d)

dF,.(c)
(9) 1

Let VO: S + $1 be a given initial function, and define recursively k,
= k(V,-,)and V, = J (V , - ,) , fo rn = 1 , 2 , 3 , * . . . I t i s p r o v e n i n
[18] that 1) J(V,) = V,, where V, = limn+- V,, 2) lim,+mk,, =

+ J d V((t+u) mod K , x + u , 0, I)f(ulf, Y) du i f j + l .

A , = k (V*), where A , is the optimal average reward, and 3) the (15)

494 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37. NO. 4, APRIL 1988

The first integral in (14) corresponds to a failure during recovery,
while the second one corresponds to recovery’s completion. In (15),
the last integral corresponds to a failure before the next checkpoint
and in the first integral, the first term (inside integral) corresponds to
a failure during checkpointing while the second one corresponds to a
normal checkpoint completion. T and q are defined in (2)-(5).

Implementing a variant of Schweitzer’s algorithm with these
equations requires numerical approximation. In practice, J (V) can
be computed only for a finite number of states at each iteration and,
for an efficient implementation, that number should be reasonably
small. That will not be the case if we adopt the commonly used naive
discretization approach which consists in partitioning each of S and D
into a finite class of subsets, selecting a representative state or
decision in each subset, and defining an approximate finite state and
action model. Under such an approach, the function V is in fact
approximated by a piecewise constant function. A more satisfactory
approach consists in using numerical approximation schemes like
spline approximation, finite element methods, etc., to approximate V
and p in (12)-(15). Numerical integration techniques must also be
used, and the maximization over d could usually be performed as a
sequential search during the integration to approximate the optimum,
followed by a refinement to locate it more precisely.

The number of states at which J (V) is evaluated, the order of the
approximation method, the order and step size of the integration
method, and the required precision level in the optimal value of d
may vary from iteration to iteration. It should be reasonable to start
with coarse grids and simple (low-order) methods, gradually refining
them as the iterative process is going on. Also, the algorithm could be
modified in order to accelerate the convergence. A good idea is to
start with a simple policy, like for instance the best equidistant
strategy [9], [20], and keep it for a large number of iterations, to
obtain a low-cost first approximation of V,. Afterwards, instead of
performing maximizations at every iteration, one could keep the same
policy for a number of iterations, then maximize at one iteration to
obtain a new policy, and so on. The optimal policy is never
“attained” exactly, but is approached further and further as iterations
and refinements go on. One stops when the current approximation is
satisfactory for his needs.

In practice, the convergence rate of the algorithm is much affected
by the value of y. The smaller y is, the slower it goes, and the relation
is approximately linear. The terms in brackets in (13), multiplied by
y, represent the change in the value of V at the current iteration. An
interesting heuristic to accelerate the convergence is to amplify this
change, simply by replacing y in (13) by: y ’ = wy, where w 2 1 is a
constant. This idea is called overrelaxation [17]. In practice, the
value of w may vary from iteration to iteration. Since this new value
of y usually does not satisfy (l l) , convergence is no more
guaranteed. But in practice, large values of w (e.g., 10 or 20) may
sometimes be used without preventing convergence, and the compu-
tation time is thus divided approximately by w . To guarantee
convergence, one may use a decreasing sequence of values of w
converging to a value smaller than one. The approach we took in our
experiments was more akin to interactive “trial-and-error:” increase
w (or keep it high) when the value of V is moving slowly but
consistently in one direction, decrease it otherwise (i.e., when V
starts to oscillate).

IV. NUMERICAL ILLUSTRATIONS

In this section, we illustrate the proposed computational method
with two examples, which are particular cases of the general model.
In the first example, the failure rate depends on the time since the last
failure, while in the second one, it depends only on the current time,
in a cyclical fashion. Of course, these are only numerical illustra-
tions, and cannot be used to draw general conclusions on the form of
the optimal policy or on the goodness of the simpler suboptimal rules.

Example I : Our first example is similar to the one considered by
Tantawi and Ruschitzka [20], for which they were able to compute
only a suboptimal policy. These authors assumed Weibull interfailure
times with shape parameter 0.5 and a mean of 60 h. Their

corresponding failure rate is X(y) = O . S / W , where y is the
elapsed time since the last failure. Since that failure rate is neither
bounded nor bounded away from zero, we just add to it the small
constant O.OOO1 everywhere and clamp it, for y near zero, to a large
constant equal to X(O.001) . Thus, we obtain

The error recovery time is assumed to be a (deterministic) linear
function r of the reprocessing time: r (x) = 0 . 5 ~ + 0.1, for x 2 0.
The checkpointing time is assumed to be constant at 1 min.

Data obtained from several computer systems [3] suggest that in
the case of transient system errors, the Weibull distribution with a
decreasing failure rate is a very good approximation to interfailure
times. The error recovery is typically the sum of a fixed overhead
time plus a variable time to reprocess the work that has been done
since the last checkpoint completion. The choice of a fixed
checkpointing time in this example is not due to a limitation of our
method; random times can be handled as well (although increasing
the computational effort).

In this example, since the recovery time is deterministic, the
decision d that has to be taken at the end of a recovery may be taken
in advance at the last failure point preceding that recovery. Hence, it
is not necessary to observe the system at recovery completions, so
that the transition times may correspond only to failure times and
checkpoint completions. Also, it is not necessary to keep the current
time t in the state description. The state space becomes S = S1 U S3,
where S, = {(x, 0, 1) IO 5 x} and S3 = {(0, y , 3) 10 5 y }. Now,
when j = 1, the decision maker takes a decision d 2 0, which
corresponds to the production time from the end of the recovery to the
beginning of the next planned checkpoint, provided that no failure
occurs during that recovery. The possible state transitions from any
given state s in S are

s = (x , 0, 1)-

s ’ = (x , 0, I), if O s u < r (x)

(failure during the recovery)

s‘ = (x+ U - r (x) , 0, I),

if r (x) ~ u ~ r (x) + d

(failure during production)

s‘ = (x+ d, 0, I) ,

if r (x) + d< u < r (x) + d+ c

(failure during checkpointing)

s’=(O, r (x)+d+c, 31,

if u = r (x) + d + c

(normal checkpoint completion)

s ’ = (u , 0, I) , if O s u ~ d

(failure during production)

s ’= (d , 0, l) , if d<u<d+c

(failure during checkpointing)

s ’= (O,y+d+c , 3),

if u = d + c

(normal checkpoint completion).

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 4, APRIL 1988 495

Equations (2)-(5), (14), and (15) are easy to specialize accord-
ingly. Since the state space is the union of two one-dimensional half-
spaces, the function Vis not very hard to approximate. We select two
grids: 0 = xI < x2 < < yo,
where a and P are two positive integers, and evaluate J (V) (s) only
f o r s in S’ = S ; U Si, where S,’ = { (x , , 0, I) , 1 5 i 5 a } and Si
= { (O , Y ~ , 31, 1 5 k 5 P } .

Spline approximation was used to approximate J (V) on SI and S3 ,
yielding two spline functions V,’ and Vi . For x > x, or y > yo, we
defined V ; (x) = V,’(x,) and V i = V;(ys) . These two approximat-
ing functions were then used for the computation of H (V) at the next
iteration. Simpson’s integration rule was used to compute H (V) , and
the maximization with respect to d was done during the integration.
For the examples described here, we used an overrelaxation factor w
= 50 for the first 200 iterations, and w = 10 afterwards.

A Pascal program has been written on a VAX-11/780 to solve this
numerical example. The functions V ; and V i were piecewise linear
for a number of iterations, and then splines of order 4 (cubic splines).
We had y = 0.015 and s* = (0, 3, 3). We computed the availability
under an optimal policy, and also the availability under the
equidistant strategy with a checkpointing interval of 118.9 min
(which is the best equidistant strategy [20]). We obtained a system
availability of 0.9836 for the optimal case, and 0.9823 for the
equidistant case. These figures differ from those obtained by Tantawi
and Ruschitzka [20], who obtained 0.9833 for equicost and 0.9818
for equidistant; but these authors were assuming that no failures
occur during error recovery or checkpointing, and their time since
last failure did not include the time spent performing these activities.
We also computed the optimal policy under these assumptions, and
obtained an availability of 0.9836. Hence, for this particular
example, we see that the equicost strategy is almost optimal. Also,
the difference in performance between the best equidistant strategy
and the optimal strategy is relatively small (here, this difference
corresponds to about 1 1 h per year for a system which operates 24 h a
day). But this need not be always the case. For Weibull distributions
with very small or very large shape parameters, the difference could
possibly be larger (see [20]).

At optimality, the function V,(x, 0, 1) decreases in x almost
linearly, while V,(O, y , 3) increases in y in a log-like fashion. The
curve pL*(x, y , j) represents the optimal value of the production time
d until the next planned checkpoint. W h e n j = 1 (and y = 0), p*(x,
0, 1) decreases almost linearly in x from a value of approximately
0.78 at x = 0, to 0 at x = 0.66 h. It is zero for x > 0.66 h. Hence, it
is not always optimal to perform a checkpoint immediately after a
failurerecovery. W h e n j = 3 (andy = 0), p*(O,y, 3) increases i n y
(in a log-like fashion), in accordance with the decreasing failure rate
assumption.

Example 2: We now consider a failure rate which depends on the
current time t in a cyclic fashion, with period K = 24 h. It may be
interpreted as the sum of a constant component and a time-varying
component, which depends on the system’s load. The failure rate
function is given by

. < x,, and 0 = y , < yz <

1/100 if O<t<8;
1/40 if 8 1 t < 1 2 ;

A (t) = 1/60 if 121t<13;
1/50 if 1 3 5 t < 17; i 1/100 if 17<t<24.

The recovery time function and checkpointing time are the same as in
example 1.

In this example, the current time modulo K must be kept in the
state description, but it is not necessary to keep the time y since the
last failure. The state space is SI U S,, where SI = { (t , x , 1) IO I t
< 24, 0 5 x} and S, = { (t , 0, 3) 10 5 t < 24) . Transition times
are defined as in example 1. At any transition time, the decision
maker takes a decision d 2 0, which corresponds to the production
time until the next planned checkpoint. The largest value of y that
satisfies (1 1) is y = 0.0166. S3 is a one-dimensional line segment and
SI is a rectangle in the plane.

A Pascal program was run to solve this example. J (V) was
approximated by order 2 splines (piecewise linear) functions on S3,
and by piecewise bilinear functions on rectangular finite elements
covering SI. As the iterations went on, the number of evaluation
points went from 5 to 241 in t on S3, and from 5 x 5 to 21 x 49 in
(x, t) on SI. The computed optimal availability was 0.9836.

The optimal policy is relatively complex. For instance, p * (t , 0, 3)
is piecewise decreasing, but with upward jumps between the pieces.
For fixed x, p* (f , x, 1) behaves similarly, while for fixed t , p* (t , X,
1) decreases in x until it reaches zero, and is equal to zero for larger
values of x.

V. CONCLUSION
It is still possible to consider further generalizations of the model,

such as allowing checkpoints during error recovery [15] (this might
be worthwhile since the failure rate just after a failure is often very
high) or coping with distributed systems [11). Other performance
measures than the availability could also be considered, like a time-
varying utility of the availability, the average waiting time per
transaction [15], or maximizing the probability of finishing a given
task before a given deadline [13].

Dynamic programming need not be used only to compute policies,
it could also be used, sometimes, to prove useful theoretical
properties. For instance, it could be interesting to obtain sufficient
conditions under which the optimal policy p* would be monotonic,
e.g., increasing in y and decreasing in x. We have been unable to
obtain such conditions which are realistic and easy to verify, so this
remains an open problem.

For highly complex models, for which the state description
includes more than two or three continuous variables at the same
time, it becomes very difficult to approximate J (V) properly, and the
required amount of computation soon becomes overwhelming,
leading to a practically intractable problem. In such cases, using
suboptimal rules is probably the only way to go in practice. These
suboptimal rules may be evaluated through computer simulation,
which is another highly time consuming activity, but it does not tell
how much suboptimal they are. To evaluate the degree of suboptimal-
ity of a policy, we must be able to compute or approximate the
optimal value of the objective function. Thus, even if the algorithm
proposed in this paper is computationally unattractive for overly
complex models, it could be used to evaluate the degree of
suboptimality of simpler control policies for sufficiently realistic
models.

ACKNOWLEDGMENT
The authors wish to thank Dr. A. Mili, B. Pinta, 0. Roux, and T.

Vo-Dai for their remarks and suggestions. A discussion with Dr. A.
N. Tantawi of IBM was also very helpful. M. Mayrand wrote part of
the software and performed the numerical experiments for Section
IV .

I41

PI

REFERENCES

F. Bacelli, “Analysis of a service facility with periodic checkpoint-
ing,” Acta Informatica, vol. 15, pp. 67-81, Jan. 1981.
D . P. Bertsekas, Dynamic Programming: Deterministic and Slo-
chastic Models.
X. Castillo, S . R. McConnel, and D . P. Siewiorek, “Derivation and
calibration of a transient error reliability model,’’ IEEE Trans.
Cornput., vol. C-31, pp. 658-671, July 1982.
K. M. Chandy, “A survey of analytic models of rollback and recovery
strategies,” Computer, vol. 8, pp. 40-47, May 1975.
L. H. Crow and N. D . Singpurwalla, “An empirically developed
Fourier series model for describing software failures,’’ IEEE Trans.
Reliability, vol. R-33, pp. 176-183, June 1984.
C. J . Date, An Introduction to Database Systems, Vol. II .
Reading, MA: Addison-Wesley, 1983.
C. DeBoor, A Practical Guide to Splines. Berlin, Germany:
Springer-Verlag, 1978.
E. Gelenbe, “On the optimum checkpoint interval,” J . Ass. Comput.
Mach., vol. 26, pp. 259-270, Apr. 1979.
E. Gelenbe and D . Derochette, “Performance of rollback and recovery

Englewood Cliffs, NJ: Prentice-Hall, 1987.

496 IEEE TRANSACTIONS ON COMPUTERS. VOL 37, NO. 4. APRIL 1988

systems under intermittent failures,” Commun. Ass. Comput.
Mach., vol. 21, pp. 493-499, June 1978.
A. Haurie and P. L’Ecuyer. “Approximation and bounds in discrete
event dynamic programming,” IEEE Trans. Automat. Contr., vol.
AC-31, pp. 227-235, Mar. 1986.
R. Koo and S . Toueg, “Checkpointing and rollback-recovery for
distributed systems,” IEEE Trans. Software Eng., vol. SE-13, pp.
23-31, Jan. 1987.
I . Koren, Z. Koren, and S . Y . H. Su, “Analysis of a class of recovery
procedures,” IEEE Trans. Comput., vol. C-35, pp. 703-712, Aug.
1986.
C. M. Krishna, K . G. Shin, and Y-H. Lee, “Optimization criteria for
checkpoint placement,” Commun. Ass. Comput. Mach., vol. 27, pp.
1008-1012, Oct. 1984.
J . M. Magazine, “Optimality of intuitive checkpointing policies,”
Inform. Processing Lett., vol. 17, pp. 63-66, Aug. 1983.
J . Malenfant, “ModClisation du rttablissement lors des pannes dans les
bases de donntes par des processus de renouvellement markoviens
commandts,” Rep. DIUL-RR-8701, Dtp. d’informatique, Univ.
Lava], Jan. 1987.
V. F. Nicola and F. J. Kylstra, “A model of checkpointing and
recovery with a specified number of transactions between check-
points,” in PERFORMANCE ’83, A. K . Agrawala and S. K.
Tripathi, Eds. Amsterdam, The Netherlands: North-Holland, 1983,
pp. 83-100.
E. L. Porteus and J. C. Totten, “Accelerated computation of the
expected discounted return in a Markov chain,” Oper. Res., vol. 26,

P. J . Schweitzer, “Iterative solution of the functional equations of
undiscounted Markov renewal programming,” J . Math. Anal. Appl.,

K . G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing of
real-time tasks.” IEEE Trans. Comput., vol. C-36, Nov. 1987.
A. Tantawi and M. Ruschitzka, “Performance analysis of checkpoint-
ing strategies,” ACM Trans. Comput. Syst., vol. 2, pp. 123-144,
May 1984.
S. Toueg and 0. Babaoglu, “On the optimum checkpoint selection
problem,” SIAM J . Comput., vol. 13, pp. 630-649, Aug. 1984.
K . S. Trivedi, Probabiliiy and Statistics with Reliability, Queueing,
and Computer Science Applications. Englewood Cliffs, NJ: Pren-
tice-Hall, 1982.

pp. 350-358, 1978.

vol. 34, pp. 495-501. 1971.

Pseudoexhaustive Test Pattern Generator with Enhanced Fault
Coverage

P. GOLAN, 0. NOVAK, AND J . HLAVICKA

Abstract-This paper describes a new method of pseudoexhaustive test
pattern generation suitable above all for circuits using random access scan
(RAS). Two linear feedback shift registers (LFSR) are used to generate
scan addresses and test patterns to be scanned into these addresses. It is
shown that the suggested testing method gives better results than random
testing.

Index Terms-Built-in self-test equipment, linear code, linear feedback
shift register, pseudoexhaustive testing, random testing, scan design,
simplex code, test generation.

Manuscript received October 11, 1986; revised November 10, 1987.
P. Golan and 0. Novak are with the Research Institute for Mathematical

J . HlaviEka is with the Department of Computers, Czech Technical

IEEE Log Number 8719340.

Machines, Prague I , Czechoslovakia.

University, Prague 2, Czechoslovakia.

I. INTRODUCTION

Design for testability [13] has become a necessity for VLSI
circuits. Although the separation of combinational circuits from
memory simplified the test generation, the amount of computation
needed for the fault modeling still remains unacceptably large.
Therefore, the pseudoexhaustive testing, i.e., exhaustive testing of
inputs feeding one output, has been suggested [5] . The pseudoexhaus-
tive test sets can be generated, e.g., by a built-in test pattern
generator (TPG) using LFSR [I].

Tang and Chen showed in [3] the relationship between the output
sequences generated by an m-bit LFSR and cyclic codes with
minimum distance dmln, which allowed the generation of pseudoex-
haustive test sets. They are characterized by the fact that within the
set of codewords, all 2‘ possible vectors, i.e., the exhaustive test set,
can be found on any r-tuple of bits for r 5 d,,, - 1. The biggest
drawback of the method [3] is a large number of different LFSR seeds
needed for larger d,,,,,. This drawback was removed by Wang and
McCluskey [4], but only at the expense of a much longer LFSR, and
by Akers [6] whose method is applicable only to a small number of
UUT inputs. [2] and [9] suggest other methods of pseudoexhaustive
test set generation, but their implementation is much more difficult
than using an LFSR. McCluskey described in [5] a table-driven
algorithm for manual pseudoexhaustive test set generation. In [7]
Lempel and Cohn presented a method similar to [3], based on
concatenation of test matrices corresponding to different (2m - 1 ,
m) cyclic simplex codes, so-called maximum-length shift-register
codes, whose codewords are generated by m-bit LFSR’s. They
assume that the corresponding generator polynomials would be
chosen at random. From this assumption, they deduced the probabil-
ity of pseudoexhaustive test set existence. The number of tests needed
to create with a given probability a pseudoexhaustive test set is very
high, much higher than for random test set.

In [15], Dervisoglu made a more optimistic estimation of the
probability of pseudoexhaustive test set existence for the method [7].
He assumed that the selection of several different primitive polynomi-
als for LFSR implies random, equally probable permutations of
columns of the test matrices. However, it was shown in [7] that there
exist some rn-tuples of columns which cannot be covered exhaus-
tively even after having used all primitive polynomials of degree m.
Thus, the permutations of columns cannot be considered as equally
probable and the formula derived in [15] for the method of [7] is not
true.

Specifically, at the application to the level-sensitive scan design
(LSSD) are aimed methods [8] and [IO]. Bardell and McAnney [8]
solve to some extent the problem of series-parallel generation of test
patterns and removal of some structural dependencies (i.e., the
existence of identical bit streams on different UUT inputs). This
problem was fully solved in [16].

11. GENERAL METHOD OF FAULT COVERAGE ENHANCEMENT

Our goal is to generate a pseudoexhaustive test set for an s-input, t-
output combinational circuit in which every output depends on at
most r inputs (r < s). The subcircuit with r inputs containing all
gates which feed signals into one output is called a cone or, if we
want to show the number of its inputs, r-cone.

Definition I: Binary matrix T*(s , r) with s columns in which
every submatrix of r columns contains all 2‘ - 1 nonzero binary row
vectors of length r is called completely (s, r)-exhaustive test
matrix.

A completely (s, r)-exhaustive test matrix describes (after adding a
row of zeros if necessary) an (s, r)-exhaustive test set in which
exhaustive test sets for all r-tuples of inputs are contained (we assume
that every matrix column represents data fed into one UUT input).
The addition of a row of zeros is necessary if the TPG does not
generate the all-zero vector on the respective r-tuple of bits. As the
remedy is very simple, we will not discuss this point any further and

0018-9340/88/0400-0496$01 .oO 0 1988 IEEE

