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Computing Optimal Checkpointing Strategies for Rollback and 
Recovery Systems 

PIERRE L’ECUYER AND JACQUES MALENFANT 

A bstruct-This paper presents a numerical approach for computing 
optimal dynamic checkpointing strategies for general rollback and 
recovery systems. The system is modeled as a Markov renewal decision 
process. General failure distributions, random checkpointing durations, 
and reprocessing dependent recovery times are allowed. The aim is to find 
a dynamic decision rule to maximize the average system availability over 
an infinite time horizon. We propose a computational approach to 
approximate such a rule. This approach is based on value iteration 
stochastic dynamic programming with spline or finite element approxima- 
tion of the value and policy functions. Numerical illustrations are 
provided. 

Index Terms-Availability, checkpointing, dynamic programming, 
Markov decision processes, numerical approximation, performance opti- 
mization, rollback and recovery. 

I. INTRODUCTION 
Rollback and recovery with checkpointing is a commonly used 

technique in computer systems to ensure system integrity in spite of 
transient failures 161, [ I l l ,  [12], 1201. Periodically, the state of the 
system is saved on stable storage; this operation is called checkpoint- 
ing. Meanwhile, the sequence of actions performed by the system (or 
sufficient information to be able to redo these actions) is also 
recorded on stable storage (usually in a file called the audit trail). In 
the advent of a failure, the system reloads the state saved at the most 
recent checkpoint, and resumes execution (replays the audit trail) 
from that time on, in order to bring itself back to the correct state that 
immediately preceded the failure. This is called error recovery. In 
fact, the above description is somewhat simplified, but other details 
are not really necessary for our analysis. 

The error recovery duration is usually dependent on the reprocess- 
ing time, which is defined as the time during which the system has 
been in production state since the most recent checkpoint. Produc- 
tion state is defined as the state in which the system is available to 
users, i.e. neither performing error recovery nor checkpointing. 

The tradeoffs involved in choosing an appropriate checkpoint 
frequency are the following. Very frequent checkpoints cause high 
overhead due to the checkpointing durations, while too rare check- 
points also cause high overhead by giving rise to longer recovery 
periods. The problem of placing the checkpoints “optimally” in time 
has received considerable attention. The most frequently used 
objectives are to maximize system availability [4], [8], [9], [14], 
[16], [20] or to minimize the mean response time per transaction [I], 
[9], [16]. Major applications of the rollback and recovery technique 
include database system recovery [6], [20], checkpointing programs 
[ 121, [ 131, [2 I], [ 191, synchronizing parallel or distributed processors 
[ 1 11, and database reorganization. Various alternative optimization 
criteria are also suggested [ 131. See [ 151 and [20] for more complete 
surveys. Transient error recovery algorithms for distributed systems 
are discussed in [ 1 I]. Most of the investigated models assume 
instantaneous failure detection and constant failure rate. However. 
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experimental evidence [31, [ 5 ]  shows that the constant failure rate 
assumption is not realistic. 

Tantawi and Ruschitzka [20] have proposed a model with general 
interfailure time distributions, random checkpointing durations, and 
reprocessing dependent recovery times. In contrast to most previous 
models, failures are also allowed during either checkpointing or error 
recovery. Their model is a Markov decision process whose state 
transitions correspond to the failures that occur during either normal 
processing or checkpointing. At each transition, the system state is 
the reprocessing time at that point, and the decision to be made is the 
sequence of production times between the forthcoming successive 
checkpoints. This sequence should be followed until the next state 
transition, at which a new decision should be taken, and so on. A 
checkpointing strategy is a rule for selecting a decision, based on the 
current system state. 

For such a model, one can obtain a general expression for system 
availability, where the availability is defined as the proportion of 
time the system is in production state, over an infinite horizon. 
Unfortunately, evaluating this expression is very demanding, since it 
requires computing an infinite number of imbedded integrals, and 
solving an integral equation. Computing an optimal policy with this 
expression is generally out of reach. The expression can be simplified 
by assuming that failures cannot occur during either error recovery or 
checkpointing, but even then, finding an optimal strategy still 
requires the solution of an infinite set of nonlinear equations, giving 
rise to a computationally intractable problem. 

Instead of trying to compute an optimal strategy, Tantawi and 
Ruschitzka [20] analyze two restricted classes of strategies, under the 
additional assumption of no failures during either error recovery or 
checkpointing. These strategies, which are generally suboptimal, are 
called equidistant and equicost, respectively. The equidistant 
strategy assumes that the production time between successive 
checkpoints is constant, whereas the equicost strategy places the 
checkpoints so that the expected reprocessing time (cost) between any 
two successive checkpoints equals the mean checkpointing time 
(cost). The equicost strategy also forces checkpoints immediately 
after every error recovery, thus transforming the Markov process to a 
renewal process to ease the computations, but introducing still further 
suboptimality . Tantawi and Ruschitzka provide an iterative algorithm 
to compute an approximation of the best equicost strategy, and give a 
numerical illustration using the Weibull failure rate. They also 
derived a simple formula for the “optimal” value of the constant 
checkpointing interval for the case where one is restricted to the class 
of equidistant strategy. It depends on the interfailure and checkpoint- 
ing duration distributions only through their means. Gelenbe [8] had 
previously shown that under Poisson failures, and assuming that no 
failure would occur during checkpointing or  error recovery, the 
equidistant strategy is optimal. But these assumptions are not very 
realistic [3], [5] and in the general case, the best equidistant strategy 
is not optimal. For the example considered in [20], the best 
equidistant strategy is better than the best equicost strategy for some 
parameter values of the Weibull law (e.g., for the exponential case), 
and the reverse is true for other values. 

The model considered in this paper generalizes the model proposed 
in [20] by considering a component of the failure rate that depends on 
the current time in a cyclic way. More importantly, we take a 
different solution approach, based on stochastic dynamic program- 
ming, which permits the computation of an optimal strategy in the 
general case. Our model is a Markov Renewal Decision Process 
(MRDP), and the optimal strategy is computed using a heuristic 
extension of Schweitzer’s algorithm [ 181, which solves the dynamic 
programming functional equations iteratively by successive approxi- 
mations. Since the state and action spaces of our MRDP are 
continuous, the problem must be discretized. It is often suggested to 
approximate such a model by a Markov decision process with finite 
state and action spaces [ 141, [ 161. But realistic approximations based 
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on that approach usually require these spaces to be very large, leading 
to an intractable computational problem. A more satisfactory 
approach consists in solving directly the continuous state and action 
MRDP, using numerical approximation techniques for the value and 
strategy functions. This kind of approach has been proposed and 
analyzed in [IO] for MRDP’s with discounting. Here, we suggest 
using spline [7] or finite element approximations of the value function 
(at each iteration), and of the retained strategy. 

The general model is stated in Section 11. In Section 111, we give the 
dynamic programming formulation, propose a computational al- 
gorithm, and discuss some efficient heuristics to accelerate its 
convergence. In Section IV, we provide numerical illustrations, 
while in the conclusion, we discuss possible extensions and the 
practical usefulness of our work. 

11. THE MODEL 

Our model is an undiscounted Markov Renewal Decision Process 
(MRDP) model [IO],  [18] with average reward criteria and with 
continuous state and action spaces. We first recall briefly the general 
definition of an MRDP, and then give a more precise description of 
our model. In an MRDP, the system is observed at random (discrete) 
points in time, called the transition times, denoted by r0 = 0, r l ,  r2, 
. . . . At time ri ,  a decision maker observes the state si of the system 
and picks a decision d, from the set D(si) of admissible decisions in 
state si. Let S be the set of all possible states, called the state space, 
and D = USEsD(s) be the set of all possible decisions, called the 
decision space. 

The dynamics of the system are described by a family { p ( .  Is, 
d ) ( s  E S, d E D(s ) }  of probability laws on [0, 00) x S, and 
rewards are cumulated according to a real-valued reward function q 
defined on {(s, d) Is E S, d E D(s ) } .  If the system is in state si at 
time 7i and decision di is chosen, then the expected one-stage reward 
for stage i (from 7; to 7i+ I )  is q(si,  di), while the next state si+ and 
the time 5; = ri+l - 7i until the next transition are generated 
according to the probability measure p ( .  Is,, di). Let T(si, di) = 
E [  {i I s,, d,] denote the mean holding time until the next transition. A 
policy is a function p which associates to each state s E S a decision 
d = p(s) E D(s) .  The aim of the decision maker is to find a policy to 
maximize the average reward per unit of time, over an infinite time 
horizon. 

For the checkpointing-rollback-recovery model considered here, 
the transition times correspond to failure times, recovery comple- 
tions, and checkpoint completions. Empirical evidence [3] suggests 
that for real-life systems, the failure rate has a cyclic behavior, 
related to the variation in time of the workload, and also varies 
(decreases) with the time since the last failure. Thus, we assume in 
our model that the failure rate is given by a function h(r,  y )  of the 
current time r and of the time y since the last failure. This function 
depends on r in a cyclic fashion: X(r, y )  = h((7 mod K ) ,  y ) ,  where 
K is the period of the cycle. It is also assumed to be bounded, and 
bounded away from zero: m I X(7, y )  5 M for some constants M 
2 rn > 0. Let E ( u ( r ,  y )  denote the corresponding conditional 
reliability function, which gives the probability of no failure during 
the next U units of time, given 7 and y ,  andf(u 17, y )  = X(7 + U, y 
+ u ) E ( u  I r ,  y )  the corresponding conditional failure density 

function. We also have E(u  ( 7 ,  y )  = E(u  I(7 mod K ) ,  y )  andf(u 17, 

y )  = f(u I(7 mod K ) ,  y ) .  Proper definitions of these quantities, in 
general, are given in most probability texts (see, e.g., [22]). As in 
most earlier works [l], [8] ,  [9], [16],  [20], we assume instantaneous 
failure detection. This implies that the state saved by a checkpoint is 
always correct. In practice, failure detection is not always instantane- 
ous. A checkpoint may sometimes be contaminated, and the system 
may have to roll back to an earlier checkpoint. In principle, our 
model could be extended to take this possibility into account, but this 
would complicate the optimization problem significantly. We do not 
consider it in this paper. 

Checkpoint durations are independent identically distributed 
(i.i.d.) random variables, with distribution F,( .). The error recovery 
time after a failure is a random variable whose probability distribu- 

tion F,( .  Ix) depends on the reprocessing time x, i.e., the production 
time since the most recent checkpoint completion preceding the 
failure. The mathematical expectations of all these random variables 
are assumed to be finite and bounded away from zero: rnl 5 i,” 
cdF,(c) < 00 and m2 5 1,” rdF,(r(x) < 00 for all x 2 0 ,  for some 
constants rnl > 0 and m2 7 0. 

The state of the system at any transition time is described by a 
vectors = ( t ,  x ,  y , ; ) ,  where t is the current time modulo K ,  x i s  the 
reprocessing time, y is the time since the last failure, and; = 1, 2 ,  or 
3 depending on whether this transition corresponds to a failure, a 
recovery completion, or a checkpoint completion. The state space is 
S = SI U S2 U S3 ,  where 

SI = { ( t ,  x, 0,  I ) l O I t I K ,  O I X }  

s*= { ( t ,  x, y ,  2 ) 1 0 5 t 5 K ,  O I X ,  O s y }  

When j = 3,  then x = 0. When j = 1, then y = 0 and the only 
admissible decision is to initiate a recovery. We denote this decision 
by p.  When; = 2 or 3 ,  a decision d corresponds to the production 
time from now until the beginning of the next planned checkpoint. 
The set of admissible decisions in that case is D(s)  = [O, 00). Thus, 
the decision space is D = { p }  U [0, 00). 

The possible transitions from any given state s = ( t ,  x, y ,  j )  in S 
are given below. The next state is denoted by s’ = ( ( t  + U )  mod K ,  
x ’ ,  y’ , ; ’ ) ,  where U is the elapsed time before transiting t o s ’ ,  and c 
denotes the duration of the next checkpointing operation. I f s  E SI 
(failure point), let r denote the value of the recovery time. In this 
case, the next transition may be triggered by a new failure during the 
recovery (0 I U < rand  ( x ’ ,  y ’ , ; ’ )  = (x, 0, I ) ) ,  or correspond to 
the normal recovery completion (U = r and (x’ , y ’ , j ’  ) = (x, U, 2)) .  
I f s  E Sz U S3 ( i . e . , j  = 2 or 3) ,  then a decision d 2 0 is chosen, and 
the next transition may correspond to a failure before the beginning of 
the next planned checkpoint (0 5 U < d and ( x ‘ ,  y’ , ; ’ )  = (x + U ,  
0, l)), or a failure during the checkpoint operation d 5 U < d + c 
and (x ’ ,  y’ , ; ’ )  = (x  + d, 0, l)), or the normal completion of the 
checkpoint (U = d + c and ( x ’ ,  y ’ , ; ’ )  = (0,  y + U ,  3)). 

The expected time T(s, d)  = T( t ,  x ,  y ,  j ,  d)  until the next 
transition, which is the mathematical expectation of U given s and d, 
is given by 

T(t ,  x, 0,  1, O)= Srn  uf(uI t ,  OM1 - F , ( u ( x ) )  du 

+ S r n  uE(uIt ,  O)dF,(ulx) ( 2 )  

In (2) ,  the first term corresponds to a failure during recovery, while 
the second term corresponds to normal recovery completion. In (3), 
the last term corresponds to a failure during production (before the 
beginning of the checkpoint), and in the first term, the two parts 
correspond to a failure during the checkpointing operation and to a 
normal checkpoint completion, respectively. The one-stage expected 
reward q(s, d )  is the expected production time until the next 
transition, which is given by 

q(t ,  x ,  0,  1, 0) = 0 (4) 
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When j = 1, the production time is zero, since the system is 
recovering. In (9, the first term corresponds to a failure during 
production, while the second term corresponds either to a failure 
during the next checkpointing operation or to normal checkpoint 
completion. 

The decision maker seeks a policy p to maximize the system’s 
availability, i.e., the proportion of time, over an infinite horizon, that 
the system is in production state. At time 7,, the system is in states, = 
( t i ,  xi, y i , j i ) ,  and following policy p ,  a decision di = p(s,) E D(si) is 
taken. The time ti until the next failure follows the distribution Pr ( E ,  
5 () = 1 - E((l t i ,  y i ) .  The next transition occurs at 7i+ I = ~i + 
U , ,  where 

(6)  
min (t, ,  r , )  
min ([,, d,+c,) 

if j ,  = 1; 
if j , = 2  or 3 

and where r, and c, denote the respective values of the random 
recovery duration and random checkpoint duration. The next state 
si+ I is generated according to the probability laws given above. The 
aim of the decision maker is to find a policy p that maximizes 

(7) 

where E, denotes the mathematical expectation, conditional on the 
use of policy p .  We assume that the above mathematical expectation 
does not depend on the initial state so. Let A ,  = supp A ( p )  be its 
optimal value. A policy p is called optimal if A ( p )  = A , ,  and E-  

optimal, for E > O, if A ( p )  >_ A ,  - e .  In practice, one will try to 
compute an e-optimal policy for a small enough value of E .  

111. A DYNAMIC PROGRAMMING COMPUTATIONAL PROCEDURE 

In this section, we develop a numerical approximation method to 
approximate A ,  and to compute an €-optimal policy. It is based on 
dynamic programming. For a modern treatment of dynamic program- 
ming and Markovian decision problems, see Bertsekas [2]. Schweit- 
zer [18] devised a successive approximation algorithm to solve an 
MRDP with finite state space S = { 1, . . . , N }  and finite decision 
space D. In this case, the law of transition from state to state is given 
by a set of transition probabilities: at any stage, p(s’ Is, d)  is the 
probability that s,, = s‘ given that s, = s and d, = d. Schweitzer 
assumes that the mean holding time T(s, d )  is finite, and that there 
exists a constant y > 0 such that for all admissible pairs (s, d ) ,  0 < y 
< T(s, d ) / ( l  - p(sls ,  d ) ) .  He also assumes that for each policy, the 
associated Markov chain has a unique subchain, plus possibly some 
transient states feeding this subchain. 

Without loss of generality, let s = N be a recurrent state. For 
every real-valued function Vdefined on S, let the constant k (  V )  and 
the real-valued function J (  V )  on S be defined, respectively, by 

policy p* defined by 

(10) 

is optimal. Here, “arg maxdED(s)” denotes a value of d for which the 
maximum is attained. Schweitzer’s algorithm simply computes 
iterativelyk,and V,,forn = 1 , 2 , 3 ,  . . . ,  until(V,,(s) - V,-,(s)I 
is smaller than a given E for all s in S. The retained policy is the one 
obtained by replacing V* by V, in (10). 

The above algorithm is in fact an iterative method for solving the 
functional equation J(V,) = V,. The interpretation of V,  is as 
follows. Let R[*,  “(s) be the total expected reward for period [0, f), 
under an optimal policy, when s is the initial state at time 0. Then, it 
can be shown that V,(s) = liml+m (R[*x‘I(s) - [A , ) .  Thus, V,(s) 
represents a “differential gain” due to state s. 

We now go back to our model of Section 11. Schweitzer’s 
assumptions do not hold for this model, since it has continuous state 
and action spaces. But our approach will be to generalize his 
algorithm in a heuristic way, replacing the set of transition 
probabilities by more general probability laws and the sums by 
integrals, putting aside all measurability issues. For practical 
purposes, we assume that for all policies of interest, each of the state 
variables x and y will always come back to zero, and that the expected 
duration between any two successive visits to zero is finite. This 
implies that the associated Markov chain has only one subchain. 

Let y be a positive constant such that 

y s i n f  (T(s,  d ) J s  E S, d E D(s)}, ( 1  1) 

and let s* = ( t , ,  0 ,  y,, 3 )  E S1 be a selected state. We replace (8) 
and (9) by 

J (  V ) ( s )  = V(s)  + y max 
d E  D(s) 

where V is any real-valued function defined on S ,  and 

H( w, x, 0,  1, P )  

J (  V ) ( s )  = V(s )  + y max 

q(s, d )  + 

( I €  D(s) = q(t ,  x, y ,  j ,  d )  + Si 
N- 1 

V(s’)p(s’ Is, d )  - V(s )  - k (  V )  T(s,  d )  
s’  = I ] . . [ 1;’‘ V((t+ U )  mod K ,  x+d,  0, l)f(ult, y )  du 

+ V(( t+d+c)  mod K ,  O ,y+d+c ,  3)F(d+cI t ,  y )  

T(s, d )  

dF,.(c) 
(9) 1 

Let VO: S + $1 be a given initial function, and define recursively k, 
= k(V,-,)and V, = J (V , - , ) , fo rn  = 1 , 2 , 3 ,  * . . . I t i s p r o v e n i n  
[18] that 1) J(V,) = V,, where V,  = limn+- V,, 2 )  lim,+mk,, = 

+ J d  V(( t+u)  mod K ,  x + u ,  0, I)f(ulf, Y )  du i f j + l .  

A ,  = k (  V*),  where A ,  is the optimal average reward, and 3)  the (15) 
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The first integral in (14) corresponds to a failure during recovery, 
while the second one corresponds to recovery’s completion. In (15), 
the last integral corresponds to a failure before the next checkpoint 
and in the first integral, the first term (inside integral) corresponds to 
a failure during checkpointing while the second one corresponds to a 
normal checkpoint completion. T and q are defined in (2)-(5). 

Implementing a variant of Schweitzer’s algorithm with these 
equations requires numerical approximation. In practice, J (  V )  can 
be computed only for a finite number of states at each iteration and, 
for an efficient implementation, that number should be reasonably 
small. That will not be the case if we adopt the commonly used naive 
discretization approach which consists in partitioning each of S and D 
into a finite class of subsets, selecting a representative state or 
decision in each subset, and defining an approximate finite state and 
action model. Under such an approach, the function V is in fact 
approximated by a piecewise constant function. A more satisfactory 
approach consists in using numerical approximation schemes like 
spline approximation, finite element methods, etc., to approximate V 
and p in (12)-(15). Numerical integration techniques must also be 
used, and the maximization over d could usually be performed as a 
sequential search during the integration to approximate the optimum, 
followed by a refinement to locate it more precisely. 

The number of states at which J (  V )  is evaluated, the order of the 
approximation method, the order and step size of the integration 
method, and the required precision level in the optimal value of d 
may vary from iteration to iteration. It should be reasonable to start 
with coarse grids and simple (low-order) methods, gradually refining 
them as the iterative process is going on. Also, the algorithm could be 
modified in order to accelerate the convergence. A good idea is to 
start with a simple policy, like for instance the best equidistant 
strategy [9], [20], and keep it for a large number of iterations, to 
obtain a low-cost first approximation of V,. Afterwards, instead of 
performing maximizations at every iteration, one could keep the same 
policy for a number of iterations, then maximize at one iteration to 
obtain a new policy, and so on. The optimal policy is never 
“attained” exactly, but is approached further and further as iterations 
and refinements go on. One stops when the current approximation is 
satisfactory for his needs. 

In practice, the convergence rate of the algorithm is much affected 
by the value of y. The smaller y is, the slower it goes, and the relation 
is approximately linear. The terms in brackets in (13), multiplied by 
y, represent the change in the value of V at the current iteration. An 
interesting heuristic to accelerate the convergence is to amplify this 
change, simply by replacing y in (13) by: y ’ = wy,  where w 2 1 is a 
constant. This idea is called overrelaxation [17]. In practice, the 
value of w may vary from iteration to iteration. Since this new value 
of y usually does not satisfy ( l l ) ,  convergence is no more 
guaranteed. But in practice, large values of w (e.g., 10 or 20) may 
sometimes be used without preventing convergence, and the compu- 
tation time is thus divided approximately by w .  To guarantee 
convergence, one may use a decreasing sequence of values of w 
converging to a value smaller than one. The approach we took in our 
experiments was more akin to interactive “trial-and-error:” increase 
w (or keep it high) when the value of V is moving slowly but 
consistently in one direction, decrease it otherwise (i.e., when V 
starts to oscillate). 

IV. NUMERICAL ILLUSTRATIONS 

In this section, we illustrate the proposed computational method 
with two examples, which are particular cases of the general model. 
In the first example, the failure rate depends on the time since the last 
failure, while in the second one, it depends only on the current time, 
in a cyclical fashion. Of course, these are only numerical illustra- 
tions, and cannot be used to draw general conclusions on the form of 
the optimal policy or on the goodness of the simpler suboptimal rules. 

Example I :  Our first example is similar to the one considered by 
Tantawi and Ruschitzka [20], for which they were able to compute 
only a suboptimal policy. These authors assumed Weibull interfailure 
times with shape parameter 0.5 and a mean of 60 h. Their 

corresponding failure rate is X(y) = O . S / W ,  where y is the 
elapsed time since the last failure. Since that failure rate is neither 
bounded nor bounded away from zero, we just add to it the small 
constant O.OOO1 everywhere and clamp it, for y near zero, to a large 
constant equal to X(O.001) .  Thus, we obtain 

The error recovery time is assumed to be a (deterministic) linear 
function r of the reprocessing time: r ( x )  = 0 . 5 ~  + 0.1, for x 2 0. 
The checkpointing time is assumed to be constant at 1 min. 

Data obtained from several computer systems [3] suggest that in 
the case of transient system errors, the Weibull distribution with a 
decreasing failure rate is a very good approximation to interfailure 
times. The error recovery is typically the sum of a fixed overhead 
time plus a variable time to reprocess the work that has been done 
since the last checkpoint completion. The choice of a fixed 
checkpointing time in this example is not due to a limitation of our 
method; random times can be handled as well (although increasing 
the computational effort). 

In this example, since the recovery time is deterministic, the 
decision d that has to be taken at the end of a recovery may be taken 
in advance at the last failure point preceding that recovery. Hence, it 
is not necessary to observe the system at recovery completions, so 
that the transition times may correspond only to failure times and 
checkpoint completions. Also, it is not necessary to keep the current 
time t in the state description. The state space becomes S = S1 U S3, 
where S, = {(x, 0, 1) IO 5 x} and S3 = {(0, y ,  3) 10 5 y }. Now, 
when j = 1, the decision maker takes a decision d 2 0, which 
corresponds to the production time from the end of the recovery to the 
beginning of the next planned checkpoint, provided that no failure 
occurs during that recovery. The possible state transitions from any 
given state s in S are 

s = ( x ,  0, 1)- 

s ’ = ( x ,  0, I),  if O s u < r ( x )  

(failure during the recovery) 

s‘ = (x+ U - r ( x ) ,  0, I), 

if r ( x ) ~  u ~ r ( x )  + d 

(failure during production) 

s‘ = (x+ d, 0, I) ,  

if r ( x )  + d< u < r ( x )  + d+ c 

(failure during checkpointing) 

s’=(O, r (x )+d+c,  31, 

if u = r ( x ) + d + c  

(normal checkpoint completion) 

s ’ = ( u ,  0, I) ,  if O s u ~ d  

(failure during production) 

s ’= (d ,  0, l ) ,  if d<u<d+c  

(failure during checkpointing) 

s ’= (O,y+d+c ,  3), 

if u = d + c  

(normal checkpoint completion). 
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Equations (2)-(5), (14), and (15) are easy to specialize accord- 
ingly. Since the state space is the union of two one-dimensional half- 
spaces, the function Vis not very hard to approximate. We select two 
grids: 0 = xI < x2 < < yo,  
where a and P are two positive integers, and evaluate J (  V ) ( s )  only 
f o r s  in S’ = S ;  U Si, where S,’ = { ( x , ,  0, I) ,  1 5 i 5 a }  and Si 
= { ( O , Y ~ ,  31, 1 5 k 5 P } .  

Spline approximation was used to approximate J (  V )  on SI and S3 ,  
yielding two spline functions V,’ and Vi .  For x > x, or y > yo,  we 
defined V ; ( x )  = V,’(x,) and V i  = V;(ys) .  These two approximat- 
ing functions were then used for the computation of H (  V )  at the next 
iteration. Simpson’s integration rule was used to compute H (  V ) ,  and 
the maximization with respect to d was done during the integration. 
For the examples described here, we used an overrelaxation factor w 
= 50 for the first 200 iterations, and w = 10 afterwards. 

A Pascal program has been written on a VAX-11/780 to solve this 
numerical example. The functions V ;  and V i  were piecewise linear 
for a number of iterations, and then splines of order 4 (cubic splines). 
We had y = 0.015 and s* = (0, 3, 3). We computed the availability 
under an optimal policy, and also the availability under the 
equidistant strategy with a checkpointing interval of 118.9 min 
(which is the best equidistant strategy [20]). We obtained a system 
availability of 0.9836 for the optimal case, and 0.9823 for the 
equidistant case. These figures differ from those obtained by Tantawi 
and Ruschitzka [20], who obtained 0.9833 for equicost and 0.9818 
for equidistant; but these authors were assuming that no failures 
occur during error recovery or checkpointing, and their time since 
last failure did not include the time spent performing these activities. 
We also computed the optimal policy under these assumptions, and 
obtained an availability of 0.9836. Hence, for this particular 
example, we see that the equicost strategy is almost optimal. Also, 
the difference in performance between the best equidistant strategy 
and the optimal strategy is relatively small (here, this difference 
corresponds to about 1 1  h per year for a system which operates 24 h a 
day). But this need not be always the case. For Weibull distributions 
with very small or very large shape parameters, the difference could 
possibly be larger (see [20]). 

At optimality, the function V,(x,  0, 1) decreases in x almost 
linearly, while V,(O, y ,  3) increases in y in a log-like fashion. The 
curve pL*(x, y ,  j )  represents the optimal value of the production time 
d until the next planned checkpoint. W h e n j  = 1 (and y = 0), p*(x, 
0, 1) decreases almost linearly in x from a value of approximately 
0.78 at x = 0, to 0 at x = 0.66 h. It is zero for x > 0.66 h. Hence, it 
is not always optimal to perform a checkpoint immediately after a 
failurerecovery. W h e n j  = 3 (andy = 0), p*(O,y,  3) increases i n y  
(in a log-like fashion), in accordance with the decreasing failure rate 
assumption. 

Example 2: We now consider a failure rate which depends on the 
current time t in a cyclic fashion, with period K = 24 h. It may be 
interpreted as the sum of a constant component and a time-varying 
component, which depends on the system’s load. The failure rate 
function is given by 

. < x,, and 0 = y ,  < yz  < 

1/100 if O<t<8;  
1/40 if 8 1 t < 1 2 ;  

A ( t ) =  1/60 if 121t<13;  
1/50 if 1 3 5 t <  17; i 1/100 if 17<t<24. 

The recovery time function and checkpointing time are the same as in 
example 1. 

In this example, the current time modulo K must be kept in the 
state description, but it is not necessary to keep the time y since the 
last failure. The state space is SI U S,, where SI = { ( t ,  x ,  1 )  IO I t 
< 24, 0 5 x} and S, = { ( t ,  0, 3) 10 5 t < 24) .  Transition times 
are defined as in example 1. At any transition time, the decision 
maker takes a decision d 2 0, which corresponds to the production 
time until the next planned checkpoint. The largest value of y that 
satisfies (1 1) is y = 0.0166. S3 is a one-dimensional line segment and 
SI is a rectangle in the plane. 

A Pascal program was run to solve this example. J ( V )  was 
approximated by order 2 splines (piecewise linear) functions on S3, 
and by piecewise bilinear functions on rectangular finite elements 
covering SI. As the iterations went on, the number of evaluation 
points went from 5 to 241 in t on S3, and from 5 x 5 to 21 x 49 in 
(x, t )  on SI. The computed optimal availability was 0.9836. 

The optimal policy is relatively complex. For instance, p * ( t ,  0, 3) 
is piecewise decreasing, but with upward jumps between the pieces. 
For fixed x, p* ( f ,  x,  1) behaves similarly, while for fixed t ,  p* ( t ,  X, 
1) decreases in x until it reaches zero, and is equal to zero for larger 
values of x. 

V. CONCLUSION 
It is still possible to consider further generalizations of the model, 

such as allowing checkpoints during error recovery [15] (this might 
be worthwhile since the failure rate just after a failure is often very 
high) or coping with distributed systems [ 11). Other performance 
measures than the availability could also be considered, like a time- 
varying utility of the availability, the average waiting time per 
transaction [15], or maximizing the probability of finishing a given 
task before a given deadline [13]. 

Dynamic programming need not be used only to compute policies, 
it could also be used, sometimes, to prove useful theoretical 
properties. For instance, it could be interesting to obtain sufficient 
conditions under which the optimal policy p* would be monotonic, 
e.g., increasing in y and decreasing in x. We have been unable to 
obtain such conditions which are realistic and easy to verify, so this 
remains an open problem. 

For highly complex models, for which the state description 
includes more than two or three continuous variables at the same 
time, it becomes very difficult to approximate J (  V )  properly, and the 
required amount of computation soon becomes overwhelming, 
leading to a practically intractable problem. In such cases, using 
suboptimal rules is probably the only way to go in practice. These 
suboptimal rules may be evaluated through computer simulation, 
which is another highly time consuming activity, but it does not tell 
how much suboptimal they are. To evaluate the degree of suboptimal- 
ity of a policy, we must be able to compute or approximate the 
optimal value of the objective function. Thus, even if the algorithm 
proposed in this paper is computationally unattractive for overly 
complex models, it could be used to evaluate the degree of 
suboptimality of simpler control policies for sufficiently realistic 
models. 
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Pseudoexhaustive Test Pattern Generator with Enhanced Fault 
Coverage 

P. GOLAN, 0. NOVAK, AND J .  HLAVICKA 

Abstract-This paper describes a new method of pseudoexhaustive test 
pattern generation suitable above all for circuits using random access scan 
(RAS). Two linear feedback shift registers (LFSR) are used to generate 
scan addresses and test patterns to be scanned into these addresses. It is 
shown that the suggested testing method gives better results than random 
testing. 

Index Terms-Built-in self-test equipment, linear code, linear feedback 
shift register, pseudoexhaustive testing, random testing, scan design, 
simplex code, test generation. 
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I. INTRODUCTION 

Design for testability [13] has become a necessity for VLSI 
circuits. Although the separation of combinational circuits from 
memory simplified the test generation, the amount of computation 
needed for the fault modeling still remains unacceptably large. 
Therefore, the pseudoexhaustive testing, i.e., exhaustive testing of 
inputs feeding one output, has been suggested [ 5 ] .  The pseudoexhaus- 
tive test sets can be generated, e.g., by a built-in test pattern 
generator (TPG) using LFSR [I]. 

Tang and Chen showed in [3] the relationship between the output 
sequences generated by an m-bit LFSR and cyclic codes with 
minimum distance dmln, which allowed the generation of pseudoex- 
haustive test sets. They are characterized by the fact that within the 
set of codewords, all 2‘ possible vectors, i.e., the exhaustive test set, 
can be found on any r-tuple of bits for r 5 d,,, - 1. The biggest 
drawback of the method [3] is a large number of different LFSR seeds 
needed for larger d,,,,,. This drawback was removed by Wang and 
McCluskey [4], but only at the expense of a much longer LFSR, and 
by Akers [6] whose method is applicable only to a small number of 
UUT inputs. [2] and [9] suggest other methods of pseudoexhaustive 
test set generation, but their implementation is much more difficult 
than using an LFSR. McCluskey described in [5] a table-driven 
algorithm for manual pseudoexhaustive test set generation. In [7] 
Lempel and Cohn presented a method similar to [3], based on 
concatenation of test matrices corresponding to different (2m - 1 ,  
m )  cyclic simplex codes, so-called maximum-length shift-register 
codes, whose codewords are generated by m-bit LFSR’s. They 
assume that the corresponding generator polynomials would be 
chosen at random. From this assumption, they deduced the probabil- 
ity of pseudoexhaustive test set existence. The number of tests needed 
to create with a given probability a pseudoexhaustive test set is very 
high, much higher than for random test set. 

In [15], Dervisoglu made a more optimistic estimation of the 
probability of pseudoexhaustive test set existence for the method [7]. 
He assumed that the selection of several different primitive polynomi- 
als for LFSR implies random, equally probable permutations of 
columns of the test matrices. However, it was shown in [7] that there 
exist some rn-tuples of columns which cannot be covered exhaus- 
tively even after having used all primitive polynomials of degree m. 
Thus, the permutations of columns cannot be considered as equally 
probable and the formula derived in [15] for the method of [7] is not 
true. 

Specifically, at the application to the level-sensitive scan design 
(LSSD) are aimed methods [8] and [IO]. Bardell and McAnney [8] 
solve to some extent the problem of series-parallel generation of test 
patterns and removal of some structural dependencies (i.e., the 
existence of identical bit streams on different UUT inputs). This 
problem was fully solved in [16]. 

11. GENERAL METHOD OF FAULT COVERAGE ENHANCEMENT 

Our goal is to generate a pseudoexhaustive test set for an s-input, t- 
output combinational circuit in which every output depends on at 
most r inputs ( r  < s). The subcircuit with r inputs containing all 
gates which feed signals into one output is called a cone or, if we 
want to show the number of its inputs, r-cone. 

Definition I: Binary matrix T*(s ,  r )  with s columns in which 
every submatrix of r columns contains all 2‘ - 1 nonzero binary row 
vectors of length r is called completely (s, r)-exhaustive test 
matrix. 

A completely (s, r)-exhaustive test matrix describes (after adding a 
row of zeros if necessary) an (s, r)-exhaustive test set in which 
exhaustive test sets for all r-tuples of inputs are contained (we assume 
that every matrix column represents data fed into one UUT input). 
The addition of a row of zeros is necessary if the TPG does not 
generate the all-zero vector on the respective r-tuple of bits. As the 
remedy is very simple, we will not discuss this point any further and 
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