
On the Deng-Lin Random Number

Generators and Related Methods

Pierre L’Ecuyer and Renée Touzin

Département d’informatique et de recherche opérationnelle,

Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, H3C 3J7, Canada.

email: lecuyer@iro.umontreal.ca

http://www.iro.umontreal.ca/∼lecuyer

May 2, 2003

Abstract. We study the structure and point out weaknesses of recently-proposed random

number generators based on special types of linear recurrences with small coefficients, which

allow fast implementations. Our theoretical analysis is complemented by the results of simple

empirical statistical tests that the generators fail decisively. Directions for improvement and

alternative generators are also pointed out.

KEY WORDS: multiple recursive generator (MRG); lattice structure; efficient generator;

statistical test of randomness.

1 Introduction

A random number generator (RNG) is a small deterministic computer program whose aim

is to produce a sequence of numbers {ui, i ≥ 0} that behaves somewhat like a typical

realization of a sequence of independent random variables uniformly distributed over the

interval (0, 1) (i.i.d. U(0, 1), for short). A popular type of RNG is the multiple recursive

(linear congruential) generator (MRG), based on the linear recurrence

xi = (a1xi−1 + · · ·+ akxi−k) mod m, (1)

for some positive integers m (the modulus), k (the order), and aj’s in {0, 1, . . . ,m− 1} (the

coefficients). The state at step i is si = (xi−k+1, . . . , xi) and the output can be defined by

ui = xi/m. Usually, m is chosen as a prime number and the coefficients aj’s are selected so

that the characteristic polynomial of the recurrence (1) is a primitive polynomial; then, if

s0 6= 0, the output sequence is periodic with period length ρ = mk − 1, its largest possible

value (Knuth 1998). The MRG has been studied by several authors, including Grube (1973),

L’Ecuyer, Blouin, and Couture (1993), and L’Ecuyer (1996).

1



Deng and Lin (2000) have proposed a special case which they call fast MRG (FMRG),

where (1) has the form

xi = ((m− 1)xi−1 + axi−k) mod m = (−xi−1 + axi−k) mod m, (2)

as RNG “for the new century.” The generator is fast because it requires a single multiplica-

tion (of xi−k by a). They provide explicit values of a for m = 231 − 1 and k = 2, 3, and 4.

Deng and Xu (2002) proposed another variant called HELP-k, where all nonzero coefficients

aj’s in (1) are equal to some integer a (so a single multiplication is required). They provide

tables of values of a for m = 231 − 1, k = 102 and k = 120, and recurrences of the special

forms:

xi = a(xi−1 + xi−k) mod m, (3)

xi = a(xi−1 + xbi−k/2c + xi−k) mod m, (4)

xi = a(xi−1 + xbi−k/3c + xbi−2k/3c + xi−k) mod m, (5)

and (2). For all the parameters they give, the period length is mk − 1 and a <
√

m (to

make the implementation faster). Marsaglia (1996) proposed similar generators, based on

the recurrences

xi = 210(xi−1 + xi−2 + xi−3) mod (232 − 5) (6)

and

xi = 220(xi−1 + xi−2 + xi−3) mod (232 − 209). (7)

Here the product can be implemented simply via a binary shift, because a is a power of 2.

In the remainder of this paper, we study the structure and point out weaknesses of

these types of generators, both theoretically and empirically. In Section 2, we discuss their

lattice structures and provide bounds on their best possible performance in the spectral test,

showing that they cannot perform well, especially when a is small. In Section 3, we apply

well-known empirical statistical tests to selected instances of these generators. They fail the

tests decisively. Improvements and alternatives are pointed out in Section 4.

2 Lattice structure of MRGs

Select a finite set of integer indices I = {i1, . . . , it}, where 0 ≤ i1 < · · · < it, for some

positive integer t. For a given MRG, consider the multiset Ψt(I) of all t-dimensional output

vectors (ui1 , . . . , uit) obtained when the initial state s0 = (x0, . . . , xk−1) runs over all its

mk possibilities. If s0 is picked at random (uniformly), then (ui1 , . . . , uit) has the uniform

2



distribution over Ψt(I). So, roughly, ui1 , . . . , uit will be approximately i.i.d. U(0, 1) if and

only if Ψt(I) covers the unit hypercube (0, 1)t very uniformly. It is well known that Ψt(I)

is the intersection of a lattice in Rt with the unit hypercube [0, 1)t (Knuth 1998; L’Ecuyer

1997). This implies that there are families of equidistant parallel hyperplanes in Rt such

that each family covers Ψt(I), and one can actually compute the distance dt(I) between the

hyperplanes for the family for which this distance is largest. This is called the spectral test

(Knuth 1998). More specifically, 1/dt(I) is the Euclidean length of a shortest nonzero vector

in the dual of the lattice generated by Ψt(I). Computing this length can be formulated

as a quadratic integer programming problem, which can be solved by a branch-and-bound

algorithm (L’Ecuyer and Couture 1997). To avoid thick slices of empty space untouched

by Ψt(I), we want dt(I) to be as small as possible. On the other hand, there is a minimal

possible value of this distance for a general lattice in Rt with N points per unit of volume.

The exact minimum is known for t ≤ 8 and tight lower bounds are available for t > 8

(Conway and Sloane 1999; L’Ecuyer 1999b). Denote these values by d∗t (N). For t ≤ 8, one

has 1/d∗t (N) = γtN
1/t where γ2 = (4/3)1/4, γ3 = 21/6, γ4 = 21/4, γ5 = 23/10, etc. (Knuth

1998). The number of points per unit of volume in Ψt(I) is at most N = mk if t ≥ k and

N = mt if t < k. To measure the quality of Ψt(I) for t ≥ k, it is customary to use the

standardized number St(I) = d∗t (N)/dt(I), which lies between 0 and 1, and should be as

large as possible. Good MRGs have been constructed for which St(I) is large for all sets

I ∈ I, where I is a selected family of index sets; e.g., the set of all I = {0, . . . , t − 1} for

t ≤ t0 for some t0 which may go up to 40 or more (L’Ecuyer, Blouin, and Couture 1993;

L’Ecuyer 1999a). For example, the generator MRG32k3a proposed by L’Ecuyer (1999a) has

period length near 2191 and mint≤45 St({0, . . . , t− 1}) ≈ 0.6225.

Proposition 2 of L’Ecuyer (1997) gives the following lower bound on dt(I) when I contains

k and all j’s such that ak−j 6= 0:

dt(I) ≥ (1 + a2
1 + · · ·+ a2

k)
−1/2. (8)

This implies that to have a good quality MRG, it is necessary (but not sufficient) that the

sum of squares of the coefficients be large.

For the FMRG (2), if we assume that a2 < m as did Deng and Lin (2000), (8) gives the

bounds dt(I) ≥ (2 + a2)−1/2 ≥ (1 + m)−1/2 and St(I) ≤ (1 + m)1/2m−min(k,t)/t/γt whenever

{0, k − 1, k} ⊆ I. For I = {0, k − 1, k}, this gives S3(I) ≤ 2−1/6(1 + m)1/2m−min(k,3)/3. For

m = 231 − 1, this upper bound evaluates to St({0, 1, 2}) ≤ 0.024803 and St({0, k − 1, k}) ≤
1.9224× 10−5 for k ≥ 3. In other words, an MRG defined by (2) cannot perform well in the

spectral test for Ψt(I). For successive indices, we have S4({0, 1, 2, 3}) ≤ 0.003906 for k = 3

and S5({0, 1, 2, 3, 4}) ≤ 0.001289 for k = 4.

The actual values of S3({0, 1, 2}) for the values of a given by Deng and Lin (2000) for k = 2

3



in their Table 1 are all equal to 2−1/6(2 + a2)1/2m−2/3. They go from S3({0, 1, 2}) = 0.01413

for a = 26403 to S3({0, 1, 2}) = 0.02480 for a = 46338. For k = 3 and k = 4, the values of

St({0, k − 1, k}) are all smaller than 1.9224× 10−5.

Deng and Lin (2000) also propose random vector generators based on matrix linear

recurrences. These generators are in fact equivalent to running in parallel several copies of

the same MRG of the form (2), one for each vector coordinate, with different initial states.

Thus, these matrix generators have the same weaknesses as the FMRGs.

Consider now an MRG with recurrence

xi = a(xi−i2 + · · ·+ xi−it) mod m, (9)

where 0 < i2 < · · · < it = k (hence t ≤ k), and let I = {0, k − it−1, . . . , k − i2, k}. Applying

(8) to (9) yields

dt(I) ≥ (1 + (t− 1)a2)−1/2 (10)

and then

St(I) ≤ (1 + (t− 1)a2)1/2/(mγt). (11)

For the special cases of (3) to (5) with k = 102 or k = 120, and a2 < m, this gives

St(I) ≤ (1 + (t− 1)(m− 1))1/2

mγt

<

√
t− 1

γt

√
m

(12)

where t = 3 and I = {0, k − 1, k} for (3), t = 4 and I = {0, bk/2c, k − 1, k} for (4),

t = 5 and I = {0, bk/3c, b2k/3c, k − 1, k} for (5). For m = 231 − 1, this inequality becomes

S3(I) ≤ 2.719 × 10−5 for t = 3, S4(I) ≤ 3.143 × 10−5 for t = 4, and S5(I) ≤ 3.505 × 10−5

for t = 5. If a is much smaller than
√

m, the bound (11) is much tighter. For example, the

smallest value of a suggested by Deng and Xu (2002) for (3) with k = 102 is a = 23. In

this case, (11) gives S3(I) ≤ 1.4× 10−8, which means that the lattice structure is extremely

poor.

Equation (9) can also be written as

a∗xi mod m = (xi−i2 + · · ·+ xi−it) mod m, (13)

where a∗ is the inverse of a modulo m, i.e., the integer in {1, . . . ,m− 1} such that a∗a− 1

is a multiple of m, which exists when m and a have no common factor. Then, based on a

similar argument as in the proof of Proposition 1 of L’Ecuyer (1997), one can easily show

that the bound (10) can be complemented by

dt(I) ≥ (a2
∗ + t− 1)−1/2 (14)

(by noticing that the vector (a∗, 1, . . . , 1) belongs to the dual lattice). This bound would be

large whenever a∗ happens to be small. For example, for a = 840319688, a∗ = 23, a small

value, which illustrates the fact that a large a is not sufficient.

4



If we remove the condition a2 < m, the “fast” implementation method suggested by Deng

and Lin (2000) no longer applies. It is nevertheless instructive to examine what happens to

the quality of the lattice structure. The lower bound on dt(I) obtained via (8) can obviously

be much smaller and the corresponding upper bound on St(I) can be much larger. For

example, for the FMRG with m = 231−1, this gives a bound on St({0, k−1, k}) larger than

1 (useless) for k = 2 and near 0.89 for k ≥ 3. However, the following more detailed analysis

provides tighter bounds and shows that the quality cannot be good even for larger a.

Consider the lattice structure of the FMRG (2) with t = 3, and I = {0, k − 1, k}.
In this case, we recall (see, e.g., L’Ecuyer and Couture 1997) that the dual lattice is the

set {w = z1w1 + z2w2 + z3w3 such that each zj is an integer}, where w1 = (m, 0, 0),

w2 = (0, m, 0), and w3 = (1,−a, 1). This implies in particular that (putting z1 = 0) every

vector of the form w = (z3, z2m− z3a, z3) belongs to the dual lattice. This vector has square

length 2z2
3 + (z2m− z3a)2. Therefore, 1/d2

t (I) ≤ 2z2
3 + (z2m− z3a)2 for every pair of integers

(z2, z3) 6= (0, 0). Taking (z2, z3) = (0, 1) gives the bound (8). Other choices of (z2, z3) give

the following bounds:

(z2, z3) = (0, 1) → 1/d2
t (I) ≤ a2 + 2,

(z2, z3) = (1, 1) → 1/d2
t (I) ≤ (m− a)2 + 2,

(z2, z3) = (1, 2) → 1/d2
t (I) ≤ (m− 2a)2 + 8,

(z2, z3) = (1, 3) → 1/d2
t (I) ≤ (m− 3a)2 + 18,

(z2, z3) = (2, 3) → 1/d2
t (I) ≤ (2m− 3a)2 + 18,

(z2, z3) = (1, 4) → 1/d2
t (I) ≤ (m− 4a)2 + 32,

(z2, z3) = (3, 4) → 1/d2
t (I) ≤ (3m− 4a)2 + 32,

and so on. These bounds indicate that dt will be large if a is close to 0, or m, or m/2, or m/3,

or 2m/3, etc. By taking the minimum of all these bounds, over all pairs (z2, z3), one obtains

a much tighter bound than (8). For m = 231− 1, this gives approximately dt ≥ 1.689× 10−5

and, for k = 2, S3({0, 1, 2}) ≤ 0.03170. This value is approximately reached if we take

a = 10934394. For k ≥ 3, we obtain S3({0, k − 1, k}) ≤ 2.457 × 10−5. These bounds are

almost the same as when a2 < m. In other words, even if we relax the condition a2 < m,

finding a FMRG with a good lattice structure remains hopeless.

For the MRGs proposed by Marsaglia, with I = {0, 1, . . . , t−1}, one has d4(I) = 5.638×
10−4 and S4(I) = 8.890×10−5 for (6), whereas d4(I) = 2.432×10−4 and S4(I) = 2.061×10−4

for (7). Thus, these two generators have a poor lattice structure in four dimensions.

5



3 Statistical testing

We now illustrate to what extent simple empirical statistical tests can detect the weaknesses

studied theoretically in Section 2. We have tested 11 generators, defined as follows. DL00a1,

DL00a2, DL00a3, DL00b, and DL00c denote the FMRG based on (2) with m = 231 − 1 and

(k, a) = (2, 26403), (2, 39613), (2, 46338), (3, 21960), and (4, 22093), respectively. DX02a

and DX02b represent (3) with m = 231 − 1, k = 102, and a = 23 and 45787, respectively.

All these parameters are taken from the tables of Deng and Lin (2000) and Deng and Xu

(2002). For the FMRGs with k = 2, we took the smallest and largest values of a, as well

as the value a = 39613 chosen in Eq. (12) and Figure 1 of Deng and Lin (2000). DX02as

and DX02bs are versions of DX02a and DX02b for which we first generate 1 number, skip

the next 100, then we generate 3 numbers, skip the next 100, generate another 3 numbers,

skip the next 100, and so on. By doing this, the three-dimensional vectors produced by the

generator will have the form (ui, ui+101, ui+102) in terms of the output sequence {ui, i ≥ 0}
of the original generator. MAR96a and MAR96b are the MRGs (6) and (7).

We report results for two well-known tests, namely the maximum-of-t and the birthday

spacings tests (Knuth 1998; L’Ecuyer and Simard 2001). For each test, we select two pos-

itive integers n and t, and we generate n points “independently” in the t-dimensional unit

hypercube [0, 1)t, by calling the RNG t times for each point (once for each coordinate).

For the maximum-of-t test, let Xi be the largest coordinate of point i, for i = 1, . . . , n.

The test compares the empirical distribution of X1, . . . , Xn with its theoretical distribution

F (x) = xt under the null hypothesis H0 that the RNG produces i.i.d. U(0, 1) random vari-

ables. As suggested by Knuth (1998), page 70, the comparison is made via a chi-square

test, by partitioning [0, 1) into d intervals in a way that the expected number of values of

Xi in each interval is exactly n/d under H0, and comparing the expected numbers with

the observed numbers in all intervals. For all the tests reported here, we chose d so that

n/d = 16.

For the birthday spacings test, we partition [0, 1)t into k = 2bt cubic boxes of equal size by

dividing the interval [0, 1) into 2b equal parts, for some integer b. These boxes are numbered

from 0 to k − 1, in lexicographic order of the coordinates. Let I(1) ≤ I(2) ≤ · · · ≤ I(n) be

the box numbers where the n points fall, sorted by increasing order, and define the spacings

Sj = I(j+1)−I(j), for j = 1, . . . , n−1. Let Y be the number of values of j ∈ {1, . . . , n−2} such

that S(j+1) = S(j), where S(1), . . . , S(n−1) are the spacings sorted by increasing order. This

is the number of collisions between the spacings. Under H0, Y is approximately a Poisson

random variable with mean λ2 = n3/(4k) if k is large while λ2 is not too large (L’Ecuyer

and Simard 2001). If y denotes the observed value of Y , then the right p-value of the test is

p+ def
= P [Y ≥ y | Y ∼ Poisson(λ2)].

6



Table 1: The right p-values for some maximum-of-t tests
RNG t n p+ CPU time (sec)

DL00a1 3 219 0.29 0.68
DL00a1 3 220 < 10−15 1.34

DL00a2 3 220 2.8× 10−4 1.35
DL00a2 3 221 < 10−15 2.89

DL00a3 3 220 0.20 1.34
DL00a3 3 221 < 10−15 2.88

DL00b 4 219 0.88 0.72
DL00b 4 220 3.8× 10−5 1.52
DL00b 4 221 < 10−15 3.20

DL00c 5 221 0.03 3.40
DL00c 5 222 < 10−15 7.09

Tables 1 and 2 give the right p-values for selected RNGs and parameter sets, as we

increase the value of n. We also report the CPU time it took to run each test, on a PC

with a 1733 Mhz AMD Athlon processor running Linux. Most of these tests took only a few

seconds or less. As predicted by the theory, DL00a1, DL00a2, DL00a3, DX02as, and DX02bs

fail some tests in 3 dimensions, DL00b, MAR96a, and MAR96b fail in 4 dimensions, and

DL00c fails in 5 dimensions. These failures are clear and spectacular: in each case, we have

p-values smaller than 10−15. Generally speaking, whenever p+ < 10−15 at some sample size

n, the p-value remains smaller than 10−15 for all larger values of n. For example, DL00a1

passes the birthday spacings test with t = 3 for sample size n = 218, gives a suspect p-value

of p+ ≈ 5 × 10−6 for n = 219, and fails with a p-value smaller than p+ < 10−15 for n = 220

and all larger values of n. DL00a1 also fails the maximum-of-t test with p+ < 10−15 for all

n ≥ 220. These generators also fail other tests such as the collision test and close-pair tests,

whose results are not reported here, for the same values of t. DX02a and DX02b passed all

the tests we tried.

4 Improvements and alternatives

The idea of taking many coefficients aj equal to a common value in recurrence (1), in order

to improve the implementation speed, is certainly valuable. However, this must be done in a

way that allows the sum of squares of the aj’s to be large and the resulting generators must

be submitted to a lattice structure analysis via the spectral test. Having few nonzero aj’s

and taking them small is a bad idea. Taking a single large aj, as in (2), also leads to trouble.

As alternatives to the RNGs examined in this paper, we mention the generators LFSR113

7



Table 2: The right p-values for some birthday spacings tests
RNG t n b p+ CPU time (sec)

DL00a1 3 218 17 0.32 0.29
DL00a1 3 219 17 5.0× 10−6 0.62
DL00a1 3 220 17 < 10−15 1.20

DL00a2 3 218 17 0.32 0.26
DL00a2 3 219 17 1.2× 10−5 0.61
DL00a2 3 220 17 < 10−15 1.30

DL00a3 3 218 17 0.14 0.30
DL00a3 3 219 17 8.3× 10−7 0.59
DL00a3 3 220 17 < 10−15 1.26

DL00b 4 223 16 0.03 12.75
DL00b 4 224 16 3.1× 10−13 27.06
DL00b 4 225 16 < 10−15 57.11

DX02as 3 210 10 0.03 0.01
DX02as 3 211 10 < 10−15 0.02

DX02bs 3 218 18 0.22 2.43
DX02bs 3 219 18 1.4× 10−6 4.90
DX02bs 3 220 18 < 10−15 9.68

MAR96a 4 219 13 0.06 0.66
MAR96a 4 220 13 1.5× 10−13 1.38
MAR96a 4 221 13 < 10−15 2.92

MAR96b 4 220 13 0.10 1.36
MAR96b 4 221 13 < 10−15 2.93

8



of L’Ecuyer (1999c), MRG32k3a of L’Ecuyer (1999a), MRG31k3p of L’Ecuyer and Touzin

(2000), and MT19937 of Matsumoto and Nishimura (1998). These generators easily pass

all statistical tests discussed above, for the largest sample size n that we can handle. They

are also reasonably fast. To give a concrete idea, our fastest implementation of DL00a1

generates one billion (109) random numbers is approximately 23 seconds on our 1733 Mhz

Athlon PC running Linux, using the gcc compiler with full optimization (option -O3) with

its fast fmod function for the modulo operations. For comparison, LFSR113, MRG32k3a,

MRG31k3p, and MT19937 need approximately 7, 79, 59, and 37 seconds, respectively, for

the same task.

MRG32k3a and MRG31k3p belong to a class of combined MRGs designed explicitly to

perform very well in the spectral test while allowing efficient and portable implementations.

These generators are actually MRGs whose coefficients aj are large and are selected in a way

that the MRGs can be decomposed into components having a fast implementation. There are

certainly other efficient ways of implementing MRGs with large coefficients. Each method

usually imposes some special conditions on these coefficients. Good parameter sets can be

found by making computer searches, within the class of MRGs that satisfy these conditions,

to find instances having maximal period and good performance in the spectral test. This

was done for combined MRGs in L’Ecuyer (1999a) and could be done in a similar way for

other types of implementations or special cases, e.g., for MRGs whose nonzero coefficients

aj are all equal. This is an interesting avenue for further work.

Acknowledgements

This work has been supported by the Natural Sciences and Engineering Research Council of

Canada (NSERC) Grant No. ODGP0110050, NATEQ-Québec grant No. 02ER3218, and a

Killam Research Fellowship to the first author. The work of R. Touzin was supported by a

NSERC scholarship. The authors thank Richard Simard, who ran the statistical tests, and

an anonymous reviewer whose comments helped improving the paper.

REFERENCES

Conway, J. H., and N. J. A. Sloane. 1999. Sphere packings, lattices and groups . 3rd ed.

Grundlehren der Mathematischen Wissenschaften 290. New York: Springer-Verlag.

Deng, L.-Y., and D. K. J. Lin. 2000. Random number generation for the new century. The

American Statistician 54 (2): 145–150.

Deng, L.-Y., and H. Xu. 2002. Design, search, and implementation of high-dimensional,

efficient, long-cycle, and portable uniform random variate generator. Technical report,

Department of Statistics, University of California at Los Angeles. Preprint #327.

9



Grube, A. 1973. Mehrfach rekursiv-erzeugte Pseudo-Zufallszahlen. Zeitschrift für angewandte

Mathematik und Mechanik 53:T223–T225.

Knuth, D. E. 1998. The art of computer programming, volume 2: Seminumerical algorithms .

Third ed. Reading, Mass.: Addison-Wesley.

L’Ecuyer, P. 1996. Combined multiple recursive random number generators. Operations Re-

search 44 (5): 816–822.

L’Ecuyer, P. 1997. Bad lattice structures for vectors of non-successive values produced by

some linear recurrences. INFORMS Journal on Computing 9 (1): 57–60.

L’Ecuyer, P. 1999a. Good parameters and implementations for combined multiple recursive

random number generators. Operations Research 47 (1): 159–164.

L’Ecuyer, P. 1999b. Tables of linear congruential generators of different sizes and good lattice

structure. Mathematics of Computation 68 (225): 249–260.

L’Ecuyer, P. 1999c. Tables of maximally equidistributed combined LFSR generators. Math-

ematics of Computation 68 (225): 261–269.

L’Ecuyer, P., F. Blouin, and R. Couture. 1993. A search for good multiple recursive random

number generators. ACM Transactions on Modeling and Computer Simulation 3 (2):

87–98.

L’Ecuyer, P., and R. Couture. 1997. An implementation of the lattice and spectral tests for

multiple recursive linear random number generators. INFORMS Journal on Computing 9

(2): 206–217.

L’Ecuyer, P., and R. Simard. 2001. On the performance of birthday spacings tests for certain

families of random number generators. Mathematics and Computers in Simulation 55 (1–

3): 131–137.

L’Ecuyer, P., and R. Touzin. 2000. Fast combined multiple recursive generators with multi-

pliers of the form a = ±2q±2r. In Proceedings of the 2000 Winter Simulation Conference,

ed. J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, 683–689. Pistacaway, NJ:

IEEE Press.

Marsaglia, G. 1996. The Marsaglia random number CDROM including the DIEHARD bat-

tery of tests of randomness. See http://stat.fsu.edu/pub/diehard.

Matsumoto, M., and T. Nishimura. 1998. Mersenne twister: A 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Transactions on Modeling and

Computer Simulation 8 (1): 3–30.

10


