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Abstract. We consider the problem of estimating the density of a random variable X that can be sampled
exactly by Monte Carlo (MC) simulation. We investigate the effectiveness of replacing MC by ran-
domized quasi Monte Carlo (RQMC) to reduce the integrated variance (IV) and the mean integrated
square error (MISE) for histograms and kernel density estimators (KDEs). We show both theoret-
ically and empirically that RQMC estimators can achieve large IV and MISE reductions and even
faster convergence rates than MC in some situations, while leaving the bias unchanged. Typically,
RQMC provides a larger IV (and MISE) reduction with KDEs than with histograms. We also find
that if RQMC is much more effective than MC to estimate the mean of X for a given application, it
does not imply that it is much better than MC to estimate the density of X for the same applica-
tion. Density estimation involves a well known bias-variance tradeoff in the choice of a bandwidth
parameter h. RQMC improves the convergence at any h, although the gains diminish when h is
reduced to control bias.
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1. Introduction. We want to estimate by simulation the density of a random variable
X = g(U) where U = (U1, . . . , Us) ∼ U(0, 1)s (uniform over the unit hypercube) and g :
(0, 1)s → R. We assume that g(u) can be computed easily for any u ∈ (0, 1)s, that X has
density f (with respect to the Lebesgue measure) over R and our goal is to estimate f over
some bounded interval [a, b]. This interval may be a small region of greatest scientific interest
or it may be the central 95% or 99% of the support. When the support of X is bounded then
[a, b] might include all of it. Estimating the density accurately in areas where it is very small
(like far in a tail) requires specialized methods and is beyond the scope of this paper.

Our motivation comes from uncertainty quantification (UQ). In UQ, g may be a black
box function of random inputs and X = g(U) a quantity of interest. This X may be the
breaking strength of an industrial part, a radiation exposure level, or the voltage in a circuit.
Sampling methods can be used to find the mean of X, and the variance of X gives some idea
of how close to the mean X will be. However, in applications like these, deviations above and
below the mean have different consequences and estimating the density f(x) brings additional
information. The simulation literature has long looked at quantities such as the maximum
duration of a contruction project or the waiting time in a call center or the future value of a
financial holding and in these settings too, there is value in going beyond just the first two
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moments of X.
We will look at histograms and kernel density estimates of f . Our main contribution is to

show how randomized quasi-Monte Carlo methods can be used. Density estimation methods
were developed for the context where an independent sample X1, . . . , Xn from the unknown
density f is given. Here we assume that we can generate a sample X1, . . . , Xn of arbitrary size
by choosing where to sample. With crude Monte Carlo (MC), we would estimate the density
from n independent realizations of X, say X1, . . . , Xn, by simulation. Then the analysis is the
same as if the data was collected from the real world. But with RQMC methods, the error
behaves differently and the analysis is not the same.

We denote by f̂n a density estimator based on a sample of size n, and we measure the
quality of the estimator over [a, b] by the mean integrated square error (MISE), defined as

MISE =

∫ b

a
E[f̂n(x)− f(x)]2dx,

which we want to minimize. The MISE can be decomposed as the sum of the integrated
variance (IV) and the integrated square bias (ISB):

MISE = IV + ISB =

∫ b

a
E(f̂n(x)− E[f̂n(x)])2dx+

∫ b

a
(E[f̂n(x)]− f(x))2dx.

The simplest and most popular density estimator is certainly a histogram. It is very easy
to construct and to understand. We partition [a, b) into m equal parts of size h = (b− a)/m,
and the density estimator is

f̂n(x) = f̂h,n(x) =
nj
nh

for x ∈ [a+ (j − 1)h, a+ jh), j = 1, . . . ,m,

where nj is the number of observations that fall in this interval and n is the total number of
observations. Here we write the intervals closed on one side and open on the other side so
they form exactly a partition of [a, b), and the boundary b is left out, but since X is assumed
to have a density, the probability that it falls on a boundary is zero, so we can effectively
ignore these distinctions.

A kernel density estimator (KDE) is defined by selecting a kernel density k, and a constant
h > 0 called the bandwidth, which serves as a horizontal stretching factor for the kernel. Given
a sample X1, . . . , Xn, the KDE is defined by

(1.1) f̂n(x) = f̂k,n(x) =
1

nh

n∑
i=1

k

(
x−Xi

h

)
for x ∈ R. The kernels considered in this paper are probability densities that are sym-
metric about 0 and have positive bounded even moments. They are also nondecreasing on
(−∞, 0] and hence nonincreasing on [0,∞), with a finite mode, k(0) < ∞. In our numeri-
cal experiments, we use the Gaussian kernel, which is the standard normal density function
k(x) = exp(−x2/2)/

√
2π. This kernel is infinitely differentiable and has bounded derivatives

of all orders. Although KDEs have better asymptotic theoretical properties than histograms
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(see Section 2), the latter are more widely used, mainly because of their simplicity and ease
of interpretation, and because they are much faster to compute and plot when n is large.

The aim of this paper is to examine how the asymptotic convergence rates of the IV and
MISE can be improved by using RQMC instead of MC (in theory), and to assess empirically
the improvements in the IV and MISE that are achieved for reasonable finite sample sizes n,
on some examples.

We adopt the usual Θ(·) notation for the exact order : h(n) = Θ(ϕ(n)) means that there
is some n0 and constants c2 > c1 > 0 such that for all n ≥ n0, c1 ≤ h(n)/ϕ(n) ≤ c2. This is
less restrictive than h(n) ∝ ϕ(n). Also, c(n, h) = O(ϕ(n, h)) means that there is a constant
K > 0 such that for all integers n ≥ 1 and all h ∈ (0, 1], c(n, h) ≤ Kϕ(n, h). In limiting
arguments we let n→∞ to model increasing sample size,

With MC, under mild assumptions, the IV is Θ(n−1h−1) for both the histogram and the
KDE when nh → ∞, while the rate of the ISB is Θ(h2) for the histogram and Θ(h4) for the
KDE (see Section 2). Replacing MC by RQMC with the same n and h may reduce the IV and
perhaps its convergence rate, but it will not change the bias, because for all density estimators
that we consider, for any x ∈ [a, b], f̂n(x) is an average which has the same expectation with
RQMC as with MC. We shall therefore focus on how RQMC can reduce the IV and improve
its convergence rate. The IV is easy to estimate in practice, either with MC or RQMC, but
the ISB is harder to estimate. Techniques have been developed for estimating the ISB of a
KDE with MC [18] and they can be used to estimate the ISB under RQMC as well, because
the ISB is the same.

With RQMC, one might hope for an asymptotic IV of O(n−βh−1) for some β > 1 instead
of Θ(n−1h−1), because RQMC is known to reduce the variance rate from Θ(n−1) to O(n−β)
for β > 1 when estimating the integral of a smooth function. We could then reduce both the
IV and ISB by using a somewhat smaller h than for MC. Unfortunately, decreasing h increases
the variation of the integrand that corresponds to the density estimator at a given x. As a
result, the exponent of h in the denominator of the IV bound typically becomes larger than
1. Thus, our asymptotic bound for the IV will have the form O(n−βh−δ) for some positive
real numbers β and δ that depend on the setting. This bound converges in an asymptotic
regime in which nβhδ → ∞ and h → 0. Using the standard Koksma-Hlawka inequality, we
prove under certain conditions that IV = O(n−2+εh−2s) for any ε > 0. This bound degrades
quickly with the dimension s, but we emphasize that this is only an asymptotic upper bound.
The true IV may behave much better than the bound and does not necessarily increase at the
same rate as a function of s and 1/h.

In addition to developing asymptotic bounds, we study empirically the local behavior of
the IV as a function of n and h in a limited bounded region of interest that contains the pairs
(n, h) that we are likely to use. To approximate the IV in this selected region, we will use a
model of the form

(1.2) IV ≈ Cn−βh−δ

for some parameters C > 0, β > 0, and δ > 0 that depend on the problem and the RQMC
method, and that we can estimate by regression. This model is expected to give a reasonably
accurate approximation only for (n, h) in the selected region of interest and not necessarily
everywhere, and the coefficients that we estimate may differ from the asymptotic ones.
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For the examples we tried, the model turned out to give a reasonable approximation.
We need such a model to estimate at what rate we should decrease h as a function of n.
We estimate C, β, and δ by linear regression in log-log scale, based on experiments on a
grid of values of n and h. With this regression model, we sometimes find δ � 2s and
β > 1 for examples in large dimension s. But in other cases, even when RQMC reduces
the variance considerably when estimating the mean E[X], it does not necessarily provide as
much improvement on the MISE when estimating the density. When the dimension s gets
very large, we typically obtain β ≈ δ ≈ 1; that is, RQMC behaves pretty much like MC.

The remainder is organized as follows. In Section 2, we recall the definitions and basic
properties of histograms and KDE estimators. In Section 3, we recall some variance bounds
for RQMC integration. In Section 4, we examine how these bounds can be used to study
the convergence rate of the IV and MISE for a KDE under RQMC. In Section 5 we consider
stratified sampling. In Section 6, we explain how we estimate the model parameters over a
limited region by linear regression. In Section 7, we provide numerical illustrations. We give
our conclusions in Section 8.

We end this section with a remark about unit cubes. The uniform distributions on (0, 1)s,
[0, 1]s and [0, 1)s give the same density f because they are exactly the same distribution. A
countable sample size gives us probabilty zero of distinguishing between any two of them. We
define our function g over [0, 1]s because that is the natural domain for bounded variation and
continuity on the closed cube implies uniform continuity and boundedness. When we sample
by quasi-Monte Carlo we take points in [0, 1)s because that is a standard assumption there,
due in part to the ease with which that cube can be partitioned into subcubes.

2. Histograms and kernel density estimators with MC. We recall asymptotic properties
of the histogram and KDE when nh → ∞ and h → 0 simultaneously. The details can be
found in [6], [18], and [20], for example. The asymptotic MISE, IV, and ISB in this regime
are denoted AMISE, AIV, and AISB, respectively. Writing AIV = g̃(n, h) for some function g̃
means that limn→∞, g̃(n,h)→0 IV(n, h)/g̃(n, h) = 1 where IV(n, h) is the IV for the given (n, h),
and similarly for the AMISE and AISB. For measurable functions ψ : R → R, we define the
roughness functional R(ψ) =

∫ b
a (ψ(x))2dx and the “moments” µr(ψ) =

∫∞
−∞ x

rψ(x)dx, for
integers r ≥ 0. Because k is a symmetric probability density function, we have µ0(k) = 1,
µ1(k) = 0 and we have also assumed that 0 < µ2(k) <∞. Letting f (r) be the r’th derivative
of f , we will assume that R(f (r)) <∞ for r = 1, 2 for the histogram estimator, and for r ≤ 4
for the KDE.

With MC, for a histogram with bin (rectangle) width h, we have AIV = n−1h−1. So if
h = κn−γ , then AIV = n−1+γ/κ. On the other hand, AISB = h2R(f ′)/12. The AMISE is
minimized by taking h = (nR(f ′)/6)−1/3, and therefore

AMISE =
(9R(f ′)

16

)1/3
n−2/3,

as shown by Scott in [17].
For the KDE in (1.1), again with MC, we have AIV = n−1h−1µ0(k

2) and AISB =
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(µ2(k))2R(f ′′)h4/4. The AMISE is minimized by taking

h5 = Q/n, where Q :=
µ0(k

2)

(µ2(k))2R(f ′′)
,

if Q is well-defined and finite. This gives

AMISE =
5

4
Q−1/5µ0(k

2)n−4/5.

The above formulas tell us exactly how the asymptotically optimal h depends on k and f .
Finding a good h amounts to finding a good approximation of R(f ′) for the histogram and of
R(f ′′) for the KDE. This appears to be a circular problem, because f is precisely the unknown
function that we want to estimate. Perhaps surprisingly, a successful approach for selecting
a good h for the KDE is to estimate R(f ′′) by estimating f ′′ also via KDE, integrating its
square over [a, b], and plugging this estimate into the formula for the optimal h [3, 16, 6, 18].
To do that, one needs to select a good h to estimate f ′′ by KDE. The asymptotically optimal
h depends in turn on R(f (4)) which we can estimate where f (4) is the fourth derivative of
the unknown density. Then R(f (4)) can be estimated by integrating the KDE estimator of
f (4) and this goes on ad infinitum. In practice, one can select an integer r0 ≥ 1, get a rough
estimate of R(f (r0+2)), and start from there. One simple way of doing this is to pretend that
f is a normal density with a mean and variance equal to the sample mean µ̂ and variance σ̂2 of
the data, and then compute R(f (r0+2)) for this normal density. To estimate the rth derivative
f (r), one can take the sample derivative of the KDE with a smooth kernel k, yielding

(2.1) f̂ (r)n (x) ≈ 1

nhr+1

n−1∑
i=0

k(r)
(
x−Xi

h

)
.

The asymptotically optimal h to use in this KDE estimator is

(2.2) h
(r)
∗ =

(
(2r + 1)µ0((k

(r))2)

µ22(k)2R(f (r+2))n

)1/(2r+5)

.

This strategy can be used as well to estimate R(f ′) for the histogram, using a KDE to estimate
f ′. We will use this strategy to estimate a good h in our experiments with MC and RQMC,
with a Gaussian kernel, with r0 = 1 for the histogram and r0 = 2 for the KDE.

In this paper we always take h to be the same for all x ∈ [a, b]. It is possible to improve
upon kernel density estimation by using a locally varying bandwidth h(x) > 0. For instance,
it is advantageous to have a larger h = h(x) where f(x) is smaller. The interested reader is
referred to [19, 18].

3. Error and variance bounds for RQMC integration. We recall some classical error and
variance bounds for RQMC integration. They can be found in [5], [8], [11], and [13], for
example. We will use them to obtain bounds on the AIV for the KDE.

The integration error of g : [0, 1)s → R with the point set Pn = {u0, . . . ,un−1} ⊂ [0, 1)s is

En =
1

n

n−1∑
i=0

g(ui)−
∫
[0,1)s

g(u)du.
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Let v denote a subset of coordinates, v ⊆ S := {1, . . . , s}, and let ∂|v|g/∂uv denote the partial
derivative of g with respect to each of the coordinates in v. When ∂|v|g/∂uv exists and is
continuous for v = S, the Hardy-Krause (HK) variation of g is

(3.1) VHK(g) =
∑
∅6=v⊆S

∫
[0,1)s

∣∣∣∣∣∂|v|g∂uv

∣∣∣∣∣ du.
The star-discrepancy of Pn is

D∗(Pn) = sup
u∈[0,1)s

∣∣∣∣vol[0,u)− |Pn ∩ [0,u)|
n

∣∣∣∣ ,
where vol[0,u) is the volume of the box [0,u). The Koksma-Hlawka inequality states that

(3.2) |En| ≤ VHK(g) ·D∗(Pn).

Several known construction methods give Pn with D∗(Pn) = O((log n)s−1/n) = O(n−1+ε)
for all ε > 0. They include lattice rules and digital nets. Therefore, if VHK(g) < ∞, it
is possible to achieve |En| = O(n−1+ε) for the worst-case error. It is also known how to
randomize the points of these constructions so that for the randomized points, E[En] = 0 and
Var[En] = E[E2

n] = O(n−2+ε) (e.g., by a random shift modulo 1 for a lattice rule and by a
digital random shift for a digital net).

With the (square) L2-star discrepancy

D2
2(Pn) =

∫
u∈[0,1)s

∣∣∣∣vol[0,u)− |Pn ∩ [0,u)|
n

∣∣∣∣2du
and the corresponding (square) variation

(3.3) V 2
2 (g) =

∑
∅6=v⊆S

∫
[0,1)s

∣∣∣∣∂|v|g∂uv

∣∣∣∣2du,
we obtain the (slightly different) inequality

(3.4) |En| ≤ V2(g) ·D2(Pn).

One always has D2(Pn) ≤ D∗(Pn), and therefore we also know how to construct points sets
Pn for which D2(Pn) = O(n−1+ε). Moreover, if Pn is a digital net randomized by a nested
uniform scramble (NUS) [12, 13] and V2(g) < ∞, then E[En] = 0 and Var[En] = E[E2

n] =
O(V 2

2 (g)n−3(log n)s−1) = O(V 2
2 (g)n−3+ε) for all ε > 0.

4. RQMC to improve the convergence rate of the AIV for a KDE. Replacing MC
by RQMC changes only the variance, not the bias. We now examine how the inequalities
of Section 3 can be used to bound the AIV for a KDE with RQMC. For this, we bound the
variance of f̂n(x) at an arbitrary point x ∈ [a, b] and we integrate the bound. With X = g(U),
the KDE at x is

(4.1) f̂n(x) =
1

nh

n∑
i=1

k

(
x− g(Ui)

h

)
=

1

n

n∑
i=1

g̃(Ui)
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where g̃(Ui) := h−1k((x − g(Ui))/h). Thus, f̂n(x) can be seen as an RQMC estimator of
E[g̃(U)] =

∫
[0,1)s g̃(u)du. To apply the variance bounds of Section 3 to this estimator, we

need to bound the variation of g̃, by bounding each term of the sum in (3.1) or (3.3). This
requires at least an s-fold derivative of g̃, and therefore s-fold derivatives of k and g. Note
that the Gaussian kernel k is infinitely differentiable and has bounded derivatives of all orders,
whereas some other popular kernels (e.g., Epanechnikov, for which k(x) = (3/4)(1 − x2) for
−1 ≤ x ≤ 1) are not differentiable. It is common that the function g is also smooth.

The partial derivative of g̃ with respect to the coordinates in v can be written

∂|v|g̃

∂uv
=

1

h

∂|v|

∂uv
k

(
x− g(u)

h

)
.

By expanding all the partial derivatives in this expression via the chain rule, we obtain terms
in h−j for j = 2, . . . , |v|+ 1. Then

(4.2) ‖∂|v|g̃/∂uv‖∞ = O(h−|v|−1).

So even if k and g are very smooth, this gives an AIV bound that grows as Θ(h−2s−2) for
fixed n. Such a bound can be too conservative however because the variation depends on
‖∂|v|g̃/∂uv‖1 not ‖∂|v|g̃/∂uv‖∞ and only values g(u) within O(h) of x make a nonnegligible
contribution to the L1 norm.

We can study this localization precisely when s = 1 and show that it removes a factor
of h−1 from the variation. Suppose that g(u) is a nondecreasing function on [0, 1]. Then
g̃(u) = k((x− g(u))/h)/h is nonincreasing over the u with g(u) ≤ x and nondecreasing over u
with g(u) ≥ x. In that case VHK(g̃) is the ordinary one dimensional total variation, and then

(4.3) VHK(g̃) ≤
∣∣∣∣1hk(0)− 1

h
k

(
x− g(0)

h

)∣∣∣∣+

∣∣∣∣1hk(0)− 1

h
k

(
x− g(1)

h

)∣∣∣∣ ≤ 2k(0)

h
,

which has one less power of h−1 than the bound obtained via (4.2). The same bound holds for
nonincreasing functions g. More generally, if g is monotone within each of M intervals that
partition the domain [0, 1] then VHK(g̃) ≤ 2Mk(0)/h. The factor of 2 is necessary because k is
potentially increasing and then decreasing within each of those intervals. For k with Lipschitz
constant Lk we can easily show that VHK(g̃) ≤ LkVHK(g)/h2. The more pessimistic power of
h in this result could arise for g that oscillate frequently around a value near x, though we do
not expect such functions in our motivating use cases. See [7] for general results on composing
univariate functions of bounded variation.

Now suppose that k and g are continuously differentiable and [0, 1] can be partitioned
into M subintervals with g monotone over each subinterval. Then with RQMC points that
achieve D∗(Pn) = O(n−1), we obtain IV = O(n−2h−2). With h = Θ(n−1/3), this gives
AMISE = O(n−4/3).

To bound the square variation V 2
2 (g̃) with s = 1, suppose that g is continuously differen-

tiable, Lipschitz with constant Lg, and is monotone over [0, 1]. Making the change of variable
w = (x− g(u))/h, and noting that dw/du = −g′(u)/h with |g′(u)| ≤ Lg, we obtain

(4.4) V 2
2 (g̃) =

1

h2

∫ 1

0

(
k′
(
x− g(u)

h

)(
−g′(u)

h

))2

du ≤ Lg
h3

∫ ∞
−∞

(k′(w))2dw = O(h−3).
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If g is monotone over each of M intervals S1, . . . , SM that partition [0, 1], then the above
argument yields V 2

2 (g̃) = O(Mh−3). Since M is constant in our limit, we obtain AIV =
O(n−3h−3). Because ISB = O(h4) we can take h = Θ(n−3/7) and get AMISE = O(n−12/7).

For s > 1, the contribution to ∂|v|g̃/∂uv of highest order in h−1 is

h−1−|v|k(|v|)
(x− g(U)

h

)
(−1)|v|

∏
j∈v

gj(U),

where gj is the partial derivative of g with respect to Uj . This power is also highest for the
case v = {1, 2, . . . , s} which we now assume. We think it is reasonable that one power of h−1

can commonly be removed here just as for s = 1. While it was simple to partition [0, 1] into
M pieces, the multivariate analogue is more cumbersome. Similarly, composition of bounded
variation functions is more complicated for s > 1 than for s = 1. For instance, Basu and
Owen [2] give a Lipschitz continuous function f from R2 to R and a function τ from [0, 1]2 to
[0, 1]2 with both components having finite variation in the sense of Hardy and Krause, where
nonetheless, f ◦ τ has infinite variation. Because of these two complications, we sketch the
argument. We will proceed by sequentially partitioning the domain [0, 1]s into subsets where
g̃ is regular. Our conditions require only mild regularity.

Suppose that we can partition [0, 1]d into a set of subdomains within which each gj is
either nonnegative or nonpositive but no gj takes both positive and negative values. Further
suppose that |gj | ≤ Bj <∞ over [0, 1]s. Let us now partition each of those subdomains into a
finite number of regions over which k(s) is either nonnegative or nonpositive. For instance, the
first derivative of the Gaussian density is increasing then decreasing then increasing again as
its argument ranges from −∞ to∞, the second derivative has 4 regions, and higher derivatives
have a finite number of such intervals defined through zeroes of Hermite polynomials. Now let
w = (x− g(u))/h and suppose that each region can be partitioned once more into subsets S
where either u→ (w, u2, . . . , us) is a smooth and invertible mapping to an image I(S), or the
same holds with a different uj than u1 being displaced by w. The Jacobian of this mapping
is −gj(u)/h which we further assume is nonzero almost everywhere in S. Now, for the case
with j = 1,∫

S

∣∣∣∣h−1−sk(s)(x− g(u)

h

)
(−1)s

s∏
`=1

g`(u)

∣∣∣∣du = h−s
∫
I(S)

∣∣∣∣k(s)(w)

s∏
`=2

g`(u)

∣∣∣∣dw s∏
`=2

du`

≤ h−s
∫ ∞
−∞
|k(s)(w)|dw

s∏
`=2

B`.(4.5)

The Hardy-Krause variation in dimension s is O(h−s−1) by (4.2) but we might realistically
expect it to actually be O(h−s) by (4.5). Then AIV = O(n−2+εh−2s) under appropriate
conditions on the partial derivatives of g, from which AMISE = O(n−4/(2+s)) by taking
h = Θ(n−1/(2+s)). This bound has a better rate than for MC if s < 3 and the same
rate for s = 3. Of course, this is only an upper bound. The actual AIV may converge at a
faster rate, and/or be smaller for the relevant values of (n, h), so RQMC may still bring an
improvement over MC for large s.
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5. Stratified sampling of [0, 1)s. Here we show that plain stratified sampling of the unit
cube can bring an improvement over Monte Carlo. The randomized QMC methods we favor
have some but not necessarily all of the properties that make stratification effective. We make
the following assumption about g.

Assumption 1. The function g : [0, 1]s → R is nondecreasing in each coordinate and it is
Lipschitz continuous with constant Kg <∞.

If g is nonincreasing in coordinate j we can redefine g by replacing uj by 1 − uj to
satisfy Assumption 1 while preserving the density function of g(U). We make the following
assumption about the sampling of points Ui.

Assumption 2. The cube [0, 1)s is partitioned into n = bs congruent cubical cells for some
integer b ≥ 2. We sample one point Ui uniformly within each cell for i = 1, . . . , n such that
for any x ∈ [0, 1] and any 1 ≤ i < j ≤ n, Cov[Ii(x), Ij(x)] ≤ 0.

Stratified sampling independently within each cell satisfies Assumption 2 with a covariance
of zero. If we use a digital net with NUS instead, the covariance is no longer zero in general,
although we suspect (but do not prove) that it is never negative.

Let F be the cdf of X = g(U) for U ∼ U [0, 1]s, and Vi = F (g(Ui)) for each i. The KDE
estimator (4.1) can be rewritten as

(5.1) f̂n(x) =
1

nh

n∑
i=1

k

(
x− F−1(Vi)

h

)
=

1

n

n∑
i=1

ǧ(Vi)

which can be interpreted as a KDE estimator based on inversion of F with the one-dimensional
uniform points Vi; that is, g(Ui) and g̃(Ui) are replaced by F−1(Vi) and ǧ(Vi). Then, given
an upper bound on the discrepancy of the Vi, we obtain a variance bound for the KDE
estimator (5.1) with s = 1. We will prove this for the mean square L2-discrepancy under
Assumptions 1 and 2. For any x ∈ [0, 1], define Ii(x) = I(Vi ≤ x) = I(g(Ui) ≤ F−1(x)). We
have E[Ii(x)] = P[F (g(U)) ≤ x] = x and Var[Ii(x)] = x(1 − x) ≤ 1/4. For any x ∈ [0, 1],
let S(x) be the manifold that separates the region in which F (g(u)) ≤ x from that in which
F (g(u)) > x. Under Assumption 1 we can write S(x) = {u ∈ [0, 1]s | F (g(u)) = x}. We
include cases where S(x) = ∅. We let B(x) be the set of subcubes whose interior intersects
S(x).

Lemma 5.1. Let g satisfy Assumption 1 and let Ui satisfy Assumption 2. Then the cardi-
nality of B(x) is at most sbs−1 = sn(s−1)/s.

Proof. For each i = (i1, i2, . . . , is) ∈ {0, 1, . . . , b− 1}s, define the cell Ci =
∏d
j=1[ij/b, (ij +

1)/b). We define the ‘diagonal string’ of cells through Ci to be all cells Ci′ with i′ = (i1 +
k, i2 +k, . . . , is+k) for k = −minj ij to k = s−maxj ij . The manifold S(x) intersects at most
one cell in this string because F (g(·)) is nondecreasing. If we follow any string ‘up and to the
right’ until it reaches its largest value of k then one of the ij + k will equal b− 1. There are s
choices for the critical index j and for each of those there are bs−1 boundary cells determined
by indices ` 6= j.
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The squared L2-star discrepancy of V1, . . . , Vn is

D2
v,2 = D2

v,2(V1, . . . , Vn) =

∫ 1

0

(
1

n

n∑
i=1

Ii(x)− x

)2

dx.

Our next proposition provides an upper bound for it.

Proposition 5.2. Under Assumptions 1 and 2,

E[(D2
v,2)] ≤

s

4
n−(s+1)/s.

Proof. We have

E[D2
v,2] =

∫ 1

0
Var

[
1

n

n∑
i=1

Ii(x)

]
dx ≤ 1

n2

∫ 1

0

∑
i∈B(x)

Var[Ii(x)]dx ≤ 1

4n2

∫ 1

0
|B(x)|dx

≤ s

4
n−(s+1)/s.

Corollary 5.3. Under Assumptions 1 and 2, V 2
2 (ǧ) = O(h−3) and AIV = O(sn−(s+1)/sh−3).

Proof. The function ǧ is continuously differentiable, Lipschitz and monotone on [0, 1] and
so (4.4) applies to it, yielding V 2

2 (ǧ) = O(h−3). The rest follows from Lemma 5.1 and Propo-
sition 5.2.

This corollary tells us that that when the dimension s increases, the variance with stratified
sampling does not grow as badly as Θ(h−2s) as a function of h for fixed n which could have
been suggested by the bounds discused at the end of Section 4.

It is not necessary for the strata to be cubical. We could instead partition [0, 1)s into
n =

∏s
j=1mj cells congruent to

∏d
j=1[0, 1/mj), subject to the condition maxjmj ≤ λminjmj

for some λ < ∞. Then the number of strata intersected by the boundary manifold S is at
most

∑
j n/mj ≤

∑
j λ

s−1ms−1
j ≤ sλs−1n1−1/s. The aspect ratio λ affects the constant but

not the rate for the AIV bound.

6. A regression model for the local behavior of the IV and MISE. The analysis in the
previous section was in terms of asymptotic bounds. But what matters most is how things
behave in the range of values of n and h that one wants to use. In this section, we propose
simple regression models to approximate the true IV, ISB, and MISE in a limited range of
values of n and h. In this limited region, we shall use the approximations

(6.1) IV ≈ Cn−βh−δ and ISB ≈ Bhα,

for positive constants C, β, δ, and B, that can be estimated as explained below, and we take
α = 2 for the histogram and α = 4 for the KDE. After that, we can use the model as follows
to estimate the optimal h, which minimizes the MISE for the n that we have selected. The
model in (6.1) gives

(6.2) MISE ≈ Cn−βh−δ +Bhα.
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This estimate of MISE is a convex function of h for our setting where α ≥ 1 and δ > 0. Taking
the derivative with respect to h and setting it to zero yields

(6.3) hα+δ =
Cδ

Bα
n−β.

Thus, if we take h = κn−γ , the constants κ and γ that minimize the MISE (based on our
model) are κ = κ∗ := (Cδ/Bα)1/(α+δ) and γ = γ∗ := β/(α+δ). Plugging them into the MISE
expression gives

(6.4) MISE ≈ Kn−ν

with K = K∗ := Cκ−δ∗ + Bκα∗ and ν = ν∗ := αβ/(α + δ). If h is taken too small (e.g., by
taking κ < κ∗ or γ > γ∗ in the formula for h), the IV will be too large and will dominate the
MISE, so we will observe a MISE that decreases just like the IV. The opposite happens if h
is too large: the ISB dominates the MISE.

We now look at how we can estimate the model parameters. Taking the log in the IV
expression in (6.1), we obtain the linear model,

(6.5) log(IV) ≈ logC − β log n− δ log h,

whose three parameters C, β, and δ, can be estimated by linear regression. We select a set of
pairs (n, h) in some area of interest, we estimate the IV at each pair by using nr independent
replications of the density estimator at that pair, and we fit the linear model (6.5) to these
IV estimates. In this paper, all the logarithms are in base 2, which is natural because we
take powers of 2 for n. To approximate the integral that defines the IV, we take a stratified
sample of ne evaluation points over the interval [a, b], compute the empirical variance of the
density estimator at each of these points, based on the nr replications, and take the average
multiplied by (b− a). In place of the stratification, one could also use a mid-point rule, with
the ne evaluation points xj = a + (b − a)(j − 1/2)/ne for j = 1, . . . , ne. We did not do that
to protect ourselves in case the error with RQMC could have a periodic behavior, perhaps
partially due to the regularity of the RQMC points.

To select the value of h used for each n in the experimental strategy just described, we
can make some preliminary experiments with various h and look at the smoothness of the
estimated density to evaluate a range of reasonable values of h. In these pilot runs, we can
also estimate the IV very crudely with small nr and ne and use this together with an estimate
of B (see the next paragraph) to get a rough estimate of the optimal h. Then we make our
design based on values of h that are around this estimate, and do the experiments with a
larger ne to estimate the linear model. This general methodology can be used whenever we
want to fit this type of regression model. We will use it later for our experiments.

For the ISB approximation in (6.1), we suggest to fix α to the known asymptotic value
(2 for the histogram and 4 for the KDE). The constant B is not easy to estimate because we
cannot really compute the ISB empirically when we do not know the exact density. However,
since we know that the ISB is the same for RQMC as for MC, we can estimate the AISB
using any of the techniques developed for MC, for example the plug-in method discussed in
Section 2, and use this AISB estimate as an approximation of the ISB in our model. This
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means taking B = R(f ′)/12 for the histogram and B = (µ2(k))2R(f ′′)/4 for the KDE. The
only unknown ingredient in this expression is the integral R(f ′′), which can be estimated as
explained in Section 2, eventually using RQMC instead of MC to improve the accuracy. For
a Gaussian kernel, µ2(k) = 1, so we take B = R(f ′′)/4 for the KDE. This estimate of B can
then be used in (6.3) to select h. By adding the IV and ISB estimates, we have an estimator
of the MISE.

We will test this methodology empirically, firstly on simple examples for which the density
of X is known exactly. For these simple examples, we will compute the empirical square bias
at the same number of evaluation points ne as for the IV, by squaring the difference between
the exact density and the average of the nr density estimates at each point, then compute
(b− a) times the average of these ne squared bias values to estimate the ISB. Fitting a linear
model to these ISB estimates (in log scale) can provide alternative (direct) estimators of α and
B over the region of interest, and we can compare them to the known theoretical asymptotic
α and the estimate of B obtained by estimating (or computing) R(f ′′).

Once we have estimates κ̂∗ and γ̂∗ of κ∗ and γ∗, we can test the model out-of-sample
by making an independent set of simulation experiments with pairs (n, h) that satisfy h =
ĥ∗(n) := κ̂∗n

−γ̂∗ for a series of values of n. At each of these pairs (n, h), we sample nr
independent replicates of the RQMC density estimator and compute the IV estimate, as well
as the MISE estimate in the simple examples where the density is known. In the latter case,
we fit again the linear regression model for log(MISE) vs log n to re-estimate the parameters
K and ν in (6.4) and assess the goodness-of-fit. In our results, we will denote these new
estimates by K̃ and ν̃, and the corresponding R2 by R2

MISE. We do similar regression for
log2(IV) and log2(ISB) vs log2(n) and denote the R2’s by R2

IV and R2
ISB.

The model testing steps described in the last two paragraphs are mainly for us to assess
how good are our convergence rate estimates with RQMC. If the goal is only to estimate the
density f and not the convergence properties, then these testing steps can be left out.

7. Numerical illustrations. In this section, we summarize the results of our experimental
study with various examples, with a histogram and a KDE with Gaussian kernel. In all cases,
we took m = (b − a)/h bins for the histograms, where h was always selected so that m is
an integer. We did this with independent points (MC) and with the following RQMC point
sets: (1) stratification of the unit cube (Stratif); (2) a Sobol’ point set with left random
matrix scrambling and random digital shift (Sobol’+LMS); and (3) a Sobol’ point set with
NUS (Sobol’+NUS) [13, 14]. These point sets and randomizations are implemented in SSJ
[9], which we used for our experiments. The short names in parentheses are used in the plots
and tables.

To estimate the model parameters by regression we used a grid of 36 pairs (n, h) with
n = 214, . . . , 219 and h = h0, . . . , h5 where hj = h02

j/2 = 2−`0+j/2. For the KDE, 2`0 is
always an integer. For the histogram, the hj ’s are approximately of this form but not exactly,
because m must be an integer. To select `0 for each example and sampling method, we first
made pilot runs to obtain a crude estimate h̃(n) of the optimal h for each considered n as
explained earlier, with only ne = 32 evaluation points for the integrals. Then we selected `0
such that h0 = 2−`0 (the smallest h) was near h̃(219) while h5 (the largest h) was near h̃(214),
so that h̃(n) was in the range of the considered values of h for each n. This selection of `0 is
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the only step that requires human intervention. For each n and each point set, we generate a
sample of size n, sort the sample, and then compute each selected density estimator for each
h, for this sample. That is, we use the same sample for all estimation methods and all h. We
take nr = 100 independent replications and ne = 1024 evaluation points. We also tried larger
values of ne such as 4096, 20,357 (a prime number) in preliminary experiments with some of
the examples, and the estimated IV and ISB were essentially the same, although computing
the KDE and estimating the integrals R(·) involved in the estimation of B took a lot more
time. We estimated B as explained in Sections 2 and 6, with r0 = 1 for the histogram and
r0 = 2 for the KDE. In the end, we compare the efficiencies of different methods for the same
example by comparing their estimated MISE for n = 219 with the h recommended by our
model. We will use LGM as an abbreviation of − log2(MISE) for n = 219. The efficiency
gain of RQMC vs MC can be assessed by comparing their LGMs.

7.1. A normalized sum of standard normals. We will use a technique from [15] to create
test functions in which we can vary the dimension s without changing the answer. We let
Z1, . . . , Zs be s independent standard normal random variables generated by inversion and
put X = (Z1 + · · · + Zs)/

√
s. Then X is standard normal so that f(x) = exp(−x2/2)/

√
2π

for any s.
We use this example as a first empirical test case of how RQMC can improve the density

estimators, and in what way the performance depends on s, h, and n. We will estimate the
density over the interval (−b, b) for b = 2 and b = 4. Since we know the exact density in this
case, we can compute unbiased estimators of the IV, ISB, and MISE in all cases. We can also
compute R(f ′′) exactly in this example, which means we can compute B for the AISB and
the asymptotically optimal h for the AMISE. However, we will first make experiments as if
we did not know this B and have to estimate it, and then compare our estimates with the
exact B. Here, g is a monotone increasing function, so Corollary 5.3 applies when we use
RQMC point sets that satisfy Assumption 2.
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Figure 1. log2(IV) for the KDE with Sobol’+NUS for s = 1 (left) and s = 20 (right).

Tables 1 and 2 summarize the results for b = 2, when B is estimated. For MC, our
estimates given in the first column are based on experiments made with s = 1, but are valid
for all s, because the IV and ISB do not depend on s. The estimated values for MC agree
with the theory: the exact asymptotic values are γ = 0.4 and ν = 2/3 for the histogram,
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Table 1
Parameter estimates for the histogram estimator, for a sum of normals, over (−2, 2).

MC NUS LMS NUS LMS NUS LMS NUS NUS NUS NUS
s 1 2 2 3 3 5 5 10 20 100
`0 5.0 8.5 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
C 0.813 1.316 1.222 1.299 0.769 0.744 0.948 1.057 0.697 0.772 0.741
β 1.000 2.007 1.502 1.504 1.274 1.274 1.058 1.071 1.004 1.007 0.996
δ 1.041 2.012 2.022 2.012 1.893 1.906 1.181 1.196 1.094 1.077 1.051
R2 1.000 1.000 1.000 1.000 0.995 0.995 0.998 0.998 1.000 1.000 1.000
B 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011
κ̂∗ 3.339 3.315 3.249 3.304 2.949 2.918 3.459 3.571 3.162 3.275 3.237
γ̂∗ 0.329 0.500 0.373 0.375 0.327 0.326 0.333 0.335 0.324 0.327 0.326
`∗ 4.507 7.775 5.395 5.398 4.659 4.653 4.529 4.532 4.503 4.509 4.509

K̂∗ 0.352 0.237 0.227 0.235 0.193 0.189 0.348 0.368 0.306 0.331 0.329
ν̂∗ 0.658 1.000 0.747 0.750 0.655 0.652 0.665 0.670 0.649 0.655 0.653
ν̃ 0.667 1.018 0.747 0.752 0.659 0.663 0.678 0.662 0.652 0.661 0.652
R2

IV 0.998 1.000 0.998 1.000 0.962 0.959 0.993 0.997 0.999 0.998 0.999
R2

ISB 0.993 0.997 0.996 0.997 0.994 0.994 0.995 0.993 0.993 0.994 0.994
R2

MISE 0.998 0.999 0.997 0.999 0.978 0.977 0.992 0.995 0.998 0.995 0.998

LGM 13.98 21.10 16.29 16.29 14.64 14.66 14.08 14.07 14.00 13.99 13.99

Table 2
Parameter estimates for the KDE, for a sum of normals, over (−2, 2).

MC NUS LMS NUS LMS NUS LMS NUS NUS NUS NUS
s 1 2 2 3 3 5 5 10 20 100
`0 4.5 8.5 6.0 6.0 5.0 5.0 4.5 4.5 4.0 4.0 4.0
C 0.265 0.032 0.243 0.212 0.144 0.180 0.140 0.096 0.029 0.078 0.079
β 1.038 2.791 2.112 2.101 1.786 1.798 1.301 1.270 1.011 0.996 1.010
δ 1.134 3.004 3.196 3.196 3.383 3.357 2.295 2.303 1.811 1.421 1.463
R2 0.999 0.999 1.000 1.000 0.995 0.995 0.979 0.978 0.990 0.991 0.996
B 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042 0.042
κ̂∗ 1.121 0.925 1.238 1.215 1.156 1.191 1.109 1.045 0.820 0.925 0.934
γ̂∗ 0.202 0.398 0.293 0.292 0.242 0.244 0.207 0.201 0.174 0.184 0.185
`∗ 3.675 7.682 5.268 5.266 4.386 4.391 3.776 3.765 3.590 3.604 3.612

K̂∗ 0.299 0.071 0.221 0.205 0.163 0.184 0.173 0.137 0.061 0.117 0.119
ν̂∗ 0.808 1.594 1.174 1.168 0.967 0.978 0.826 0.806 0.696 0.735 0.740
ν̃ 0.781 1.595 1.176 1.169 0.976 0.975 0.832 0.806 0.744 0.764 0.774
R2

IV 0.997 0.995 1.000 1.000 0.977 0.978 0.909 0.917 0.983 0.993 0.983
R2

ISB 0.969 0.995 0.991 0.991 0.988 0.989 0.985 0.985 0.972 0.983 0.986
R2

MISE 0.994 0.997 0.997 0.998 0.980 0.981 0.937 0.942 0.981 0.991 0.983

LGM 17.01 34.06 24.39 24.38 20.79 20.80 17.88 17.79 17.28 17.07 17.05

γ = 0.2 and ν = 4/5 for the KDE, and β = δ = 1 for both methods. The other columns give
some results for Sobol’+LMS and Sobol’+NUS, for selected values of s. For all s > 1 that we
have tried, LMS and NUS have a similar behavior. The first rows give the dimension s, the
`0 found by pilot runs and used to fit the IV model, the estimated parameters C, β, and δ of
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Figure 2. Estimated β, δ, and LGM (= − log2(MISE) for n = 219) for the histogram (above) and the KDE
(below) over (−2, 2), with Monte Carlo, Stratification, Sobol’+LMS, and Sobol’+NUS.

the IV model, the fraction R2 of variance explained by this model, and the estimated B. All
the other quantities are defined at the end of Section 6, except for `∗ = − log2 ĥ∗(2

19). Recall
that the rates ν̃ and the LGM were obtained from a second-stage experiment, by using the
estimated ĥ∗(n) from the model in the first stage. All the R2 coefficients are pretty close to
1, which means that the log-log linear model is reasonably good in the area considered. The
estimate of B given in the tables turns out to be the same for all s and all RQMC methods,
up to three decimal digits: it is B ≈ 0.01081 for the histogram and B ≈ 0.0418 for the KDE.
Thus, the estimator of B has very little variance. The MISE reduction of RQMC vs MC can
be assessed by comparing their LGMs given in the last row, for a given s. For example, with
the KDE for s = 1, the MISE for n = 219 is approximately 2−34 for Sobol’+NUS compared
to 2−17 for MC, i.e., about 217 ≈ 125,000 times smaller. For s = 2, for both LMS and NUS,
the MISE is about 2−24.3, which is about 150 times smaller than for MC.

Figure 1 gives a visual assessment of the fit of the linear model for log2(IV) in the selected
region, with the KDE, for two values of s. We made similar plots for all s and for the histogram
as well. The linear approximation turns out to be reasonable, better for the histogram than
the KDE, and also better for stratification (not shown in the table) than for RQMC methods.

Figure 2 shows the estimated β, δ, and LGM for the two density estimators, for s =
1, . . . , 5. Stratification, shown in these plots and not in the tables, is exactly equivalent to
Sobol’+NUS for s = 1, and somewhat less effective for s > 1.
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One important observation from the plots and the last row of the tables (the LGM) is
that for all s, the RQMC methods never have a larger MISE than MC. Their MISE is much
smaller for very small s, and becomes almost the same as for MC when s gets large. The
MISE rate ν̃ behaves similarly. RQMC brings more MISE reduction for the KDE than for
the histogram, as we would expect based on the smoothness of the KDE integrand and lack
thereof for the histogram. Another important observation is that the coefficients β and δ in
the IV model (which are both 1 with MC) are both larger than 1 with RQMC. For small values
of s, with RQMC, β is significantly larger than ν̃, which means that the IV converges must
faster as a function of n when h is fixed than when h is selected to optimize the MISE. This is
explained by the large values of δ, sometimes even larger than 3, which indicate that reducing
h to reduce the ISB increases the IV pretty fast, and this limits the MISE reduction that we
can achieve. Recall that our asymptotic upper bound for the one-dimensional case with NUS
in Section 4 gave β = δ = 3 and ν∗ = 12/7 ≈ 1.714. The values in the table are not far from
these numbers.

Here f is the standard normal density with R(f ′) = (−be−b2 +
∫ b
0 e
−x2dx)/2π and R(f ′′) =

(−b
(
2b2 − 1

)
e−b

2
+ 3

∫ b
0 e
−x2dx)/4π. In particular, for b = 2 we have R(f ′) ≈ 0.13456 and

B = R(f ′)/12 ≈ 0.01121 for the histogram, whereas R(f ′′) ≈ 0.19018 and B = R(f ′′)/4 ≈
0.04754 for the KDE. The values of B obtained by estimating the derivative of the density
(given in the tables) are 0.0108 and 0.0418, respectively. The difference is not due to noise,
because the estimated values are the same for all methods, They are due to the bias in the
estimation of R(f ′) and R(f ′′) via KDE with finite n. We verified empirically that when
we estimate these quantities with a larger n, the bias decreases slowly and goes to 0 when
n→∞.

We repeated the density estimation experiment by using the exact values of B instead
of the estimated ones to choose h, and the results were very close for all s. In particular,
the MISE rates ν̃ and the MISE values for n = 219 (the LGM) were almost the same. For
example, for MC with the exact B, the LGM was 13.91 for the histogram and 16.82 for the
KDE (compared with 13.97 and 17.01 with the estimated B). This is not surprising, because
the values of B and h do not change much. With the exact B, the regression models for
the ISB and MISE fit better (the coefficients R2

ISB and R2
MISE are closer to 1) but they were

already near 1 with the estimated B.
So far, the density estimator was evaluated only over the interval [−2, 2]. If we go further

in the tails, we get into areas in which there will be very few data points, so the density
estimator will inevitably be poor, even if the data points are very regularly spaced with
spacings proportional to the inverse density (which is arguably the best we can hope for).
RQMC is not designed to solve this low-density (or rare-event) problem. To illustrate this,
we redid the experiment above with the interval [−4, 4] instead. Only 0.003% of the normal
density is outside this interval. For this experiment, we fixed B to its asymptotically optimal
value, B ≈ 0.1175 for the histogram and B ≈ 0.05289 for the KDE. The interesting parts of
the results are in Tables 3 and 4

A key observation is that the gain from RQMC degrades when we get further into the tails.
The parameters β and δ estimated by regression also change. For example, with Sobol’+NUS
and s = 1, the LGM goes from 34.06 to 29.95, i.e., the MISE increases by a factor of 16.
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Figure 3. KDE (blue) vs true density (red) with RQMC point sets with n = 219: Sobol’ + digital shift (left)
and Sobol’ + 31-bit-LMS + shift (right)

For the interval [−2, 2] we had β = 2.791, δ = 3.004, and ĥ∗(2
19) ≈ 2−7.7, and we now have

β = 2.429, δ = 2.463, and ĥ∗(2
19) ≈ 2−6.8. These differences disappear when s increases.

To estimate the density in an area where it is very small, one should use a technique like
importance sampling to increase the number of samples in that area. After that, RQMC can
bring additional gain.

Table 3
Parameter estimates of the regression model with a histogram estimator over (−4, 4), B ≈ 0.1175.

MC NUS LMS NUS LMS NUS LMS NUS NUS NUS
s 1 2 2 3 3 5 5 10 20
`0 5.0 8.0 6.0 6.0 5.5 5.5 5.0 5.0 5.0 5.0
C 0.833 1.875 1.281 1.343 0.811 0.820 1.023 1.169 0.747 0.822
β 0.997 1.963 1.481 1.487 1.223 1.223 1.055 1.073 1.000 1.004
δ 1.041 1.963 1.982 1.986 1.694 1.690 1.163 1.186 1.075 1.061
R2 1.000 1.000 1.000 1.000 0.993 0.993 0.998 0.998 1.000 1.000
ν̂∗ 0.656 0.991 0.744 0.746 0.662 0.663 0.667 0.673 0.651 0.656
ν̃ 0.667 0.985 0.743 0.753 0.663 0.666 0.674 0.658 0.654 0.659
LGM 13.88 20.50 16.10 16.16 14.55 14.55 13.99 13.99 13.93 13.93

Table 4
Parameter estimates of the regression model with a KDE over (−4, 4), B ≈ 0.05289.

MC NUS LMS NUS LMS NUS LMS NUS NUS NUS
s 1 2 2 3 3 5 5 10 20
`0 4.5 8.5 5.5 5.5 5.0 5.0 4.5 4.5 4.0 4.0
C 0.277 0.433 0.285 0.277 0.150 0.188 0.142 0.010 0.033 0.079
β 1.035 2.429 2.008 2.005 1.719 1.734 1.287 1.258 1.013 0.993
δ 1.127 2.463 2.982 2.979 3.183 3.163 2.253 2.258 1.799 1.416
R2 0.999 0.998 1.000 1.000 0.995 0.996 0.980 0.980 0.991 0.992
ν̂∗ 0.808 1.503 1.150 1.149 0.958 0.968 0.823 0.804 0.699 0.733
ν̃ 0.783 1.528 1.146 1.142 0.966 0.967 0.830 0.805 0.751 0.761
LGM 16.91 29.95 23.67 23.67 20.49 20.50 17.75 17.67 17.20 16.99
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To better visualize what happens when the density gets too small, we illustrate in Figure 3
the true density (in red) vs the estimated density (in blue) in the left tail, for Sobol’ points
with a digital shift only (left) and with a 31-bit LMS + shift (right), for s = 1 and n = 219,
with h = 2−6.5. Note that if we apply the LMS only to the first 19 bits, we obtain the same
result as in the left figure, because then the LMS only permutes the points. A random shift
modulo 1 with either Sobol’ points or a lattice rule also gives the same result. On the other
hand, Sobol’+NUS gives similar results as in the right panel. In the left plot, we see some
blue bumps on the left of −4.1, but on the right of −4.1 we cannot distinguish the estimated
density from the exact one. Each bump corresponds to a data point. The uniform points Ui
are regularly spaced at distance exactly 1/n, so the data points Xi = Φ−1(Ui) are spaced at a
distance that varies proportionally to the inverse of the density. When this distance is small
enough, the KDE estimator is very smooth and almost equal to the exact density, and a slight
shift of the points makes almost no difference, so the variance with respect to the random shift
is almost zero. This is what we see on the right of −4.1. When we get further into the tail, on
the other hand, the data points become too sparse, and the KDE has sparse bumps around the
data points, as we can see on the left side. Note that with a randomly-shifted lattice rule, we
have exactly the same behavior. Here the shift (modulo 1/n) is approximately 7.766× 10−7,
but the behavior is the same regardless of the shift. The right plot shows what happens
with Sobol’+LMS applied to the first 31 bits. Here the bumps are no longer regularly-spaced,
because the points have different shifts. As a result, the density estimator on the right of −4.1
varies much more. To illustrate how small the variance of the density estimator can be in the
smooth part of the left plot, we computed the empirical variance at x = −3,−2,−1, 0, for the
two cases. Table 5 gives log2 of the variance. We see that the variance with Sobol’+shift is
extremely small at all x where the density is not too small, due to the regular spacing of the
Ui. When looking at the convergence rate of the IV in terms of log n for fixed h (not shown
here), we find that in terms of the IV model in (6.1), it is not the rate β that is large, but the
constant C that is extremely small. With Sobol’+LMS, and also Sobol’+NUS which behaves
similarly, the variance is not as small.

Table 5
log2 of the variance with Sobol’+shift and Sobol’+LMS, for s = 1 and n = 219.

Point set x = −3 x = −2 x = −1 x = 0
Sobol’+Shift -94.35 -93.55 -96.78 -93.33
Sobol’+LMS -36.46 -37.01 -40.79 -41.44

7.2. Displacement of a cantilevel beam. Bingham [4] gives the following simple model
of the displacement D of a cantilever beam with horizontal and vertical loads:

(7.1) D =
4L3

Ewt

√
Y 2

t4
+
X2

w4

in which L is the length of the beam, fixed to 100 inches, w and t are the width and thickness
of the cross-section, taken as 4 and 2 inches, while X, Y , and E are assumed independent and
normally distributed with means and standard deviations given as follows (in inches):
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Description Symbol Mean St. dev.

Young’s modulus E 2.9× 107 1.45× 106

Horizontal load X 500 100
Vertical load Y 1000 100

Here, the exact density is unknown, so we will not be able to compute the ISB and the
MISE, but we will estimate the AISB as we did in the previous example, and then use it to
estimate the optimal h and the MISE. A plot of the estimated density, obtained with a KDE
with Sobol’+NUS and n = 219 points, is given in Figure 4. For the experiments reported here,
we estimate the density over the interval (0.407, 1.515), which covers about 99% of the density
(it excludes roughly 0.5 % on each side). We also tried the shorter interval (0.590, 1.293),
which excludes 5% of the density on each side, and the results were very similar, except that
the estimated constant B was about 17% smaller for the histogram and 25% smaller for the
KDE.
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Figure 4. Estimated density of the displacement of a cantilever beam.

Table 6 gives the parameter estimates from our experiment, with the histogram and KDE
estimators. RQMC increases the rate β significantly. For the KDE with Sobol’ points, it
goes from 1 to about 2. However, δ increases even more, from 1 to about 4. This means
that although the variance decreases much faster than for MC as a function of n for fixed
h, we cannot afford to decrease h very much to decrease the bias, so the MISE reduction is
more limited than the IV reduction. The R2 coefficient is very close to 1, showing that the
linear model for log2(IV) fits very well. Figure 5 confirms this. It is reassuring to see that the
estimate of B is about the same for all point sets, for both the histogram and the KDE. The
estimated convergence rate of the MISE, ν̂∗, is improved by RQMC for the KDE but not for
the histogram. However, RQMC reduces significantly the constant K in the MISE model for
both the histogram and the KDE.

Figure 6 shows the estimated MISE as a function of n (with the estimated optimal h), as
well as the estimated IV as a function of n, all in log scale, for the histogram and the KDE.
The results for Sobol’+LMS and Sobol’+NUS are practically indistinguishable in those plots.
We can see that although the MISE rate (the slope) is not improved much by RQMC, the
MISE is nevertheless reduced by a significant factor. For example, with n = 219 and a KDE,
the MISE is almost 26 = 64 times smaller with Sobol’+LMS than with MC. For fixed h,
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Figure 5. log2(IV) vs log2(n) and log2(h) for the KDE with Sobol’+NUS.

the estimated IV converges at a faster rate with RQMC than with MC, as shown in the lower
part of the figure.
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Figure 6. Above: Estimated MISE as a function of n for the cantilever example for the histogram (left)
and the KDE (right). Below: Estimated IV as a function of n for fixed h; we took h = 2−6 = 1/64 for both,
the histogram (left) and for the KDE (right).

7.3. A weighted sum of lognormals. In this example, we estimate the density of a
weighted sum of lognormal random variables

X =

s∑
j=1

wj exp(Yj)
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Table 6
Experimental results for the density estimation of the displacement of a cantilever beam, over the interval

(0.407, 1.515).

Histogram (α = 2) KDE (α = 4)
MC Strat LMS NUS MC Strat LMS NUS

C 0.831 0.424 0.130 0.119 0.109 0.022 1.8E-4 1.5E-4
β 0.992 1.102 1.234 1.232 0.991 1.380 1.943 1.932
δ 1.010 1.309 1.733 1.744 1.168 2.113 3.922 3.933
R2 1.000 0.997 0.993 0.993 0.999 0.999 0.999 0.999
B 1.177 1.178 1.178 1.177 107.4 107.2 107.1 107.1
κ̂∗ 0.710 0.646 0.533 0.523 0.208 0.225 0.186 0.182
γ̂∗ 0.330 0.333 0.331 0.329 0.192 0.226 0.245 0.244
`∗ 6.758 6.962 7.188 7.186 5.909 6.443 7.090 7.085

K̂∗ 1.768 1.243 0.721 0.692 0.885 0.800 0.256 0.237
ν̂∗ 0.659 0.666 0.661 0.658 0.767 0.903 0.981 0.974
LGM 11.70 12.34 13.03 13.03 14.74 17.48 20.60 20.58

where Y = (Y1, . . . , Ys)
t has a multinormal distribution with mean vector µ and covariance

matrix C. Let C = AAt be a decomposition of C. To generate Y, we generate Z a vector of
s independent standard normals by inversion, then put Y = µ + AZ. For MC, the choice of
decomposition does not matter, but for RQMC it does, and here we take the decomposition
used in principal component analysis (PCA) [1, 8]. We also tried sequential sampling (SS) and
Brownian bridge sampling (BBS) but with them, RQMC did not improve the IV significantly
as we will see with PCA.

This model has several applications. In one of them, for some positive constants ρ and s0,
by taking wj = s0(s − j + 1)/s, e−ρ max(X −K, 0) is the payoff of a financial option based
on the average value of a stock or commodity price at s observation times, under a geometric
Brownian motion process. Estimating the density of this random payoff in its positive part is
equivalent to estimating the density of X over the interval (K,∞) (for simplicity we ignore the
scaling factor e−ρ). Note that when we estimate the KDE here, the realizations of X that are
smaller than K are not discarded; they contribute to the KDE slightly above K. Discarding
them would introduce a significant bias in the KDE due to a boundary effect at K.

For our numerical experiment, we take this special case with the same parameters as in
[10]: s = 12, s0 = 100, and K = 101. The matrix C is defined indirectly as follows. We have

Yj = Yj−1(µ− σ2)j/s+ σB(j/s)

where Y0 = 0, σ = 0.12136, µ = 0.1, and B is a standard Brownian motion. We will estimate
the density of X over the interval [a, b] = [K,K + 27.13]. Approximately 0.5% of the density
lies on the right of this interval and 29.05% lies on the left (this is when the option brings no
payoff). Figure 7 shows a plot of the estimated density of X −K obtained with a KDE with
Sobol’+NUS and n = 219 points.

Table 7 summarizes the results of our experiments. Again, the linear model for the IV
fits quite well in the selected area. With the KDE, RQMC improves β from 1 to about 5/3,
which is significant, but at the same time δ increases (unfortunately) from about 1.1 to nearly
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Figure 7. Estimated density of the option payoff X −K.

Table 7
Experimental results for the density estimation of the option payoff over the interval (0, 27.13).

Histogram (α = 2) KDE (α = 4)
MC LMS NUS MC LMS NUS

C 0.765 0.398 0.429 0.171 0.110 0.097
β 1.015 1.140 1.146 1.005 1.671 1.663
δ 1.168 2.105 2.133 1.151 4.907 4.930
R2 0.998 0.998 0.999 0.999 0.990 0.990
B 1.1E-5 1.1E-5 1.1E-5 1.1E-6 1.1E-6 1.1E-6
κ̂∗ 28.26 12.97 13.03 7.953 3.717 3.657
γ̂∗ 0.320 0.278 0.277 0.195 0.188 0.186
`∗ 1.269 1.581 1.565 0.715 1.670 1.668

K̂∗ 0.024 0.004 0.004 0.020 3.9E-4 3.6E-4
ν̂∗ 0.641 0.556 0.554 0.780 0.750 0.745
LGM 17.53 18.63 18.61 20.45 25.59 25.58

5. This means we are very limited in how much we can decrease h to reduce the bias. The
estimate of B is about the same for all point sets, which is reassuring. Somewhat surprisingly,
the estimated MISE rate ν̂∗ is a bit worse for RQMC than for MC, due to the large δ. But
the MISE is nevertheless significantly smaller for RQMC than for MC in the range of interest
(about 25 = 32 times smaller for the KDE), as shown in the upper panel of Figure 8, for which
h was taken as the estimated optimal h from our model, as a function of n. That is, RQMC
is truly beneficial for estimating the payoff density in this example. In the lower panel, we see
that the estimated IV for fixed h converges faster with RQMC than with MC.

For comparison, when estimating the mean E[X] instead of the density, with Sobol’+LMS,
the variance converges approximately as O(n−1.9) compared with O(n−1) for MC, and the
variance is divided by a factor of about two millions compared with MC for n = 220. See [10],
Table 3.

8. Conclusion. We explored RQMC combined with histograms and KDEs to estimate a
density by simulation. RQMC can improve the IV and the MISE, sometimes by large factors,
in situations in which the (effective) dimension is small. The improvement is usually more
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Figure 8. Above: Estimated MISE as a function of n for the option payoff example for the histogram (left)
and the KDE (right). Below: Estimated IV as a function of n for h = 1/2 for the histogram (left) and the
KDE (right).

limited when the dimension is large. We also found that the IV improvement degrades quickly
as a function of h when h → 0. In our empirical experiments, the IV is never significantly
larger with KDE+RQMC than with KDE+MC, and it is often much smaller.
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