
1

Random Numbers

Pierre L’Ecuyer

Université de Montréal, Montréal, Québec, Canada

Random numbers generators (RNGs) are available from many computer software libraries.

Their purpose is to produce sequences of numbers that appear as if they were generated ran-

domly from a specified probability distribution. These pseudorandom numbers, often called

random numbers for short (with a slight abuse of language), are crucial ingredients for a

whole range of computer usages, such as statistical experiments, simulation of stochastic

systems, numerical analysis with Monte Carlo methods, probabilistic algorithms, computer

games, cryptography, and gambling machines, to name a few. These RNGs are small comput-

er programs implementing carefully crafted algorithms, whose design is (or should be) based

on solid mathematical analysis. Usually, there is a basic uniform RNG whose aim is to pro-

duce numbers that imitate independent random variables from the uniform distribution over

the interval [0, 1] (i.i.d. U [0, 1]), and the random variables from other distributions (normal,

chi-square, exponential, Poisson, etc.) are simulated by applying appropriate transformations

to the uniform random numbers.

1 Random number generators

The words random number actually refer to a poorly defined concept. Formally speaking, one

can argue that no number is more random than any other. If a fair die is thrown 8 times, for

example, the sequences of outcomes 22222222 and 26142363 have exactly the same chance

of occuring, so on what basis could the second one be declared more random than the first?

A more precisely defined concept is that of independent random variables. This is a pure

mathematical abstraction which is nevertheless convenient for modeling real-life situations.

The outcomes of successive throws of a fair die, for instance, can be modeled as a sequence

of independent random variables uniformly distributed over the set of integers from 1 to 6,

i.e., where each of these integers has probability 1/6 for each outcome, independently of the

other outcomes. This is an abstract concept because no absolutely perfect die exists in the

real world.

Int. Encyc. Social and Behavioral Sciences 4 June 2001



2

A Random number generator (RNG) is a computer program whose aim is to imitate or

simulate the typical behavior of a sequence of independent random variables. Such a program

is usually purely deterministic: if started at different times or on different computers with

the same initial state of its internal data, i.e., with the same seed, the sequence of numbers

produced by the RNG will be exactly the same.

When constructing an RNG to simulate a die, for example, the aim is that the statistical

properties of the sequence of outcomes be representative of what should be expected from an

idealized die. In particular, each number should appear with frequency near 1/6 in the long

run, each pair of successive numbers should appear with frequency near 1/36, each triplet

should appear with frequency near 1/216, and so on. This would guarantee not only that

the virtual die is unbiased, but also that the successive outcomes are uncorrelated.

However, practical RNGs use a finite amount of memory. The number of states that they

can take is finite, and so is the total number of possible streams of successive output values

that they can produce, from all possible initial states.

Mathematically, an RNG can be defined (see L’Ecuyer 1994) as a structure (S, µ, f, U, g),

where S is a finite set of states , µ is a probability distribution on S used to select the initial

state (or seed) s0, the mapping f : S → S is the transition function, U is a finite set of

output symbols, and g : S → U is the output function.

The state evolves according to the recurrence sn = f(sn−1), for n ≥ 1. The output at step n is

un = g(sn) ∈ U . These un are the so-called random numbers produced by the RNG. Because

S is finite, the generator will eventually return to a state already visited (i.e., si+j = si for

some i ≥ 0 and j > 0). Then, sn+j = sn and un+j = un for all n ≥ i. The smallest j > 0 for

which this happens is called the period length ρ. It cannot exceed the cardinality of S. In

particular, if b bits are used to represent the state, then ρ ≤ 2b. Good RNGs are designed so

that their period length is close to that upper bound.

Choosing s0 from a uniform initial distribution µ can be crudely approximated by using

external randomness such as picking balls from a box or throwing a real die. The RNG

stretches a short random seed into a long stream of random-looking numbers.

2 Randomness from physical devices

Why use a deterministic computer algorithm instead of a truly random mechanism for gen-

erating random numbers? Simply calling a system’s function from a program is certainly

more convenient than throwing dice or picking balls from a box and entering the corre-

sponding numbers on a computer’s keyboard, especially when thousands (often millions or

even billions) of random numbers are needed for a computer experiment.

Attempts have been made at constructing RNGs from physical devices such as noise diodes,

gamma-ray counters, and so on, but these remain largely impractical and unreliable, because



3

they are cumbersome, and because it is generally not true that the successive numbers that

they produce are independent and uniformly distributed. If one insists on getting away from

a purely deterministic algorithm, a sensible compromise is to combine the output of a well-

designed RNG with some physical noise (Marsaglia 1985; L’Ecuyer 1998).

3 Quality criteria

Assume, for the following, that the generator’s purpose is to simulate i.i.d. U [0, 1] random

variables. The goal is that one cannot easily distinguish between the output sequence of the

RNG and a sequence of i.i.d. U [0, 1] random variables. That is, the RNG should behave

according to the null hypothesis H0: “The un are i.i.d. U [0, 1]”, which means that for each

t, the vector (u0, . . . , ut−1) is uniformly distributed over the t-dimensional unit cube [0, 1]t.

Clearly, H0 cannot be exactly true, because these vectors always take their values only from

the finite set

Ψt = {(u0, . . . , ut−1) : s0 ∈ S}.

If s0 is random, Ψt can be viewed as the sample space from which the output vectors are

taken. The idea then is to require that Ψt be very evenly distributed over the unit cube,

so that H0 be approximately true for practical purposes, at least for moderate values of t.

A huge state set S and a very large period length ρ, much much larger than any value of t

of interest, are necessary requirements, but they are not sufficient; good uniformity of the

Ψt’s is also needed. When several t-dimensional vectors are produced by an RNG by taking

non-overlapping blocks of t output values, this can be viewed in a way as picking points at

random from Ψt, without replacement.

It remains to agree on a computable figure of merit that measures the evenness of the

distribution, and to construct specific RNGs having a good figure of merit in all dimensions

t up to some preset number t1 (because computing the figure of merit for all t up to infinity

is infeasible in general). Several measures of discrepancy between the empirical distribution

of a point set Ψt and the uniform distribution over [0, 1]t have been proposed and studied

over the last few decades of the twentieth century (Niederreiter 1992; Hellekalek and Larcher

1998). These measures can be used to define figures of merit for RNGs. A very important

criterion in choosing such a measure is the ability to compute it efficiently, and this depends

on the mathematical structure of Ψt. For this reason, it is customary to use different figures

of merit (i.e., different measures of discrepancy) for analyzing different classes of RNGs.

Some would argue that Ψt should look like a typical set of random points over the unit cube

instead of being too evenly distributed, i.e., that it should have a chaotic structure, not a

regular one. However, chaotic structures are hard to analyze mathematically. It is probably

safer to select RNG classes for which the structure of Ψt can be analyzed and understood,



4

even if this implies more regularity, rather than selecting an RNG with a chaotic but poorly

understood structure.

For a concrete illustration, consider the two linear recurrences

x1,n = (a1,1x1,n−1 + · · ·+ a1,kx1,n−k) mod m1,

x2,n = (a2,1x2,n−1 + · · ·+ a2,kx2,n−k) mod m2,

where k, the mj’s, and the ai,j’s are fixed integers, “mod mj” means the remainder of the

integer division by mj, and the output function

un = (x1,n/m1 − x2,n/m2) mod 1.

This RNG is a combined linear multiple recursive generator (L’Ecuyer 1999a). Its state

at step n is the 2k-dimensional vector (x1,n, . . . , x1,n−k+1, x2,n, . . . , x2,n−k+1), whose first k

components are in {0, 1, . . . ,m1− 1} and last k components are in {0, 1, . . . ,m2− 1}. There

are thus (m1m2)k different states and it can be proved that Ψk is the set of all k-dimensional

vectors with coordinates in {0, 1/m, . . . , (m−1)/m}, where m = m1m2. This implies, if m is

large, that for each t ≤ k, the t-dimensional cube [0, 1]t is evenly covered by Ψt. For t > k, it

turns out that in this case, Ψt has a regular lattice structure (Knuth 1998; L’Ecuyer 1998),

so that all its points are contained in a series of equidistant parallel hyperplanes, say at a

distance dt apart. To obtain a good coverage of the unit cube, dt must be as small as possible,

and this value can be used as a selection criterion.

L’Ecuyer (1999a) recommends a concrete implementation of this RNG with the parameter

values: k = 3, m1 = 232− 209, (a11, a12, a13) = (0, 1403580,−810728), m2 = 232− 22853, and

(a11, a12, a13) = (527612, 0,−1370589). This RNG has two main cycles of length ρ ≈ 2191 each

(the total number of states is approximately 2192). Its lattice structure has been analyzed in

up to t = 48 dimensions and was found to be excellent, in the sense that dt is not far from

the smallest possible value that can be achieved for an arbitrary lattice with (m1m2)3 points

per unit of volume. These parameters were found by an extensive computer search.

For a second example, consider the linear congruential generator (LCG) defined by the

recurrence xn = axn−1 mod m and output function un = xn/m. This type of RNG is widely

used and is still the default generator in several (perhaps the majority of) software systems.

With the popular choice of m = 231 − 1 and a = 16807 for the parameters, the period

length is 231 − 2, which is now deemed much too small for serious applications (Law and

Kelton 2000; L’Ecuyer 1998). This RNG also has a lattice structure similar to the previous

one, except that the distances dt are much larger, and this can easily show up in simulation

results (Hellekalek and Larcher 1998; L’Ecuyer and Simard 2000). Small LCGs of this type

should be discarded.



5

Another way of assessing uniformity is in terms of the leading bits of the successive output

values, as follows. Suppose that S (and Ψt) has cardinality 2e. There are t` possibilities

for the ` most significant bits of t successive output values un, . . . , un+t−1. If each of these

possibilities occurs exactly 2e−t` times in Ψt, for all ` and t such that t` ≤ e, the RNG is called

maximally equidistributed (ME). Explicit implementations of ME or nearly ME generators

can be constructed by using linear recurrences modulo 2 (L’Ecuyer 1999b; Tezuka 1995;

Matsumoto and Nishimura 1998).

Besides having a long period and good uniformity of Ψt, RNGs must be efficient (run fast

and use little memory), repeatable (the ability of repeating exactly the same sequence of

numbers is a major advantage of RNGs over physical devices, e.g., for program verification

and variance reduction in simulation; Law and Kelton 2000), and portable (work the same

way in different software/hardware environments). The availability of efficient methods for

jumping ahead in the sequence by a large number of steps is also an important asset of

certain RNGs. It permits one to partition the sequence into long disjoint substreams and to

create an arbitrary number of virtual generators (one per substream) from a single backbone

RNG (Law and Kelton 2000).

Cryptologists use different quality criteria for RNGs (Knuth 1998; Lagarias 1993). Their

main concern is unpredictability of the forthcoming numbers. Their analysis of RNGs is

usually based on asymptotic analysis, in the framework of computational complexity theory.

This analysis is for families of generators, not for particular instances. They study what

happens when an RNG of size k (i.e., whose state is represented over k bits of memory) is

selected randomly from the family, for k →∞. They seek RNGs for which the work needed

to guess the next bit of output significantly better than by flipping a fair coin increases

faster, asymptotically, than any polynomial function of k. This means that an intelligent

guess quickly becomes impractical when k is increased. So far, generator families conjectured

to have these properties have been constructed, but proving even the existence of families

with these properties remain an open problem.

4 Statistical testing

RNGs should be constructed based on a sound mathematical analysis of their structural

properties. Once they are constructed and implemented, they are usually submitted to em-

pirical statistical tests that try detecting statistical deficiencies (see Significance, tests of ;

Goodness of fit: overview) by looking for empirical evidence against the hypothesis H0 de-

fined previously. A test is defined by a test statistic T , function of a fixed set of un’s, whose

distribution under H0 is known. The number of different tests that can be defined is infinite

and these different tests detect different problems with the RNGs. There is no universal test

or battery of tests that can guarantee, when passed, that a given generator is fully reliable

for all kinds of simulations. Passing a lot of tests may improve one’s confidence in the RNG,



6

but never proves that the RNG is foolproof. In fact, no RNG can pass all statistical tests.

One could say that a bad RNG is one that fails simple tests, and a good RNG is one that fails

only complicated tests that are very hard to find and run. In the end, there is no definive

answer to the question “what are the good tests to apply?”

Ideally, T should mimic the random variable of practical interest in a way that a bad struc-

tural interference between the RNG and the problem will show up in the test. But this is

rarely practical. This cannot be done, for example, for testing RNGs for general purpose

software packages. For a sensitive application, if one cannot test the RNG specifically for the

problem at hand, it is a good idea to try RNGs from totally different classes and compare

the results.

Specific statistical tests for RNGs are described in Knuth (1998), Hellekalek and Larcher

(1998), Marsaglia (1985), and other references given there. Experience with empirical testing

tells us that RNGs with very long periods, good structure of their set Ψt, and based on

recurrences that are not too simplistic, pass most reasonable tests, whereas RNGs with

short periods or bad structures are usually easy to crack by statistical tests.

5 Non-uniform random variates

Random variates from distributions other than the uniform over [0, 1] (see Distributions,

statistical) are generated by applying further transformations to the output values un of

the uniform RNG. For example, yn = a + (b − a)un produces a random variate uniformly

distributed over the interval [a, b]. To generate a random variate yn that takes the values

−1 and 1 with probability 0.2 each, and 0 with probability 0.6, one can define yn = −1 if

un ≤ 0.2, yn = 1 if un > 0.8, and yn = 0 otherwise.

Things are not always so easy, however. For certain distributions, compromises must be made

between simplicity of the algorithm, quality of the approximation, robustness with respect

to the distribution parameters, and efficiency (generation speed, memory requirements, and

setup time). Generally speaking, one should favor simplicity over small speed gains.

Conceptually, the simplest method for generating a random variate yn from distribution

F is inversion: define yn = F−1(un)
def
= min{y | F (y) ≥ un}. Then, if we view un as a

uniform random variable, P [yn ≤ y] = P [F−1(un) ≤ y] = P [un ≤ F (y)] = F (y), so yn has

distribution F . Computing this yn requires a formula or a good numerical approximation

for F−1. As an example, if yn is to have the geometric distribution with parameter p, i.e.,

F (y) = 1− (1− p)y for y = 1, 2, . . ., the inversion method gives yn = F−1(un) = 1 + bln(1−
un)/ ln(1− p)c. The normal, student, and chi-square are examples of distributions for which

there are no close form expression for F−1, but good numerical approximations are available

(Bratley, Fox, and Schrage 1987).



7

In most simulation applications, inversion should be the method of choice, because it is a

monotone transformation of un into yn, which makes it compatible with major variance re-

ductions techniques (Bratley, Fox, and Schrage 1987). But there are also situations where

speed is the real issue and where monotonicity is no real concern. Then, it might be more

appropriate to use fast non-inversion methods such as, for example, the alias method for dis-

crete distributions or its continuous acceptance-complement version, the acceptance/rejection

method and its several variants, composition and convolution methods, and several other

specialized and fancy techniques often designed for specific distributions (Bratley, Fox, and

Schrage 1987; Devroye 1986; Gentle 1998).

Recently, there has been an effort in developping so-called automatic or black box algorithms

for generating variates from an arbitrary (known) density, based on acceptance/rejection with

a transformed density (Hörmann and Leydold 2000). Another important class of general non-

parametric methods is those that sample directly from a smoothened version of the empirical

distribution of a given data set (Law and Kelton 2000; Hörmann and Leydold 2000). These

methods shortcut the fitting of a specific type of distribution to the data.

6 A consumer’s guide

No uniform RNG can be guaranteed against all possible defects, but the following ones

have fairly good theoretical support, have been extensively tested, and are easy to use: the

Mersenne twister of Matsumoto and Nishimura (1998), the combined MRGs of L’Ecuyer

(1999a), the combined LCGs of L’Ecuyer and Andres (1997), and the combined Tausworthe

generators of L’Ecuyer (1999b). Further discussion and up-to-date developments on RNGs

can be found in Knuth (1998), L’Ecuyer (1998) and from the web pages:

http://www.iro.umontreal.ca/∼lecuyer
http://random.mat.sbg.ac.at

http://cgm.cs.mcgill.ca/∼luc/
http://www.webnz.com/robert/rng links.htm

For non-uniform random variate generation, software and related information can be found

at

http://cgm.cs.mcgill.ca/∼luc/
http://statistik.wu-wien.ac.at/src/unuran/

Bibliography

Bratley, P., B. L. Fox, and L. E. Schrage. 1987. A Guide to Simulation. Second ed. New York:
Springer-Verlag.



8

Devroye, L. 1986. Non-Uniform Random Variate Generation. New York: Springer-Verlag.

Gentle, J. E. 1998. Random Number Generation and Monte Carlo Methods. New York: Springer.

ed. P. Hellekalek and G. Larcher. 1998. Random and Quasi-Random Point Sets. volume 138 of
Lecture Notes in Statistics. New York: Springer.

Hörmann, W. and J. Leydold. 2000. Automatic random variate generation for simulation input.
In Proceedings of the 2000 Winter Simulation Conference, ed. J. A. Joines, R. R. Barton, K. Kang,
and P. A. Fishwick, 675–682, Pistacaway, NJ. IEEE Press.

Knuth, D. E. 1998. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.
Third ed. Reading, Mass.: Addison-Wesley.

Lagarias, J. C. 1993. Pseudorandom numbers. Statistical Science, 8(1), 31–39.

Law, A. M and W. D. Kelton. 2000. Simulation Modeling and Analysis. Third ed. New York:
McGraw-Hill.

L’Ecuyer, P. 1994. Uniform random number generation. Annals of Operations Research, 53,
77–120.

L’Ecuyer, P. 1998. Random number generation. In Handbook of Simulation, ed. J. Banks, 93–137.
Wiley. chapter 4.

L’Ecuyer, P. 1999a. Good parameters and implementations for combined multiple recursive random
number generators. Operations Research, 47(1), 159–164.

L’Ecuyer, P. 1999b. Tables of maximally equidistributed combined LFSR generators. Mathematics
of Computation, 68(225), 261–269.

L’Ecuyer, P and T. H. Andres. 1997. A random number generator based on the combination of
four LCGs. Mathematics and Computers in Simulation, 44, 99–107.

L’Ecuyer, P. and R. Simard. 2000. On the performance of birthday spacings tests for certain
families of random number generators. Mathematics and Computers in Simulation, 55(1–3), 131–
137.

Marsaglia, G. 1985. A current view of random number generators. In Computer Science
and Statistics, Sixteenth Symposium on the Interface, 3–10, North-Holland, Amsterdam. Elsevier
Science Publishers.

Matsumoto, M and T. Nishimura. 1998. Mersenne twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Transactions on Modeling and Computer
Simulation, 8(1), 3–30.



9

Niederreiter, H. 1992. Random Number Generation and Quasi-Monte Carlo Methods. volume 63
of SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia: SIAM.

Tezuka, S. 1995. Uniform Random Numbers: Theory and Practice. Norwell, Mass.: Kluwer
Academic Publishers.


