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ABSTRACT

We review the basic principles underlying the design of uniform random number generators, their

main quality requirements, their theoretical analysis, and their empirical testing. The main con-

struction techniques of algorithmic generators are discussed, with an emphasis on the most com-

mon ones, the linear generators. Nonlinear generators, as well as hardware-based generators, are

also briefly discussed. For simulation, we explain why we favor generators that can offer multiple

streams and substreams, and we recommend specific ones.
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INTRODUCTION

Stochastic models of quantitative finance are defined in the abstract framework of probability the-

ory. To apply the Monte Carlo method to these models, it suffices in principle to sample inde-

pendent realizations of the underlying random variables or random vectors. This can be achieved

by sampling independent random variables uniformly distributed over the interval (0,1) (i.i.d.

U (0,1), for short) and applying appropriate transformations to these uniform random variables.

Non-uniform variate generation techniques develop such transformations and provide efficient al-

gorithms that implement them [3, 6]. A simple general way to obtain independent random vari-

ables X1,X2, . . . with distribution function F from a sequence of i.i.d. U (0,1) random variables

U1,U2, . . . is to define

X j = F−1(U j)
def= min{x | F(x)≥U j}; (1)

this is the inversion method. This technique can provide a sequence of independent standard nor-

mal random variables, for example, which can in turn be used to generate the sample path of a

geometric Brownian motion or other similar type of stochastic process. There is no closed form

expression for the inverse standard normal distribution function, but very accurate numerical ap-

proximations are available.

But how do we get the i.i.d. U (0,1) random variables? Realizing these random variables

exactly is very difficult, perhaps practically impossible. With current knowledge, this can be re-

alized only approximately. Fortunately, the approximation seems good enough for all practical

applications of the Monte Carlo method in financial engineering and in other areas as well.

A first class of methods to realize approximations of these random variables are based on real

physical noise coming from hardware devices. There is a large variety of such devices; they include

gamma ray counters, fast oscillators sampled at low and slightly random frequencies, amplifiers of

heat noise produced in electric resistances, photon counting and photon trajectory detectors, and so

on. Some of these devices sample a signal at successive epochs and return 0 if the signal is below

a given threshold, and 1 if it is above the threshold, at each sampling epoch. Others return the

parity of a counter. Most of them produce sequences of bits that are slightly correlated and often

slightly biased, but the bias and correlation can be reduced to a negligible amount, that becomes

practically undetectable by statistical tests in reasonable time, by combining the bits in a clever
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way. For example, a simple technique to eliminate the bias when there is no correlation, proposed

long ago by John von Neumann, places the successive bits in non-overlapping pairs, discards all

the pairs 00 and 11, and replaces the pairs 01 and 10 by 1 and 0, respectively. Generalizations of

this technique can eliminate both the bias and correlation [2]. Simpler techniques such as xoring

(adding modulo 2) the bits by blocks of 2 or more, or xoring several bit streams from different

sources, are often used in practice. Reliable devices to generate random bits and numbers, based

on these techniques, are available on the market. These types of devices are needed for applications

such as cryptography, lotteries, and gambling machines, for example, where some amount of real

randomness (or entropy) is essential to provide the required unpredictability and security.

For Monte Carlo methods, however, these devices are unnecessary and unpractical. They are

unnecessary because simple deterministic algorithms are available that require no other hardware

than a standard computer and provide good enough imitations of i.i.d. U(0,1) random variables

from a statistical viewpoint, in the sense that the statistical behavior of the simulation output is

pretty much the same (for all practical purposes) if we use (pseudo)random numbers produced by

these algorithms in place of true i.i.d. U(0,1) random variables. These deterministic algorithmic

methods are much more convenient than hardware devices.

A (pseudo)random number generator (RNG, for short) can be defined as a structure comprised

of the following ingredients [9]: a finite set of states S ; a probability distribution on S to select

the initial state s0 (also called the seed); a transition function f : S →S ; an output space U ; and

an output function g : S → U . Here we assume that U is the interval (0,1). The state evolves

according to the recurrence si = f (si−1), for i ≥ 1, and the output at step i is ui = g(si) ∈ U .

These ui’s are the successive random numbers produced by the RNG. (Following common usage

in the simulation community, here we leave out the qualifier “pseudo.” In the area of cryptol-

ogy, the term pseudorandom number generator refers to a stronger notion, with polynomial-time

unpredictability properties [20]).

Because S is finite, the RNG must eventually return to a previously visited state, i.e., sl+ j = sl

for some l ≥ 0 and j > 0. Then, si+ j = si and ui+ j = ui for all i ≥ l; i.e., the output sequence

eventually repeats itself. The smallest j > 0 for which this happens is the period length ρ . Clearly,

ρ cannot exceed |S |, the number of distinct states. If the state can be represented with b bits of

memory, then ρ ≤ 2b. For good RNGs, ρ is usually close to 2b, as it is not difficult to construct
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recurrences with this property. Typical values of b range from 31 to around 20,000 or even higher

[18]. In our opinion, ρ should never be less than 2100, and preferably more than 2200. Values

of b that exceed 1000 are unnecessary if the RNG satisfies the quality criteria described in what

follows.

A key advantage of algorithmic RNGs is their ability to repeat exactly the same sequence of

random numbers without storing them. Repeating the same sequence several times is essential

for the proper implementation of variance reduction techniques such as using common random

numbers for comparing similar systems, for sensitivity analysis, for sample-path optimization, for

external control variates, for antithetic variates, and so on [1, 5] (see also eqf13-021, eqf13-022).

It is also handy for program verification and debugging. On the other hand, some real randomness

can be used for selecting the seed s0 of the RNG.

STREAMS AND SUBSTREAMS

Modern high-quality simulation software often offers the possibility to declare and create virtual

RNGs just like for any other type of variable or object, in practically unlimited amount. In an

implementation adopted by several simulation software vendors, these virtual RNGs are called

streams, and each stream is split into multiple substreams long enough to prevent potential overlap

[19, 14]. For any given stream, there are methods to generate the next number, to rewind to the

beginning of the stream, or to the beginning of the current substream, or to the beginning of the

next substream.

To illustrate why this is useful, consider a simple model of a financial option whose payoff is

a function of a geometric Brownian motion observed at fixed points in time. We want to estimate

d = E[X2−X1] where X1 and X2 are the payoffs with two slightly different parameter settings, such

as different volatilities or different strike prices, for example. This is often useful for sensitivity

analysis (estimating the greeks; see eqf13-004). To estimate d we would simulate the model with

the two different settings using common random numbers across the two versions [1, 5] (see also

eqf13-021), repeat this n times independently, and compute a confidence interval on d from the n

independent copies of X2−X1. To implement this, we take a stream of random numbers that con-

tains multiple substreams, use the same substream to simulate both X1 and X2 for each replication,
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and n different substreams for the n replications. At the beginning of a replication, the stream is

placed to the beginning of a new substream and the model is simulated to compute X1. Then the

stream is reset to the beginning of its current substream before simulating the model again to com-

pute X2. This ensures that exactly the same random numbers are used to generate the Brownian

motion increments at the same time points for both X1 and X2. Then the stream is moved to the

beginning of the next substream for the next pair of runs.

There are many situations where the number of calls to the RNG during a simulation depends

on the model parameters, and may not be the same for X1 and X2. Even in that case, the above

scheme ensures that the RNG restarts at the same place for both parameter settings, for each repli-

cation. In more complicated models, to ensure a good synchronization of the random numbers

across the two settings (i.e., make sure that the same random numbers are used for the same pur-

poses in both cases), it is typically convenient to have several different streams, each stream being

dedicated to one specific aspect of the model. For instance, in the previous example, if we also

need to simulate external events that occur according to a Poisson process and influence the payoff

in some way (e.g., they could trigger jumps in the Brownian motion), it is better to use a sepa-

rate stream to simulate this process, to guarantee that no random number is used for the Brownian

motion increment in one setting and for the Poisson process in the other setting.

QUALITY CRITERIA AND TESTING

A good RNG must obviously have a very long period, to make sure that there is no chance of wrap-

ping around. It should also be repeatable (able to reproduce exactly the same sequence several

times), portable (be easy to implement and behave the same way in different software/hardware

environments), and it should be easy to split its sequence into several disjoint streams and sub-

streams, and implement efficient tools to move between those streams and substreams. The latter

requires the availability of efficient jump-ahead methods, that can quickly compute si+ν given si,

for any large ν . The number b of bits required to store the state should not be too large, because

the cost (CPU time) of jumping-ahead typically increases faster than linearly with b, and also be-

cause there can be a large number of streams and substreams in a given simulation, especially for

large complex models. Another key performance measure is the speed of the generator itself. Fast
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generators can produce up to 100 million U (0,1) random numbers per second on current personal

computers [18].

All these nice properties are not sufficient, however. For example, an RNG that returns ui =

(i/101000) mod 1 at step i satisfies these properties but is definitely not recommendable, because

its successive output values have an obvious strong correlation. Ideally, if we select a random

seed s0 uniformly in S , we would like the vector of the first s output values, (u0, . . . ,us−1), to

be uniformly distributed over the s-dimensional unit hypercube [0,1]s for each s > 0. This would

guarantee both uniformity and independence. Formally, we cannot have this, because these s-

dimensional vectors must take their values from the finite set Ψs = {(u0, . . . ,us−1) : s0 ∈ S },

whose cardinality cannot exceed |S |. If s0 is random, Ψs can be viewed as the sample space

from which vectors of successive output values are drawn randomly. Then, to approximate the

uniformity and independence, we want the finite set Ψs to provide a dense and uniform coverage

of the hypercube [0,1]s, at least for small and moderate values of s. This is possible only if S has

large cardinality, and it is in fact a more important reason for having a long period than the danger

of exhausting the cycle.

So the uniformity of Ψs in [0,1]s is a key quality criterion. But how do we measure it? There

are many ways of measuring the uniformity (or the discrepancy from the uniform distribution) for

a point set in the unit hypercube [16, 22] (see also eqf13-019). To be practical, the uniformity

measure must be selected so that it can be effectively computed without generating explicitly the

points of Ψs. For this reason, the theoretical figures of merit that measure the uniformity usually

depend on the mathematical structure of the RNG. This is also the main reason for RNGs based

on linear recurrences: their point sets Ψs are easier to analyze mathematically, because they have

a simpler structure. One could argue that nonlinear and more complex structures give rise to point

sets Ψs that look more random, and some of them behave very well in empirical statistical tests,

but their structure is much harder to analyze. They could leave large holes in [0,1]s that are difficult

to detect.

To design a good RNG, one typically selects an algorithm together with the size of the state

space, and constraints on the parameters that ensure a fast implementation. Then one makes a

computerized search in the space of parameters to find a set of values that give (a) the maximal

period length within this class of generators and then (b) the largest figure of merit than can be
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found. RNGs are thus selected and constructed based primarily on theoretical criteria. Then, they

are implemented and tested empirically.

A large variety of empirical statistical tests have been designed and implemented for RNGs

[8, 18]. All these tests try to detect empirical evidence against the hypothesis H0 that the ui are

i.i.d. U [0,1]. A test can be any function Y of a finite set of ui’s, that can be computed in reasonable

time, and whose distribution under H0 can be approximated well enough. There is an unlimited

number of such tests. When applying the test, one computes the realization of Y , say y, and then

the probability p+ = P[Y ≥ y |H0], called the right p-value. If Y takes a much larger value than

expected, then p+ will be very close to zero, and we declare that the RNG fails the test. We may

also examine the left p-value p− = P[Y ≤ y |H0], or both p+ and p−, depending on the design of

the test. When a generator really fails a test, it is not unusual to find p-values as small as 10−15 or

less.

Specific batteries that contain a variety of standard tests, that detect problems often encountered

in poorly designed or too simple RNGs, have been proposed and implemented [18]. The bad

news is that a majority of the RNGs available in popular commercial software fail these tests

unequivocally, with p-values smaller than 10−15. These generators should be discarded, unless we

have very good reasons to believe that for our specific simulation models, the problems detected

by these failed tests will not affect the results. The good news is that some freely-available high-

quality generators pass all the tests in these batteries. Of course, passing all these tests is not a

proof that the RNG is reliable for all possible simulations; but it certainly improves our confidence

in the generator. In fact, no RNG can pass all conceivable statistical tests. In some sense, the good

RNGs fail only very complicated tests that are hard to find and implement, whereas bad RNGs fail

simple tests.

LINEAR RECURRENCES

Most RNGs used for simulation are based on linear recurrences of the general form

xi = (a1xi−1 + · · ·+akxi−k) mod m, (2)
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where k and m are positive integers, and the coefficients a1, . . . ,ak are in {0,1, . . . ,m− 1}, with

ak 6= 0. Some use a large value of m, preferably a prime number, and define the output as ui = xi/m,

so the state at step i can be viewed as si = xi = (xi−k+1, . . . ,xi). The RNG is then called a multi-

ple recursive generator (MRG). For k = 1, we obtain the classical linear congruential generator

(LCG). In practice, the output transformation is modified slightly to make sure that ui is always

strictly between 0 and 1, for example by taking ui = (xi +1)/(m+1) or ui = (xi +1/2)/m. Jumping

ahead from xi to xi+ν for an arbitrary large ν can be implemented easily: because of the linearity,

one can write xi+ν = Aνxi mod m, where Aν is a k× k matrix that can be precomputed once for

all [13]. When m is prime, one can choose the coefficients a j so that the period length reaches

mk−1, its maximum [8].

The point set Ψs produced by an MRG is known to have a lattice structure, and its uniformity

is measured via a figure of merit for the quality of that lattice, for several values of s. This is known

as the spectral test [8, 4, 10].

Typically, m is chosen as one of the largest prime integers representable on the target computer,

e.g., m = 231−1 on a 32-bit computer. Then, a direct implementation of (2) with integer numbers

would cause overflow, so more clever implementation techniques are needed. These techniques

require that we impose additional conditions on the coefficients a j. We have to be careful that

these conditions do not oversimplify the structure of the point set Ψs. One extreme example of this

is to take only two nonzero coefficients, say ar and ak, both equal to ±1. Implementation is then

easy and fast. However, all triples of the form (ui,ui−r,ui−k) produced by such a generator, for

i = 0,1, . . . , lie in only two planes in the three-dimensional unit cube! Despite this awful behavior,

these types of generators (or variants thereof) can be found in many popular software products

[18]. They should be avoided. All simple LCGs, say with m≤ 264, should be discarded; they have

too much structure and their period length is too short for today’s computers.

One effective way of implementing high-quality MRGs is to combine two (or more) of them by

adding their outputs modulo 1. (There are also other slightly different ways of combining.) If the

components have distinct prime moduli, the combination turns out to be just another MRG with

(non-prime) modulus m equal to the product of the moduli of the components, and the period can

be up to half the product of the component’s periods when we combine two of them. The idea is

to select the components so that (a) a fast implementation is easy to construct for each individual
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component, and (b) the combined MRG has a more complicated structure and highly-uniform sets

Ψs, as measured by the spectral test [10]. Specific MRG constructions can be found in [10, 13, 18]

and the references given there.

A different approach uses a linear recurrence as in (2), but with m = 2. All operations are

then performed modulo 2, i.e., in the finite field F2 with elements {0,1}. This allows very fast

implementations by exploiting the binary nature of computers. A general framework for this is the

matrix linear recurrence [13, 17]:

xi = Axi−1, (3)

yi = Bxi, (4)

ui =
w

∑
`=1

yi,`−12−` (5)

where xi = (xi,0, . . . ,xi,k−1)t is the k-bit state vector at step i, yi = (yi,0, . . . ,yi,w−1)t is the w-bit

output vector at step i, k and w are positive integers, A is a k× k binary transition matrix, B is a

w× k binary output transformation matrix, and ui ∈ [0,1) is the output at step i. All operations in

(3) and (4) are performed in F2. These RNGs are called F2-linear generators.

The theoretical analysis usually assumes the simple output definition (5), but in practice this

definition is modified slightly to avoid returning 0 or 1. This framework covers several types of gen-

erators, including the Tausworthe, polynomial LCG, generalized feedback shift register (GFSR),

twisted GFSR, Mersenne twister, WELL, xorshift, linear cellular automaton, and combinations

of these [13, 17, 21]. With a carefully selected matrix A (its characteristic polynomial must be a

primitive polynomial over F2), the period length can reach 2k−1. In practice, the matrices A and

B are chosen so that the products (3) and (4) can be implemented very efficiently on a computer by

a few simple binary operations such as or, exclusive-or, shift, and rotation, on blocks of bits. The

idea is to find a compromise between the number of such operations (which affects the speed) and

a good uniformity of the point sets Ψs (which is easier to reach with more operations). The uni-

formity of these point sets is measured via their equidistribution; essentially, the hypercube [0,1]s

is partitioned into small subcubes (or subrectangles) of equal sizes, and for several such partitions,

we check if all the subcubes contain exactly the same number of points from Ψs. This can be com-

puted efficiently by computing the ranks of certain binary matrices [17]. Combined generators of

this type, defined by xoring the output vectors yi of the components, are equivalent to yet another

F2-linear generator. Such combinations have the same motivation as for MRGs.
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NONLINEAR GENERATORS

Linear RNGs have many nice properties, but they also fail certain specialized statistical tests fo-

cused at detecting linearity. When the simulation itself applies nonlinear transformations to the

uniform random numbers, which is typical, one should not worry about the linearity, unless the

structure of Ψs is not very good. But there are cases where the linearity can matter. For example,

to generate a large random binary matrix, one should not use an F2-linear generator, because the

rank of the matrix is likely to be much smaller than expected, due to the excessive linear depen-

dence [18].

There are many ways of constructing nonlinear generators. For example, one can simply add

a nonlinear output transformation to a linear RNG, or permute (shuffle) the output values with the

help of another generator. Another way is to combine an MRG with and F2-linear generator, either

by addition modulo 1 or by xoring the outputs. An important advantage of this technique is that the

uniformity of the resulting combined generator can be assessed theoretically, at least to a certain

extent [15]. They can also be fast.

When combining generators, it is important to understand what we do and we should be careful

to examine the structure of the combination, not only of the quality of the components. By blindly

combining two good components, it is indeed possible (and not too difficult) to obtain a bad (worst)

RNG.

Generators whose underlying recurrence is nonlinear are generally harder to analyze and are

slower. These are the types of generators used for cryptographic applications. Empirically, well-

designed nonlinear generators tend to perform better in statistical tests than the linear ones [18], but

from the theoretical perspective, their structure is not understood as well. RNGs based on chaotic

dynamical systems have often been proposed in the literature, but these generators have several

major drawbacks, including the fact that their s-dimensional uniformity is often very poor [7].
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WHAT TO LOOK FOR AND WHAT TO AVOID

A quick look at the empirical results in [12, 18] shows that many widely-used RNGs are seriously

deficient, including the default generators of several highly popular software products. So before

running important simulation experiments, one should always check what is the default RNG, and

be ready to replace it if needed. Note that the generators that pass the tests in [18] are not all

recommended. Before adoption, one should verify that the RNG has solid theoretical support, that

it is fast enough, and that multiple streams and substreams are available, for example. Convenient

software packages with multiple streams and substreams are described in [19, 14] and are available

freely from the web page of this author. These packages are based on combined MRGs of [10],

combined Tausworthe generators of [11], the WELL generators [23] (which are improvements

over the Mersenne twister in terms of equidistribution), and some additional nonlinear generators,

among others. No uniform RNG can be guaranteed against all possible defects, but one should

at least avoid those that fail simple statistical tests miserably and go for the more robust ones, for

which no serious problem has been detected after years of usage and testing.
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