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Abstract Random number generators based on linear recurrences modulo 2 are
among the fastest long-period generators currently available. The uniformity and
independence of the points they produce, by taking vectors of successive output
values from all possible initial states, can be measured by theoretical figures of
merit that can be computed quickly, and the generators having good values for these
figures of merit are statistically reliable in general. Some of these generators can also
provide disjoint streams and substreams efficiently. In this chapter, we review the
most interesting construction methods for these generators, examine their theoretical
and empirical properties, describe the relevant computational tools and algorithms,
and make comparisons.

1. Introduction

Given that computers work in binary arithmetic, it seems natural to construct ran-
dom number generators (RNGs) defined via recurrences in arithmetic modulo 2,
so that these RNGs can be implemented efficiently via elementary operations on
bit strings, such as shifts, rotations, exclusive-or’s (xor’s), and bit masks. Very fast
RNGs whose output sequences have huge periods can be constructed in this way.
Among them, we find the Tausworthe or linear feedback shift register (LFSR), gen-
eralized feedback shift register (GFSR), twisted GFSR (TGFSR), Mersenne twister,
the WELL, and xorshift generators (Tezuka 1995, L’Ecuyer 1996, Fishman 1996,
Matsumoto and Nishimura 1998, L’Ecuyer and Panneton 2002, L’Ecuyer 2006,
Panneton et al. 2006, Panneton and L’Ecuyer 2005, Panneton 2004). A common
characterization of all these generators is that they are special cases of a general class
of generators whose state evolves according to a (matrix) linear recurrence modulo
2. The bits that form their output are also determined by a linear transformation
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modulo 2 applied to the state. Since doing arithmetic modulo 2 can be interpreted
as working in F2, the finite field of cardinality 2 with elements {0, 1}, we shall refer
to this general class as F2-linear generators.

It must be underlined right away that some widely-used RNGs of this form are
not statistically reliable and should be discarded. But other well-designed instances
are good, reliable, and fast. Which ones? What defects do the others hide? What
mathematical tools can be used to analyze and practically assess their quality from
a theoretical viewpoint? Is it easy to jump ahead quickly in their sequence in order
to split it into multiple streams and substreams? In the remainder of this paper, we
address these questions and provide a state-of-the-art overview of F2-linear RNGs.

In the next section, we define a general framework that covers all F2-linear gen-
erators. We provide some basic properties of these RNGs, such as maximal-period
conditions, a simple way to jump ahead, and a simple combination method of F2-
linear generators (via a bitwise xor) to construct larger (and often better-behaved)
F2-linear generators. We describe efficient algorithms to compute the characteris-
tic polynomial of an RNG and to check if it has maximal period. In Section 3, we
discuss the theoretical measures of uniformity and independence that are typically
used in practice as figures of merit to assess its quality. The F2-linear RNGs turn out
to have a lattice structure in spaces of polynomials and formal series over F2. There
are counterparts in those spaces of the spectral test and other lattice-based tests
and properties that have been developed for linear congruential generators. Inter-
estingly, these tests are strongly linked with computing the measures of uniformity
of F2-linear generators. Section 4 outlines this theory. We explain how to construct
and analyze the polynomial lattices and how to use them for computing the unifor-
mity measures of interest. In Section 5, we describe specific families of F2-linear
generators proposed over the years, show how they fit the general framework, and
summarize what we know about their strengths and weaknesses. In Section 6, we
compare specific implementations in terms of their speed and (theoretical) figures
of merit, and discuss their behavior in empirical statistical tests. Compared with the
most widely used RNG that offers multiple streams and substreams in simulation
software, the best F2-linear RNGs are faster by a factor of 1.5 to 3, depending on
the computing platform. Section 7 concludes the paper.

2. F2-Linear Generators

2.1 General Framework

We consider an RNG defined by a matrix linear recurrence over the finite field F2,
as follows:
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xn = Axn−1, (1)
yn = Bxn, (2)

un =
w∑

`=1

yn,`−12−` = .yn,0 yn,1 yn,2 · · · , (3)

where xn = (xn,0, . . . , xn,k−1)t ∈ Fk
2 is the k-bit state vector at step n (t means

“transposed”), yn = (yn,0, . . . , yn,w−1)t ∈ Fw
2 is the w-bit output vector at step n,

k and w are positive integers, A is a k × k transition matrix with elements in F2,
and B is a w×k output transformation matrix with elements in F2. The real number
un ∈ [0, 1) is the output at step n. All operations in (1) and (2) are performed in F2,
i.e., modulo 2. This setting is from L’Ecuyer and Panneton (2002). Several popular
classes of RNGs fit this framework as special cases, by appropriate choices of the
matrices A and B. Many will be described in Section 5.

The period of this RNG cannot exceed 2k − 1, because there are only 2k − 1
possible nonzero values for xn. When this maximum is reached, we say that the
RNG has maximal period. To discuss the periodicity and see how we can construct
maximal-period F2-linear RNGs, we use the following basic definitions and prop-
erties from linear algebra and finite fields. Let F2[z] denote the ring of polynomials
with coefficients in F2. The characteristic polynomial of the matrix A is

P (z) = det(zI−A) = zk − α1z
k−1 − · · · − αk−1z − αk,

where I is the identity matrix and each αj is in F2. This P (z) is also the character-
istic polynomial of the linear recurrence (in F2)

xn = α1xn−1 + · · ·+ αkxn−k. (4)

We shall assume that αk = 1. Usually, we know a priori that this is true by construc-
tion of the matrix A. In that case, the recurrence (4) has order k and it is purely peri-
odic, i.e., there is some integer ρ > 0 such that (xρ, . . . , xρ+k−1) = (x0, . . . , xk−1);
this ρ is called the period of the recurrence. The minimal polynomial of A is the
polynomial Q(z) ∈ F2[z] of smallest degree for which Q(A) = 0. Every other
polynomial R(z) ∈ F2[z] for which R(A) = 0 must be a multiple of the minimal
polynomial. This implies in particular that P (z) is a multiple of Q(z). In the context
of RNG construction, Q(z) and P (z) are almost always identical, at least for good
constructions.

The fact that the sequence {xn, n ≥ 0} obeys (1) implies that it satisfies the re-
currence that corresponds to the minimal polynomial of A (or any other polynomial
that is a multiple of Q(z)):

xn = (α1xn−1 + · · ·+ αkxn−k) (in F2). (5)

This means that the sequence {xn,j , n ≥ 0} obeys (4) for each j, 0 ≤ j < k.
The sequence {yn,j , n ≥ 0}, for 0 ≤ j < w, also obeys that same recurrence.
However, these sequences may also follow recurrences of order smaller than k. For
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any periodic sequence in F2, there is a linear recurrence of minimal order obeyed
by this sequence, and the characteristic polynomial of that recurrence is called the
minimal polynomial of the sequence. This minimal polynomial can be computed by
the Berlekamp-Massey algorithm (Massey 1969). The sequences {xn,j , n ≥ 0}
may have different minimal polynomials for different values of j, and also differ-
ent minimal polynomials than the sequences {yn,j , n ≥ 0}. But all these minimal
polynomials must necessarily divide P (z). If P (z) is irreducible (i.e., it has no
divisor other than 1 and itself), then P (z) must be the minimal polynomial of all
these sequences. Reducible polynomials P (z) do occur when we combine gener-
ators (Section 2.3); in that case, P (z) is typically the minimal polynomial of the
output bit sequences {yn,j , n ≥ 0} as well, but the sequences {xn,j , n ≥ 0} often
have much smaller minimal polynomials (divisors of P (z)).

It is well-known that the recurrences (4) and (5) have maximal period if and
only if P (z) is a primitive polynomial over F2 (Niederreiter 1992, Knuth 1998).
Primitivity is a stronger property than irreducibility: P (z) is primitive if and only if
it is irreducible and for all prime divisors pi of r = 2k − 1, zr/pi 6≡ 1 mod P (z).
A good way to verify if a polynomial is primitive is to verify irreducibility first, and
then check the second condition. Note that when r is prime (this type of prime is
called a Mersenne prime), the second condition is automatically satisfied.

In the context of RNG construction, we are interested essentially only in maximal-
period recurrences. The RNG is constructed either from a single maximal-period re-
currence, or from a combination of maximal-period recurrences, as we shall explain
later. Assuming that we are interested only in primitive polynomials P (z), we can
compute P (z) and check its primitivity as follows.

We first run the generator for k steps from some arbitrary non-zero initial state
x0, and we compute the minimal polynomial Q0(z) of {xn,0, n ≥ 0} with the
Berlekamp-Massey algorithm. If Q0(z) has degree less than k, then P (z) is nec-
essarily reducible and we reject this generator; otherwise P (z) = Q0(z) and it
remains to verify its primitivity. For this, we can use the following algorithm from
Rieke et al. (1998) and Panneton (2004); it verifies the set of necessary and suffi-
cient conditions stated in Knuth (1998), page 30, but it also specifies in what order
to perform the polynomial exponentiations:

Algorithm P
{ Given P (z) of degree k, returns TRUE iff P (z) is primitive }
Factorize r = 2k − 1 = pe1

1 · · · peb

b where p1, . . . , pb are distinct primes;
Compute q := r/(p1 · · · pb) and qb(z) := zq mod P (z);
For i = b, . . . , 1, let qi−1(z) := qi(z)pi mod P (z);
If q0(z) 6= 1 or q1(z) = 1, return FALSE;
For i = b, . . . , 2, {

Compute ti(z) := qi(z)pi−1···p1 mod P (z);
If ti(z) = 1, return FALSE; }

Return TRUE.

When k is large, it is worthwhile to first apply an irreducibility test that can
detect reducibility faster than this primitivity test. Note that P (z) is reducible if and
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only if it has an irreducible factor of degree ≤ bk/2c, where b·c denotes the well-
known floor function, which truncates its argument to an integer. A key theorem in
finite fields theory states that for any integer n ≥ 1, the product of all irreducible
polynomials whose degree d divides n is equal to z2n

+ z. This means that P (z) is
irreducible if and only if gcd(z2n

+ z, P (z)) = 1 for all n ≤ bk/2c (gcd means
“greatest common divisor”). This gives the following algorithm:

Algorithm I
{ Given P (z) of degree k, returns TRUE iff P (z) is irreducible }
For n = 1, . . . , bk/2c: if gcd(z2n

+ z, P (z)) 6= 1, return FALSE;
Return TRUE.

When searching for primitive polynomials for RNG construction, we typically
select k and impose a special form on the matrix A, so that a fast implementation is
available (see Section 5). Then we search (often at random), in the space of matrices
A that satisfy these constraints, for instances having a primitive characteristic poly-
nomial. The following old result (see, e.g., Lidl and Niederreiter 1986) may give a
rough idea of our chances of success. It gives the probability that a random polyno-
mial, generated uniformly over the set of all polynomials of degree k, is primitive. It
is important to underline, however, that when generating A randomly from a special
class, the polynomial P (z) does not necessarily have the uniform distribution over
the set of polynomials, so the probability that it is primitive might differ from the
formula given in the theorem.

Theorem 1. Among the 2k polynomials of degree k in F2[z], the proportion of prim-
itive polynomials is exactly

1
k

b∏
i=1

pi − 1
pi

where p1, . . . , pb are the distinct prime factors of r = 2k − 1.

This result suggests that to improve our chances, it is better to avoid values of r
having several small factors. If r is a Mersenne prime, the proportion is exactly 1/k.

2.2 Jumping Ahead

A key requirement of modern stochastic simulation software is the availability of
random number generators with multiple disjoint streams and substreams. These
streams and substreams can provide parallel RNGs and are also important to sup-
port the use of variance reduction techniques (Fishman 1996, Law and Kelton 2000,
L’Ecuyer et al. 2002). They are usually implemented by partitioning the output
sequence of a long-period generator into long disjoint subsequences and subsub-
sequences whose starting points are found by making large jumps in the original
sequence.
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Jumping ahead directly from xn to xn+ν for a very large integer ν is easy in
principle with this type of generator. It suffices to precompute the matrix Aν mod 2
(this can be done in O(k3 log ν) operations by a standard method) and then multiply
xn by this binary matrix, modulo 2. The latter step requires O(k2) operations and
O(k2) words of memory to store the matrix. This approach works fine for relatively
small values of k (e.g., up to 100 or so), but becomes rather slow when k is large. For
example, the Mersenne twister of Matsumoto and Nishimura (1998) has k = 19937
and the above method is impractical in that case.

A more efficient method is proposed by Haramoto et al. (2008). For a given
step size ν, the method represents the state xn+ν as gν(A)xn, where gν(z) =∑k−1

j=0 djz
j is a polynomial of degree less than k in F2[z]. The product

gν(A)xn =
k−1∑
j=0

djAjxn =
k−1∑
j=0

djxn+j

can be computed simply by running the generator for k − 1 steps to obtain
xn+1, . . . ,xn+k−1 and adding (modulo 2) the xn+j’s for which dj = 1. For large
k, the cost is dominated by these additions. Their number can be reduced (e.g.,
by a factor of about 4 when k = 19937) by using a sliding window technique, as
explained in Haramoto et al. (2008). This method still requires O(k2) operations
but with a smaller hidden constant and (most importantly) much less memory than
the standard matrix multiplication. Yet jumping ahead for F2-linear generators of
large order k (such as the Mersenne twister) remains slow with this method. One
way to make the jumping-ahead more efficient is to adopt a combined generator, as
discussed in Subsection 2.3, and do the ν-step jumping-ahead separately for each
component.

2.3 Combined F2-Linear Generators

A simple way of combining F2-linear generators is as follows. For some integer
C > 1, consider C distinct recurrences of the form (1)–(2), where the cth recurrence
has parameters (k,w,A,B) = (kc, w,Ac,Bc) and state xc,n at step n, for c =
1, . . . , C. The output of the combined generator at step n is defined by

yn = B1x1,n ⊕ · · · ⊕BCxC,n,

un =
w∑

`=1

yn,`−12−`,

where ⊕ denotes the bitwise exclusive-or (xor) operation. One can show (Tezuka
and L’Ecuyer 1991, Tezuka 1995) that the period ρ of this combined genera-
tor is the least common multiple of the periods ρc of its components. This com-
bined generator is equivalent to the generator (1)–(3) with k = k1 + · · · + kC ,
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A = diag(A1, . . . ,AC), and B = (B1, . . . ,BC). If Pc(z) is the character-
istic polynomial of Ac for each c, then the characteristic polynomial of A is
P (z) = P1(z) · · ·PC(z). This polynomial is obviously reducible, so the combined
RNG cannot have maximal period 2k − 1. However, if we select the parameters
carefully so that each component has maximal period ρc = 2kc − 1 and if the ρc

are pairwise relatively prime (the Pc(z) must be distinct irreducible polynomials),
then the period of the combined generator is the product of the periods of the com-
ponents: ρ =

∏C
c=1(2

kc − 1). In fact, within one cycle, all combinations of nonzero
states for the C components are visited exactly once. When the kc’s are reason-
ably large, this ρ is not far from 2k − 1; the difference is that instead of discarding
a single k-bit zero state, we must discard the zero state for each component (i.e.,
all k-bit states in which at least one of the components is in the zero state). Con-
crete constructions of this form are given in Tezuka and L’Ecuyer (1991), Wang and
Compagner (1993), L’Ecuyer (1996) and Tezuka (1995).

Why would we want to combine generators like this? We already gave one good
reason in the previous subsection: efficient jumping-ahead is easier for a combined
generator of order k having several components of smaller order than for a non-
combined generator with the same k. Another important reason is that matrices
A that give very fast implementations typically lead (unfortunately) to poor quality
RNGs from the statistical viewpoint, because of a too simplistic structure. Combined
generators provide a way out of this dilemma: select simple components that allow
very fast implementations and such that the corresponding combined generator has
a more complicated structure, good figures of merit from the theoretical viewpoint,
and good statistical properties. Many of the best F2-linear generators are defined
via such combinations. As an illustration, one may have four components of periods
263−1, 258−1, 255−1, 247−1, so the state of each component fits a 64-bit integer
and the overall period is near 2223.

There could be situations where instead of combining explicitly known F2-linear
components, we would go the other way around; we may want to generate matri-
ces A randomly from a given class, then find the decomposition of their (reducible)
characteristic polynomials, analyze their periodicity and figures of merit, and so on.
This approach is used by Brent and Zimmermann (2003), for example. In that case,
we can decompose P (z) = P1(z) · · ·PC(z), where the Pc(z) are irreducible, and
also decompose the matrix A in its Jordan normal form: A = PÃP−1, where P
is an invertible matrix and Ã = diag(Ã1, . . . , ÃC) is a block-diagonal matrix for
which each block Ãc has irreducible characteristic polynomial Pc(z) (Golub and
Van Loan 1996, Strang 1988). Once we have this decomposition, we know that
the generator is equivalent to a combined RNG with transition matrix Ã and output
transformation matrix B̃ = BP, and we can analyze it in the same way as if we had
first selected its components and then combined them. It is important to note that
the purpose of the decomposition in this case is not to provide an efficient imple-
mentation for the combined generator, nor an efficient algorithm to jump ahead, but
only to analyze the periodicity and other theoretical properties of the generator.
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3. Quality Criteria

In general, good RNGs must have a long period ρ (say, ρ ≈ 2200 or more), must
run fast, should not waste memory (the state should be represented in no more than
roughly log2 ρ bits of memory), must be repeatable and portable (able to reproduce
exactly the same sequence in different software/hardware environments), and must
allow efficient jumping-ahead in order to obtain multiple streams and substreams.
But these required properties do not suffice to imitate independent random numbers.

Recall that a sequence of random variables U0, U1, U2, . . . are i.i.d. U [0, 1) if and
only if for all integers i ≥ 0 and t > 0, the vector (Ui, . . . , Ui+t−1) is uniformly
distributed over the t-dimensional unit hypercube [0, 1)t. Of course, this cannot hold
for algorithmic RNGs that have a finite period. For RNGs that fit our F2-linear
framework, any vector of t successive output values of the generator belongs to the
finite set

Ψt = {(u0, . . . , ut−1) : x0 ∈ Fk
2},

i.e., the set of output points obtained when the initial state runs over all possible
k-bit vectors. This set Ψt always has cardinality 2k when viewed as a multiset (i.e.,
if the points are counted as many times as they appear).

If x0 is drawn at random from the set of k-bit vectors Fk
2 , with probability 2−k for

each vector, then (u0, . . . , ut−1) is a random vector having the uniform distribution
over Ψt. Thus, to approximate well the uniform distribution over [0, 1)t, Ψt must
cover the hypercube [0, 1)t very uniformly (L’Ecuyer 1994, 2006). More generally,
we may also want to measure the uniformity of sets of the form

ΨI = {(ui1 , . . . , uit
) | x0 ∈ Fk

2},

where I = {i1, . . . , it} is a fixed ordered set of non-negative integers such that
0 ≤ i1 < · · · < it. For I = {0, . . . , t− 1}, we recover Ψt = ΨI

The uniformity of ΨI is usually assessed by measures of the discrepancy be-
tween the empirical distribution of its points and the uniform distribution over [0, 1)t

(Hellekalek and Larcher 1998, L’Ecuyer and Lemieux 2002, Niederreiter 1992).
These measures can be defined in many ways and they are in fact equivalent to
goodness-of-fit tests for the multivariate uniform distribution. They must be com-
putable without enumerating the points, because the cardinality of Ψt makes the
enumeration practically infeasible when the period is large enough. For this reason,
the uniformity measures are usually tailored to the general structure of the RNG.
The selected discrepancy measure can be computed for each set I in some prede-
fined class J ; then these values can be weighted or normalized by factors that may
depend on I , and the worst-case (or average) over J can be adopted as a figure of
merit used to rank RNGs. The choices of J and of the weights are arbitrary. They
are a question of compromise and practicality. Typically, J would contain sets I
such that t and it − i1 are rather small. We generally try to optimize this figure of
merit when searching (by computer) for concrete RNG parameters, within a given
class of constructions.



F2-Linear Random Number Generators 9

For F2-linear generators, the uniformity of the point sets ΨI is typically as-
sessed by measures of equidistribution defined as follows (L’Ecuyer 1996, L’Ecuyer
and Panneton 2002, L’Ecuyer 2004, Tezuka 1995). For an arbitrary vector
q = (q1, . . . , qt) of non-negative integers, partition the unit hypercube [0, 1)t into
2qj intervals of the same length along axis j, for each j. This determines a partition
of [0, 1)t into 2q1+···+qt rectangular boxes of the same size and shape. If a given
set ΨI has exactly 2q points in each box of this partition, where the integer q must
satisfy k − q = q1 + · · · + qt, we say that ΨI is q-equidistributed. This means
that among the 2k points (ui1 , . . . , uit

) of ΨI , if we consider all (k − q)-bit vectors
formed by the qj most significant bits of uij for j = 1, . . . , t, each of the 2k−q pos-
sibilities occurs exactly the same number of times. Of course, this is possible only
if q1 + · · · + qt ≤ k. When q1 + · · · + qt ≥ k, i.e., when the number of boxes is
larger or equal to the number of points, we say that ΨI is q-collision-free (CF) if no
box contains more than one point (L’Ecuyer 1996).

If ΨI is (`, . . . , `)-equidistributed for some ` ≥ 1, it is called t-distributed with `
bits of accuracy, or (t, `)-equidistributed (L’Ecuyer 1996) (we will avoid this last
notation because it conflicts with that for (q1, . . . , qt)-equidistribution). The largest
value of ` for which this holds is called the resolution of the set ΨI and is denoted
by `I . It cannot exceed `∗t = min(bk/tc, w). We define the resolution gap of ΨI as
δI = `∗t − `I . Potential figures of merit can then be defined by

∆J ,∞ = max
I∈J

ωIδI and ∆J ,1 =
∑
I∈J

ωIδI

for some non-negative weights ωI , where J is a preselected class of index sets I .
The weights are often taken all equal to 1.

We also denote by t` the largest dimension t for which Ψt is t-distributed with `
bits of accuracy, and we define the dimension gap for ` bits of accuracy as

δ̃` = t∗` − t`,

where t∗` = bk/`c is an upper bound on t`. We may then consider the worst-case
weighted dimension gap and the weighted sum of dimension gaps, defined as

∆̃∞ = max
1≤`≤w

ω`δ̃` and ∆̃1 =
w∑

`=1

ω`δ̃`

for some non-negative weights ω`, as alternative figures of merit for our genera-
tors. Often, the weights are all 1 and the word “weighted” is removed from these
definitions.

When ∆̃∞ = ∆̃1 = 0, the RNG is said to be maximally equidistributed (ME) or
asymptotically random for the word size w (L’Ecuyer 1996, Tezuka 1995, Tootill
et al. 1973). This property ensures perfect equidistribution of all sets Ψt, for any
partition of the unit hypercube into subcubes of equal sizes, as long as ` ≤ w and
the number of subcubes does not exceed the number of points in Ψt. As an additional
requirement, we may ask that Ψt be (`, . . . , `)-collision-free whenever t` ≥ k. Then
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we say that the RNG is collision-free (CF) (L’Ecuyer 1999a). Large-period ME (or
almost ME) and ME-CF generators can be found in L’Ecuyer (1999a), L’Ecuyer
and Panneton (2002), Panneton and L’Ecuyer (2004), and Panneton et al. (2006),
for example.

The (k− q)-bit vectors involved in assessing the q-equidistribution of ΨI can be
expressed as a linear function of the k-bit initial state x0, that is, as z0 = Mqx0 for
some (k − q) × k binary matrix Mq. Clearly, ΨI is q-equidistributed if and only
if Mq has full rank. Thus, q-equidistribution can easily be verified by constructing
this matrix Mq and checking its rank via (binary) Gaussian elimination (Fushimi
1983, L’Ecuyer 1996, Tezuka 1995). This is a major motivation for adopting this
measure of uniformity.

To construct the matrix Mq that corresponds to ΨI , one can proceed as follows.
For j ∈ {1, . . . , k}, start the generator in initial state x0 = ej , where ej is the unit
vector with a 1 in position j and zeros elsewhere, and run the generator for it steps.
Record the q1 most significant bits of the output at step i1, the q2 most significant
bits of the output at step i2, . . . , and the qt most significant bits of the output at step
it. These bits form the jth column of the matrix Mq.

In the case of a combined generator as in Section 2.3, the matrix Mq can be
constructed by first constructing the corresponding matrices M(c)

q for the individ-
ual components, and simply juxtaposing these matrices, as suggested in L’Ecuyer
(1999a). To describe how this is done, let us denote by Ψ

(c)
I the point set that cor-

responds to component c alone, and let xt
0 = ((x(1)

0 )t, . . . , (x(C)
0 )t) where x(c)

0 is
the initial state for component c. If z(c)

0 is the (k − q)-bit vector relevant for the
q-equidistribution of Ψ

(c)
I , then we have z(c)

0 = M(c)
q x(c)

0 for some (k − q) × kc

binary matrix M(c)
q that can be constructed as explained earlier. Note that the point

set ΨI can be written as the direct sum

ΨI = Ψ
(1)
I ⊕ · · · ⊕ Ψ

(C)
I = {u = u(1) ⊕ · · · ⊕ u(C) | u(c) ∈ Φ

(c)
I for each c},

coordinate by coordinate, and observe that

z0 = z(1)
0 ⊕ · · · ⊕ z(C)

0 = M(1)
q x(1)

0 ⊕ · · · ⊕M(C)
q x(C)

0 .

This means that Mq is just the juxtaposition Mq = M(1)
q · · ·M(C)

q . That is, M(1)
q

gives the first k1 columns of Mq, M(2)
q gives the next k2 columns, and so on.

For very large values of k, the matrix Mq is expensive to construct and reduce,
but a more efficient method based on the computation of the shortest nonzero vector
in a lattice of formal series, studied in Couture and L’Ecuyer (2000), can be used in
that case to verify (`, . . . , `)-equidistribution; see Section 4.

The figures of merit defined above look at the most significant bits of the output
values, but give little importance to the least significant bits. We could of course
extend them so that they also measure the equidistribution of the least significant
bits, simply by using different bits to construct the output values and computing the
corresponding q-equidistributions. But this becomes quite cumbersome and expen-
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sive to compute in general because there are too many ways of selecting which bits
are to be considered. Certain classes of F2-linear generators (the Tausworthe/LFSR
RNGs defined in Subsection 5.1) have the interesting property that if all output val-
ues are multiplied by a given power of two, modulo 1, all equidistribution properties
remain unchanged. In other words, they enjoy the nice property that their least sig-
nificant bits have the same equidistribution as the most significant ones. We call
such generators resolution-stationary (Panneton and L’Ecuyer 2007).

Aside from excellent equidistribution, good F2-linear generators are also re-
quired to have characteristic polynomials P (z) whose number N1 of nonzero coef-
ficients is not too far from half the degree, i.e., near k/2 (Compagner 1991, Wang
and Compagner 1993). Intuitively, if N1 is very small and if the state xn happens to
contain many 0’s and only a few 1’s, then there is a high likelihood that the N1 − 1
bits used to determine any given new bit of the next state are all zero, in which case
this new bit will also be zero. In other words, it may happen frequently in that case
that only a small percentage of the bits of xn are modified from one step to the
next, so the state can contain many more 0’s than 1’s for a large number of steps.
Then, in the terminology of cryptologists, the recurrence has low diffusion capacity.
An illustration of this with the Mersenne twister can be found in Panneton et al.
(2006). In particular, generators for which P (z) is a trinomial or a pentanomial,
which have often been used in the past, should be avoided. They fail rather simple
statistical tests (Lindholm 1968, Matsumoto and Kurita 1996). The fraction N1/k
of nonzero coefficients in P (z) can be used as a secondary figure of merit for an
RNG.

Other measures of uniformity are popular in the context where k is small and the
entire point set Ψt is used for quasi-Monte Carlo integration (Niederreiter 1992,
Hellekalek and Larcher 1998, L’Ecuyer and Lemieux 2002); for example, the
smallest q for which Ψt is a (q, k, t)-net (commonly known as a (t, m, s)-net, using
a different notation), the Pα measure and its weighted versions, the diaphony, etc.
However, no one knows how to compute these measures efficiently when k > 50
(say), which is always the case for good F2-linear RNGs.

4. Lattice Structure in a Space of Formal Series

The lattice structure of linear congruential generators (LCGs) is well-known in the
simulation community (Law and Kelton 2000, Knuth 1998). F2-linear RNGs do
not have a lattice structure in the real space, but they do have a similar form of lattice
structure in a space of formal series (Couture and L’Ecuyer 2000, L’Ecuyer 2004,
Lemieux and L’Ecuyer 2003, Tezuka 1995), which we now outline. In comparison
with the lattices of LCGs, the real space R is replaced by the space L2 of formal
power series with coefficients in F2, of the form

∑∞
`=ω x`z

−` for some integer ω,
and the integers are replaced by polynomials over F2.

Some F2-linear RNGs (e.g., the LFSR generators) have a dimension-wise lattice
structure where the lattice contains vectors of t-dimensional formal series, whose
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coordinate j is the generating function for the binary expansion of the jth output
value, for a given initial state (Tezuka and L’Ecuyer 1991, L’Ecuyer 1994, Tezuka
1995, Lemieux and L’Ecuyer 2003). This dimension-wise lattice can be used to
study equidistribution, but it only applies to a subclass of F2-linear RNGs. For this
reason, we will not discuss it any further here. We will concentrate instead on the
resolution-wise lattice introduced by Tezuka (1995), which applies to all F2-linear
generators.

The sequence of values taken by the jth bit of the output, from a given initial
state x0, has generating function

Gj(z) =
∞∑

n=1

yn−1,jz
−n

(which depends on x0). When multiplying this formal series by P (z), we obtain
the polynomial gj(z) = Gj(z)P (z) in F2[z]/P (z) (the space of polynomials of
degree less than k, with coefficients in F2), because the successive terms of the
series satisfy a recurrence with this characteristic polynomial. For ` = 1, . . . , w, let
G(`)(z) = (G0(z), . . . , G`−1(z)).

We first consider the case where P (z) is an irreducible polynomial. In that case,
if G0(z) 6= 0, then g0(z) has an inverse modulo P (z) and there is a unique initial
state of the RNG that corresponds to the vector

Ḡ(`)(z) = g−1
0 (z)G(`)(z)

= (1, g−1
0 (z)g1(z), . . . , g−1

0 (z)g`−1(z))/P (z)

(Panneton 2004, Lemma 3.2). Thus, if we rename momentarily g−1
0 (z)gj(z) as

gj(z), we see that it is always possible to select the initial state of the RNG so that
g0(z) = 1, i.e,

Ḡ(`)(z) = (1, g1(z), . . . , g`−1(z))/P (z).

When P (z) is irreducible, any given bit of the output follows the same recurrence,
with minimal polynomial P (z), but with a lag between the recurrences for the dif-
ferent bits, i.e., they have different starting points. The vector Ḡ(`)(z) tells us about
these lags. More specifically, if gi(z) ≡ g0(z)zti mod P (z), then the lag between
the recurrences for bit 0 and bit i is ti.

Let L2 = F2((z−1)) be the space of formal series of the form
∑∞

n=i dn−1z
−n

where i ∈ Z and dn−1 ∈ F2 for each n. Let L2,0 be those series for which i ≥ 1.
Suppose that the first ` rows of the matrix B are linearly independent. Then the
vectors v1(z) = Ḡ(`)(z), v2(z) = e2(z), . . . ,v`(z) = e`(z) form a basis of a
lattice L` in L2, defined by

L` =

v(z) =
∑̀
j=1

hj(z)vj(z) such that hj(z) ∈ F2[z]

 .
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This lattice is called the `-bit resolution-wise lattice associated with the RNG. The
matrix V whose rows are the vj’s has an inverse W = V−1 whose columns

w1(z) = (P (z), 0, . . . , 0)t,
w2(z) = (−g1(z), 1, . . . , 0)t,

...
w`(z) = (−g`−1(z), 0, . . . , 1)t

form a basis of the dual lattice

L∗` = {h(z) ∈ L`
2 : h(z) · v(z) ∈ F2[z] for all v(z) ∈ L`},

where h(z) · v(z) =
∑`

j=1 hj(z)vj(z) (the scalar product). This resolution-wise
lattice fully describes all the possible output sequences of the RNG via the following
theorem. It says that the set of all vectors of generating functions that we can get,
from all possible initial states x0, is exactly the set of lattice points that belong to
L2,0. (Here we do not assume that g0(z) = 1.)

Theorem 2. (Couture and L’Ecuyer 2000). We have

L` ∩ L2,0 = {(g0(z), . . . , g`−1(z))/P (z) : x0 ∈ Fk
2}.

For any h(z) = (h1(z), . . . , h`(z)) ∈ (F2[z])`, we define the length of h(z) by
‖0‖ = 0 and

log2 ‖h(z)‖ = max
1≤j≤`

deg hj(z) for h(z) 6= 0.

Theorem 3. (Tezuka 1995, Couture and L’Ecuyer 2000). Ψt is t-distributed with `
bits of accuracy if and only if

min
0 6=h(z)∈L∗

`

log2 ‖h(z)‖ > `.

This theorem shows that checking equidistribution amounts to computing a short-
est nonzero vector in the dual lattice L∗` , just like the spectral test commonly applied
to LCGs but with a different lattice. As it turns out, very similar algorithms can be
used to compute the shortest vector in both cases (Couture and L’Ecuyer 2000).
The algorithm of Lenstra (1985) computes a reduced lattice basis in the sense of
Minkowski for a polynomial lattice; the first (shortest) vector of that reduced basis
is a shortest nonzero vector in the lattice.

This approach is more efficient than applying Gaussian elimination to the matrix
Mq (see Subsection 3) when t is large. However, it applies only to the point set Ψt

formed by t successive output values, and not to the more general point sets ΨI .
To construct a basis of the dual lattice for all ` ≤ w, we only need the polynomi-

als g0(z), g1(z), . . . , gw−1(z). These polynomials can be computed as follows. Start
the generator in some arbitrary nonzero initial state x0, run it for k−1 steps, and ob-
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serve the corresponding output bits yn = (yn,0, . . . , yn,w−1), for n = 0, . . . , k− 1.
This gives the first k coefficients of Gj(z) for j = 0, . . . , w − 1. The coefficients
of each gj(z) =

∑k
i=1 cj,izk−i can then be obtained via (Lemieux and L’Ecuyer

2003, Proposition 3.6):
cj,1

cj,2

...
cj,k

 =


1 0 . . . 0
α1 1 . . . 0
...

. . . . . .
...

αk−1 . . . α1 1




y0,j

y1,j

...
yk−1,j

 .

Then, to obtain g0(z) = 1, it suffices to compute the inverse of g0(z) modulo P (z)
and to multiply each gj(z) by this inverse.

When P (z) is reducible, we can no longer use the argument that g0(z) has an
inverse, but everything else still applies. Suppose P (z) = P1(z) · · ·PC(z) where
the Pc(z)’s are distinct irreducible polynomials; all interesting RNGs should satisfy
this assumption, usually with a small value of C. In that case, the RNG can then be
interpreted as a combined F2-linear generator that fits the framework of Section 2.3
and a basis of the dual lattice can be constructed by decomposition, as we now ex-
plain. If L(c)

` denotes the resolution-wise lattice associated with component c alone
and L(c)∗

` its dual, it can be seen easily that

L` = L(1)
` ⊕ · · · ⊕ L(C)

`

(the direct sum of lattices) and

L∗` = L(1)∗
` ∩ · · · ∩ L(C)∗

` .

To find a basis of this dual lattice, we can first compute a basis of the dual lattice
L(c)∗

` for each component c, as described earlier. Let−g
(c)
1 (z), . . . ,−g

(c)
`−1(z) be the

polynomials found in the first coordinates of these dual basis vectors (we assume
that g

(c)
0 (z) = 1). For each c, compute Qc(z) = (P (z)/Pc(z))−1 mod Pc(z); then

for j = 1, . . . , `− 1, compute

gj(z) =
C∑

c=1

(
g
(c)
j (z)Qc(z)P (z)/Pj(z)

)
mod P (z),

so that gj(z) ≡ g
(c)
j (z) mod P (z) for each j. Then define v1 = (1, g2(z), . . . ,

g`−1(z))/P (z), vj(z) = ej(z) for j ≥ 2, w1(z) = (P (z), 0, . . . , 0)t, and
wj(z) = ej − gj(z)e1 for j ≥ 2, as before. Under the assumption that the
Pc(z)’s are pairwise relatively prime, the proof of Proposition 4.13 of Lemieux and
L’Ecuyer (2002), which is an expanded version of Lemieux and L’Ecuyer (2003),
implies the following result:

Proposition 1. The vectors v1, . . . ,v` form a basis of L` and w1, . . . ,w` are a
basis of the dual lattice L∗` .
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This way of doing most of the computations for the components separately before
putting the results together is more efficient than working directly with the combined
generator, especially if the components are much smaller than the combination.

5. Specific Classes of Generators

5.1 The LFSR Generator

The Tausworthe or linear feedback shift register (LFSR) generator (Tausworthe
1965, L’Ecuyer 1996, Tezuka 1995) is defined by a linear recurrence modulo 2,
from which a block of w bits is taken every s steps, for some positive integers w and
s:

xn = a1xn−1 + · · ·+ akxn−k, (6)

un =
w∑

`=1

xns+`−12−`. (7)

where a1, . . . , ak are in F2 and ak = 1. This fits our framework by taking A =
(A0)s (in F2) where

A0 =


1

. . .
1

ak ak−1 . . . a1

 , (8)

and blank entries in this matrix are zeros (we use that convention in this paper). If
w ≤ k, the matrix B would contain the first w rows of the k × k identity matrix.
However, we may also have w > k, in particular when implementing an LFSR used
as a component of a combined generator. In that case, it is convenient to expand A
into a w × w matrix with the same minimal polynomial (of degree k), as follows:
For j = 1, . . . , w − k, add the row (a(j)

1 , . . . , a
(j)
k ), where the coefficients a

(j)
i are

such that xn+j = a
(j)
1 xn−1 + · · ·+ a

(j)
k xn−k. This can be done in the same way as

when we build the matrix Mq in Section 3. Then, we add w − k columns of zeros.
Note that P (z) is the characteristic polynomial of the matrix A = (A0)s, not

that of the recurrence (6), and the choice of s is important for determining the qual-
ity of this generator. A frequently encountered case is when a single aj is nonzero
in addition to ak; then, the characteristic polynomial of A0 is a trinomial and we
have a trinomial-based LFSR generator. Typically, s is small to make the imple-
mentation efficient. These trinomial-based generators are known to have important
statistical weaknesses (Matsumoto and Kurita 1996, Tezuka 1995) but they can
be used as components of combined RNGs (Tezuka and L’Ecuyer 1991, Wang and
Compagner 1993, L’Ecuyer 1996). They also enjoy the important properties of
being resolution-stationary (Panneton and L’Ecuyer 2007). Tables of specific pa-
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rameters for maximally equidistributed combined LFSR generators, together with
concrete implementations for 32-bit and 64-bit computers, can be found in L’Ecuyer
(1999a). These generators are amongst the fastest ones currently available.

To show how an LFSR generator can be implemented efficiently, we outline an
algorithm for the following situation. Suppose that aj = 1 for j ∈ {j1, . . . , jd} and
aj = 0 otherwise, with k/2 ≤ j1 < · · · < jd = k ≤ w and 0 < s ≤ j1. We
work directly with the w-bit vectors yn = (xns, . . . , xns+w−1), assuming that w
is the computer’s word length. Under these conditions, a left shift of yn by k − ji

bits, denoted yn � (k− ji), gives a vector that contains the first w− k + ji bits of
yn+k−ji followed by k − ji zeros (for i = d, ji = k so there is no shift). Adding
these d shifted vectors by a bitwise xor, for j = 1, . . . , d, gives a vector ỹ that
contains the first w− k + j1 bits of yn+k = yn+k−j1 ⊕ · · · ⊕yn+k−jd

followed by
k − j1 other bits (which do not matter). Now we shift ỹ by k − s positions to the
right, denoted ỹ � (k − s); this gives k − s zeros followed by the last w − k + s
bits of yn+s (the k − j1 bits that do not matter have disappeared, because s ≥ j1).
Zeroing the last w − k bits of yn and then shifting it to the left by s bits gives the
first k − s bits of yn+s. Adding this to ỹ then gives yn+s. This is summarized by
the following algorithm, in which & denotes a bitwise “and” and mask contains k
1’s followed by w − k 0’s.

Algorithm L
{ One step of a simple LFSR generator }
ỹ = yn;
For i = 2, . . . , d, ỹ = ỹ ⊕ (yn � (k − ji));
yn+s = (ỹ � (k − s))⊕ ((yn& mask) � s);

For this to work properly, we must make sure that y0 is initialized to a valid state,
i.e., that the values xk, . . . , xw−1 satisfy the recurrence xj = a1xj−1+· · ·+akxj−k

for j = k, . . . , w−1. We can take (x0, . . . , xk−1) as an arbitrary nonzero vector, and
then simply compute xk, . . . , xw−1 from the recurrence. L’Ecuyer (1996) explains
how to implement this.

5.2 The GFSR, Twisted GFSR, and Mersenne Twister

Here we suppose that A is a pq × pq matrix with the general form

A =


S1 S2 Sq−1 Sq

Ip

Ip

. . .
Ip


for some positive integers p and q, where Ip is the p×p identity matrix, and each Sj

is a p×p matrix. Often, w = p and B contains the first w rows of the pq×pq identity
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matrix. If Sr = Sq = Ip for some r and all the other Sj’s are zero, this generator
is the trinomial-based generalized feedback shift register (GFSR), for which xn is
obtained by a bitwise exclusive-or of xn−r and xn−q and where xn gives the w bits
of un (Lewis and Payne 1973). This provides an extremely fast RNG. However,
its period cannot exceed 2q − 1, because each bit of xn follows the same binary
recurrence of order k = q, with characteristic polynomial P (z) = zq − zq−r − 1.

More generally, we can define xn as the bitwise exclusive-or of xn−r1 ,xn−r2 ,
. . . ,xn−rd

where rd = q, so that each bit of xn follows a recurrence in F2 whose
characteristic polynomial P (z) has d+1 nonzero terms. This corresponds to taking
Sj = Ip for j ∈ {r1, . . . , rd} and Sj = 0 otherwise. However, the period is still
bounded by 2q − 1, whereas considering the pq-bit state, we should expect a period
close to 2pq. This was the main motivation for the twisted GFSR (TGFSR) generator.
In the original version introduced by Matsumoto and Kurita (1992), w = p, Sq is
defined as the transpose of A0 in (8) with k replaced by p, Sr = Ip, and all the other
Sj’s are zero. The characteristic polynomial of A is then P (z) = PS(zq + zq−r),
where PS(ζ) = ζp − apζ

p−1 − · · · − a1 is the characteristic polynomial of Sq, and
its degree is k = pq. If the parameters are selected so that P (z) is primitive over
F2, then the TGFSR has period 2k − 1. Matsumoto and Kurita (1994) pointed out
important weaknesses of the original TGFSR, for which B contains the first rows
of the identity matrix, and introduced an improved version that uses a well-chosen
matrix B whose rows differ from those of the identity. The operations implemented
by this matrix are called tempering and their purpose is to improve the uniformity
of the points produced by the RNG. To our knowledge, this was the first version of
an F2-linear RNG with a B that differs from the truncated identity.

The Mersenne twister (Matsumoto and Nishimura 1998, Nishimura 2000) (MT)
is a variant of the TGFSR where k is slightly less than pq and can be a prime number.
It uses a pq-bit vector to store the k-bit state, where k = pq − r is selected so that
r < p and 2k−1 is a Mersenne prime. The matrix A is a (pq− r)× (pq− r) matrix
similar to that of the TGFSR and the implementation is also quite similar. The main
reason for using a k of that form is to simplify the search for primitive characteristic
polynomials (see Algorithm P). If we take k = pq, then we know that we cannot
have a Mersenne prime because 2pq − 1 is divisible by 2p− 1 and 2q − 1. A specific
instance proposed by Matsumoto and Nishimura (1998), and named MT19937, has
become quite popular; it is fast and has the huge period of 219937 − 1.

A weakness of this RNG is underlined and illustrated in Panneton et al. (2006):
if the generator starts in (or reaches) a state that has very few ones, it may take
up to several hundred thousand steps before the ratio of ones in the output and/or
the average output value are approximately 1/2. For example, for MT19937, if we
average the output values at steps n + 1 to n + 100 (a moving average) and average
this over all 19937 initial states x0 that have a single bit at one, then we need at least
n > 700, 000 before the average gets close to 1/2, as it should (this is graphically
illustrated in Panneton et al. (2006)). Likewise, if two states differ by a single bit, or
by only a few bits, a very large number of steps are required on average before the
states or the outputs differ by about half of their bits. The source of the problem is
that this RNG has a (huge) 19937-bit state and very few of these bits are modified
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from one step to the next, as explained near the end of Section 3; it has only N1 =
135 nonzero coefficients out of 19938 in its characteristic polynomial. Moreover,
the figure of merit ∆̃1 takes the large value 6750 for this generator.

It has been proved that the TGFSR and Mersenne twister construction methods
used in Matsumoto and Kurita (1994), Matsumoto and Nishimura (1998) cannot
provide ME generators in general. They typically have large equidistribution gaps.
But combining them via a bitwise xor can yield generators with the ME property.
Concrete examples of ME combined TGFSR generators with periods around 2466

and 21250 are given in L’Ecuyer and Panneton (2002). These generators have the
additional property that the resolution gaps δI are also zero for a class of index sets
I of small cardinality and whose elements are not too far apart. Of course, they are
somewhat slower than their original (uncombined) counterparts.

5.3 The WELL RNGs

These RNGs were developed by Panneton (2004) and are described by Panneton
et al. (2006). The idea was to “sprinkle” a small number of very simple operations
on w-bit words (where w is taken as the size of the computer word), such as xor,
shift, bit mask, etc., into the matrix A in a way that the resulting RNG satisfied the
following requirements: (1) it has maximal period, (2) it runs about as fast as the
Mersenne twister, and (3) it also has the best possible equidistribution properties,
and a characteristic polynomial with around 50% nonzero coefficients.

The state xn = (vt
n,0, . . . ,v

t
n,r−1)

t is comprised of r blocks of w = 32 bits
vn,j , and the recurrence is defined by a set of linear transformations that apply to
these blocks, as described in Panneton et al. (2006). Essentially, the transformations
modify vn,0 and vn,1 by using several of the other blocks. They are selected so that
P (z), a polynomial of degree k = rw−p, is primitive over F2. The output is defined
by yn = vn,0.

The authors list specific parameters for WELL generators with periods ranging
from 2512−1 to 244497−1. Many of them are ME and the others are nearly ME. Their
characteristic polynomials have nearly 50% coefficients equal to 1. These RNGs
have much better diffusion capacity than the Mersenne twister and have comparable
speed.

5.4 Xorshift Generators

Marsaglia (2003) proposed a class of very fast RNGs whose recurrence can be im-
plemented by a small number of xorshift operations only, where a xorshift operation
consists of replacing a w-bit block in the state by a (left or right) shifted version of
itself (by a positions, where 0 < a < w) xored with the original block. The con-
stant w is the computer’s word size (usually 32 or 64). The specific generators he
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proposed in his paper use three xorshift operations at each step. As it turns out,
xorshifts are linear operations so these generators fit our F2-linear setting.

Panneton and L’Ecuyer (2005) analyzed the theoretical properties of a general
class of xorshift generators that contains those proposed by Marsaglia. They studied
maximal-period conditions, limits on the equidistribution, and submitted xorshift
generators to empirical statistical testing. They concluded that three-xorshift gener-
ators are unsafe and came up with generators based on 7 and 13 xorshifts, whose
speed is only 20% slower than those with three xorshifts to generate U(0, 1) num-
bers. Aside from the tests that detect F2-linearity, these RNGs pass other standard
statistical tests.

Brent (2004) proposed a family of generators that combine a xorshift RNG with
a Weyl generator. The resulting generator is no longer F2-linear and it behaves well
empirically (L’Ecuyer and Simard 2007).

5.5 Linear Recurrences in F2w

Fix a positive integer w (e.g., w = 32) and let q = 2w. Panneton (2004) and Pan-
neton and L’Ecuyer (2004) consider fast RNGs based on recurrences in the finite
field Fq, which can be written as

mn = b1mn−1 + · · ·+ brmn−r

for some integer r, where the arithmetic is performed in Fq. The maximal period
ρ = 2rw − 1 is reached if and only if P̃ (z) = zr − b1z

r−1 − · · · − br−1z − br is a
primitive polynomial over Fq.

To implement this recurrence, these authors select an algebraic element ζ of Fq,
take {1, ζ, . . . , ζr−1} as a basis of Fq over F2, and represent the elements mn =
vn,0+vn,1ζ+· · ·+vn,w−1ζ

w−1 of Fq by the bit vectors vn = (vn,0, vn,1, . . . , vn,w−1)t.
The state of the RNG is thus represented by a rw-bit vector and the output is con-
structed as in (3), from the bits of vn. (More generally, one could define the output
by taking yn = (vn,vn−1, . . . ,vn−r+1) for some r ≥ 1.) This construction fits
our F2-linear framework (1)–(3) and generalizes the TGFSR generators. Panneton
and L’Ecuyer (2004) call them LFSR generators in F2w .

The same authors also propose a slightly different construction called polynomial
LCG in F2w , based on the recurrence

qn(z) = zqn−1(z) mod P̃ (z)

in Fq[z] (the ring of polynomials with coefficients in Fq), where P̃ (z) ∈ Fq[z] is a
primitive polynomial. To implement this, each coefficient of qn(z) is represented by
a w-bit vector just as for mn and the output is defined in a similar way. Again, this
fits the F2-linear framework (1)–(3).

Panneton (2004) (see also Panneton and L’Ecuyer 2005) goes further by proving
certain properties of the equidistribution of these RNGs. For instance, he shows that
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if P̃ (z) is irreducible over Fq and can be written as

P̃ (z) = p0(z) + ζp1(z) + · · ·+ ζγpγ(z)

where each pi(z) is in F2[z], then the RNG cannot be t-distributed with ` bits of
accuracy if t > r and ` > γ. As a corollary, since the TGFSR has P̃ (z) = p0(z) +
ζp1(z), it cannot be t-distributed with more than a single bit of accuracy in any
dimension t > r. He also shows that if P̃ (z) is irreducible over Fq and has at least
three nonzero coefficients, then among the 2rw−1 two-dimensional point sets Ψ{0,j}
where 1 ≤ j < 2kw, exactly 2w−1 are not 2-distributed with w bits of accuracy. For
example, if w = 32 and r = 25 (so k = 800), only one two-dimensional projection
out of 2768 is not equidistributed!

Panneton (2004) and Panneton and L’Ecuyer (2004) propose tables of good pa-
rameters for LFSRs and polynomial LCGs in Fq. These parameters were found by
computer searches based on the figure of merit ∆̃1. They also provide concrete im-
plementations in the C language. These implementations are fast, comparable to the
Mersenne twister for instance, but one drawback is that they use precomputed mul-
tiplication tables that require a non-negligible amount of memory. (In the case of
multiple streams, a single copy of the tables is shared by all the streams.) The out-
put transformation by a non-trivial matrix B is integrated into these multiplication
tables to improve the efficiency.

6. Speed and Performance in Statistical Tests

6.1 Speed Comparisons

Table 1 reports the speed of some RNGs available in the Java-based SSJ simulation
package (L’Ecuyer and Buist 2005). The timings are for the SSJ implementation
(with SUN’s JDK 1.6) and a C implementations, both on a 2.4 GHz 64-bit AMD-
Athlon computer and on a 2.8 GHz 32-bit Intel processor. The first and second
columns of the table give the generator’s name and its approximate period. All these
generators are implemented for a 32-bit computer, although the C implementation
of the two MRG generators (last two lines) used on the 64-bit computer was dif-
ferent; it exploits the 64-bit arithmetic, which explains the large speed gains. The
SSJ implementations of all generators have more overhead because they support
multiple streams, can generate either integers or real numbers, etc. We estimate this
overhead at about 10 to 20 percent in general, but there are cases where it is higher
than that. The jumping ahead in SSJ is implemented via a multiplication by Aν as
explained in Section 2.2. For the combined LFSR generators, the linear recurrence
that corresponds to the matrix Aν is implemented directly using the algorithm of
Section 5.1, for each component of the combination. It is much faster for this rea-
son. Columns 3 and 4 of the table give the CPU times (sec) to generate 109 random
numbers and add them up, on the 64-bit (gen. 64) and 32-bit (gen. 32) computers,
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respectively. Column 5 gives the CPU time needed to jump ahead 106 times by a
very large number of steps (to get a new stream), in SSJ, on the 64-bit computer.
For comparison, columns 6 and 7 give the times to generate 109 numbers with the C
implementation available in TestU01 (L’Ecuyer and Simard 2007), also on the 64-
bit and 32-bit computers. The difference in speed between Java and C depends on
the performance of the Java interpreter or just-in-time compiler; we have observed
a significant difference between JDK 1.5 and 1.6, for example.

The first five RNGs are F2-linear and the last two are combined multiple recur-
sive generators (MRGs). The first two are combined LFSRs proposed by L’Ecuyer
(1999a) for 32-bit and 64-bit computers, with four and five components, respec-
tively. The two WELL RNGs are proposed in Panneton et al. (2006). Other WELL
generators with much longer periods (up to nearly 244497) proposed in that paper
have approximately the same speed as those given here to generate random num-
bers, but are much slower than WELL1024 for jumping ahead because of their
larger value of k. For the Mersenne twister MT19937, proposed by Matsumoto
and Nishimura (1998), jumping ahead is also too slow and is not implemented in
SSJ. All these F2-linear RNGs have roughly the same speed for generating random
numbers. Other ones with about the same speed are also proposed by Panneton and
L’Ecuyer (2004) and Matsumoto and Kurita (1994), e.g., with periods near 2800. It
is interesting to note that in additional experiments in Java without the streams and
substreams, on the 32-bit computer, the LFSR113 took 39 seconds, the same as in
C. It took 17 seconds on the 64-bit computer, compared with 10 seconds in C.

Table 1 CPU time (sec) to generate 109 random numbers, and CPU time to jump ahead 106 times,
with some RNGs available in SSJ

RNG ρ ≈ CPU time in SSJ (Java) CPU time in C
gen. 64 gen. 32 jump gen. 64 gen. 32

LFSR113 2113 20 70 0.1 10 39
LFSR258 2258 22 105 0.2 12 58
WELL512 2512 24 57 234 12 38
WELL1024 21024 30 55 917 11 37
MT19937 219937 33 51 — 16 42
MRG31k3p 2185 48 60 0.9 21 71
MRG32k3a 2191 65 93 1.1 21 99

The timings of the two MRGs in the table are reported for comparison. The first
one (MRG31k3p) was proposed by L’Ecuyer and Touzin (2000) while the second
one (MRG32k3a) was proposed by L’Ecuyer (1999b) and is used in several simu-
lation packages to provide multiple streams and substreams. This latter RNG has
been heavily tested over the years and is very robust. On the other hand, the F2-
linear generators are faster.
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6.2 Statistical Testing

All the RNGs in Table 1 have been submitted to empirical statistical testing using the
batteries Smallcrush, Crush, and Bigcrush of the TestU01 package (L’Ecuyer and
Simard 2007). They passed all the tests in these batteries with the following notable
exceptions: All F2-linear generators fail the tests that look for linear relationships in
the sequences of bits they produce, namely, the matrix-rank test (Marsaglia 1985)
for huge binary matrices and the linear complexity tests (Erdmann 1992). The rea-
son for this general failure is obvious: We know from their definitions that these
generators produce bit sequences that obey linear recurrences, so they cannot have
the linear complexity of a truly random sequence. This is definitely a limitation of
these RNGs. But whenever the bit sequences are transformed nonlinearly by the ap-
plication (e.g., to generate real-valued random numbers from non-uniform distribu-
tions), the linear relationships between the bits usually disappear, and the linearity is
then very unlikely to cause a problem. For situations where simulation results can be
noticeably affected by the linear dependencies among the bits, to make these RNGs
safer without slowing them down too much, we could either combine them with
a generator from another class (such as an MRG, for instance), or combine them
with a small nonlinear RNG implemented via precomputed tables as suggested by
L’Ecuyer and Granger-Piché (2003), or add a nonlinear output transformation that
is fast to compute.

7. Conclusion

F2-linear RNGs are convenient for simulation because they are fast and the high-
dimensional uniformity of their point sets can be measured by theoretical figures
of merit that can be computed efficiently. Combined F2-linear generators with rel-
atively small components have the important advantage of faster jumping-ahead,
because the (smaller) components can be dealt with separately. Some F2-linear gen-
erators proposed in the literature have huge periods, but it is not always true that
larger is better. A huge state has the disadvantage of using more memory (this is
important when there is a large number of streams in a simulation). It also makes
jumping ahead much slower, and it requires more operations to modify a large frac-
tion of the bits in the state. Of course, very long bit sequences produced by F2-linear
generators will always fail statistical tests that measure their linear complexity. This
can be viewed as a weak limitation, which could be overcome by adding a nonlin-
ear output transformation or combining the F2-linear RNG with a generator from
another class.
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