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Abstract. We propose an approach to characterize the behavior of
classes using dynamic coupling distributions. To this end, we propose
a general framework for modeling execution possibilities of a program
by defining a probabilistic model over the inputs that drive the pro-
gram. Because specifying inputs determines a particular execution, this
model defines implicitly a probability distribution over the set of exe-
cutions, and also over the coupling values calculated from them. Our
approach is illustrated through two case studies representing two cate-
gories of programs. In the first case, the number of inputs is fixed (batch
and command line programs) whereas, in the second case, the number
of inputs is variable (interactive programs).
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1 Introduction

Program comprehension is an essential phase in software maintenance [7]. To
implement new changes, software engineers have to acquire abstract knowledge
on, among others, the program structure and the behavior, and the relationships
among its elements [4]. This abstract knowledge helps relating a program im-
plementation to conceptual knowledge about the application domain and, hence
locates the elements affected by a change request. Understanding a complex
program is similar to exploring a large city 1. In both cases, having good maps
(abstractions) facilitates considerably the comprehension. For cities, there is a
good knowledge on what kind of useful information should be abstracted on maps
such as streets, transportation indications, landmarks, etc. Landmarks (monu-
ments, important buildings, train stations), for example, are used as references
to quickly situate secondary elements. For software comprehension, the idea of
landmarks was also used. Indeed in [11] and [13], key classes are identified to
serve as starting points for program comprehension.

The identification of comprehension starting points is often based on cou-
pling [11, 13]. The rationale behind this decision is that elements that are tightly

1 Leon Moonen, Building a Better Map: Wayfinding in Software Systems. Keynote
talk, ICPC 2011.



coupled to other elements are likely to implement the most important concepts of
a program. Coupling can be estimated from a static analysis of the source code,
independently of any execution, i.e., static coupling. However, this method could
significantly over or under-estimate the coupling due to dynamic features such
as polymorphism or dynamic class loading [1].

On the other hand, actual coupling between software elements could be cap-
tured at run time by a dynamic analysis, i.e., considering what actually hap-
pens during the execution [2, 12]. Thus, different executions of the same program
usually lead to different values of the dynamic coupling. But then, from which
execution(s) should the metric be computed? To circumvent the generalization
issue, Arisholm et al. [2], pick an arbitrary set of executions and take the average
of the coupling value over these executions. Similarly, Yacoub et al. [12] assign
probabilities to a finite set of execution scenarios, compute the dynamic coupling
for each scenario, and take the weighted average across scenarios as their final
measure, where the weights are the probabilities. This represents the mathemat-
ical expectation of the metric under a probabilistic model where the number of
possible realizations is finite. Such derivation methods certainly make sense if
the set of chosen executions (and weights in the case of [12]) are representative
of the variety of executions likely to be encountered when running the program.
However, in practice, the number of possible executions is often extremely large,
even infinite, and it may be difficult to directly assign a probability to each one.
Moreover, perhaps more importantly, considering only a single value (or average)
of coupling (static or dynamic) can hide a large amount of useful information
on the variability of a class’s behavior.

The purpose of this paper is to describe an approach for characterizing class
behavior using dynamic coupling distributions. To this end, we propose a general
framework to model execution possibilities by defining a probabilistic model over
the inputs that drive the program. Because specifying the inputs determines a
particular execution, this model defines implicitly a probability distribution over
the set of executions, and also over the set of coupling values. In such a model,
the distribution of the coupling values is in general too complicated to be closely
approximated numerically, but it can be estimated via Monte Carlo simulation.
Our approach is illustrated through two case studies representing two categories
of programs. In the first case, the number of inputs is fixed (batch and command
line programs) whereas, in the second case, the number of inputs is variable
(interactive programs).

The remainder of this paper is organized as follows. In Section 2, we define
how the probabilistic model is used to derive class coupling distributions over the
executions. Then, Section 3 explains how a coupling distribution can be used to
give insights of a class’s behavior. In section 4, we illustrate our approach using
two case studies corresponding to two categories of programs. Our approach is
discussed and contrasted with the related work in Section 5. Finally, concluding
remarks are given in Section 6.



2 Portraying Class Coupling

2.1 Approach Overview

When using deterministic algorithms, computer programs are driven by a set of
external inputs that normally determine the entire execution sequence. We con-
sider a computer program made up of several classes, say in Java for example,
and a dynamic coupling metric at the class level whose value depends on the
realizations of the input variables given to the program (see Figure 1). The total
number of possibilities for these inputs (and then for the possible executions) is
typically much too large to allow an explicit enumeration. Here we propose to
define a probability distribution over the space of possible inputs. Once this dis-
tribution is determined, it can be used to generate representative sets of inputs.
The coupling values corresponding to these inputs represent then the basis for
the estimation of the coupling distribution of a class over the possible executions.

Input 
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Fig. 1. Approach overview.

2.2 Probabilistic Models for Input Data Generation

We consider two cases for how these input variables are defined or specified
depending on the nature of programs:

(a) The number of inputs is fixed to d (a positive integer) and these inputs are
represented by a random vector X = (X1, . . . , Xd). This case of inputs is
found generally in batch and command-line programs where a set of param-
eters are specified for each execution.

(b) The number of inputs is variable (random) and the successive inputs can be
seen as functions of the successive states of a Markov chain. This is the case
of programs with interactions with a user or with the outside environment,
where the probability distribution of the next input (and whether there is



a next input or not) often depends on the values of the inputs that have
already been given to the program so far.

Inputs Defined as a Random Vector. In the case of a random vector X =
(X1, . . . , Xd) ∈ Rd, the input values can be given to the program before it starts
its execution. In this model, we assume that X is a random vector with an
arbitrary multivariate distribution over Rd. This distribution could be discrete,
continuous, or mixed, in the sense that for example some coordinates of X might
have a normal or exponential distribution while others might take only integer
values, or perhaps only binary values (0 and 1). The inputs, i.e., coordinates of
X, are not assumed to be independent in general, but the situation where they
are independent is a possibility; this is the simplest special case.

The multivariate random vector X has distribution F if for any x = (x1, . . . , xd)
∈ Rd, we have F (x) = P[X ≤ x] = P[X1 ≤ x1, . . . , Xd ≤ xd]. The jth marginal
distribution function is defined by Fj(xj) = P[Xj ≤ xj ]. The random variables
X1, . . . , Xd are independent if and only if F (X1, . . . , Xd) = F1(x1) . . . Fd(xd) for
all x ∈ Rd. When X1, . . . , Xd are not independent, a general way of specifying
their joint (multivariate) distribution is via a copula [3].

A copula consists in specifying first a d-dimensional distribution whose marginals
are uniform over the interval (0, 1), but not independent in general. This distri-
bution is called a copula (or dependence function). If U = (U1, . . . , Ud) denotes
a random variable having this distribution, then for each j, we define

Xj = F−1j (Uj) = inf{x : Fj(x) ≥ Uj}.

The vector X = (X1, . . . , Xd) then has a multivariate distribution with the
required marginals Fj , and a dependence structure determined by the choice
of copula. That is, the marginal distributions are specified separately from the
marginals. It is well known that any multivariate distribution can be specified
in this way. Specific techniques for selecting a copula and generating random
vectors from it are explained in [3, 6], for example.

This case of input variables is found generally in batch and command-line
programs where a set of parameters are specified for each execution. For example,
when running lpr command in Linux, one should specify the printer name, the
username, the number of copies, etc. When a parameter is not specified, e.g.,
the printer name, this does not mean that one input is missing. It simply means
that the default value will be used, here the default printer. Thus, the size of the
input vector is always the same.

Inputs Modeled by a Markov Chain. The majority of programs nowadays
do not have a fixed number of inputs, but the number of inputs (and their types)
are themselves random variables. Consider for example, a program with a set
of functions, each performed in a number of steps. Each step requires a certain
number of parameters. The state of the execution (function and step) impacts
the probability that a particular parameter is required, and if yes, the probability



that this parameter takes a specific value. This is particularly true for programs
that interact with a user or with the outside environment, where the probability
distribution of the next input (and whether there is a next input or not) often
depends on the values of the inputs that have already been given to the program
so far. In this type of situation, the input process can be modeled naturally as
a discrete-time Markov chain.

A naive way of specifying such a discrete-time Markov chain model would be
to assume that {Xj , j ≥ 0} is a Markov chain over the set of real numbers (or a
subset thereof), where Xj represents the jth input to the program. However, this
is not realistic, because the next input Xj+1 usually depends not only on Xj ,
but also on the values of the previous inputs. Therefore, the process {Xj , j ≥ 0}
thus defined would not be a Markov chain.

A proper way to get around this problem is to model the input process by
a Markov chain {Sj , j ≥ 0} whose state Sj at step j contains more information
than just Xj . Such a Markov chain can be defined by a stochastic recurrence of
the form Sj = γj(Sj−1, Xj), for some transition functions γj , and the jth input
Xj is assumed to have a probability distribution that depends on Sj−1, and to
be independent of X0, . . . , Xj−1 conditional on Sj−1. This assumption ensures
that {Sj , j ≥ 0} is a Markov chain, which means that whenever we know the
state Sj , knowing also S0, . . . , Sj−1 brings no additional useful information for
predicting the behavior of any X` or S` for ` > j. We also assume that this
Markov chain has a random stopping time τ defined as the first time when the
chain hits a given set of states ∆: τ = inf{j ≥ 0 : Sj ∈ ∆}. This τ represents
the (random) number of inputs that the program requires.

Another interesting example where Markov chains are used to model the
inputs of a software is described in [14]. In this work, the interaction with a web
site is defined as a set of mouse clicks on links corresponding to the URLs of
Web-site pages. The probability that a particular page is accessed depends on
the other pages already accessed, i.e., previous inputs. The Markov-chain model
is used to measure the navigability of Web sites.

2.3 Dynamic-Coupling Distribution Estimation

Case of Random Vector. A dynamic metric ϕ can be seen as a function
that assigns a real number to any possible execution of the program. But since
the realized execution depends only on the realization of X, we can view the
metric as a function of X, and write ϕ : Rd → R. Then, Y = ϕ(X) is a real-
valued random variable whose distribution depends on the distribution of X,
perhaps in a complicated way. Thus, the distribution of Y will not be known
explicitly in general. However, we can use Monte Carlo simulation to estimate
this distribution. It consists in generating n independent realizations of X, say
X1, . . . ,Xn, and then computing the n corresponding realizations of Y , say
Y1, . . . , Yn. Then the empirical distribution of Y1, . . . , Yn is used to estimate
the true distribution of Y . As a byproduct, it permits one to estimate certain
summary characteristics of this distribution, such as the mean, the variance,
etc., and to compute confidence intervals on these numbers [9].



For example, one can estimate µ = E[Y ], the mean of Y , by the sample
average Ȳn =

∑n
i=1 Yi. To assess the accuracy of this estimator, one can also

compute a confidence interval on µ, which is a random interval of the form
[I1, I2] where I1 and I2 are two random borders defined so that
P[I1 ≤ µ ≤ I2] ≈ 1 − α where 1 − α is a preselected confidence level. For
example, if we assume that Ȳn has a normal distribution (which is practically
never exactly true but can be a good approximation when n is large, thanks to
the central limit theorem), then the confidence interval has the form

[Ȳn − z1−α/2Sn/
√
n, Ȳn + z1−α/2Sn/

√
n] (1)

where Sn is the sample standard deviation of Y1, . . . , Yn and z1−α/2 satisfies
P[Z ≤ z1−α/2] = 1−α/2, where Z is a standard normal random variable. Other
techniques, such as bootstrap methods, for example, can be used when we think
that the distribution of Ȳn might not be close to normal. Confidence intervals on
other quantities than the mean (for example, the variance of Y , or the correlation
between two different metrics), can be computed in similar ways.

Of course, the whole empirical distribution itself always conveys more infor-
mation for behavior understanding than the estimates of any of these statistics.
For this reason, it is generally better in our opinion to study this distribution (for
example in the form of a histogram) rather than (or in addition to) interprete,
say, the average Ȳn = (Y1 + · · · + Yn)/n together with a confidence interval on
the mathematical expectation E[Y ].

Case of Markov Chain. A dynamic metric here is defined as a function ϕ
which assigns a real number Y = ϕ(S0, S1, . . . , Sτ , τ) ∈ R to each realization
(S0, S1, . . . , Sτ , τ).

Again, if the Markov chain model is fully specified, we can simulate it and
estimate the distribution of Y by the empirical distribution of n independent
realizations Y1, . . . , Yn, in the same way as in the random vector case.

2.4 Examples of Coupling Distributions

When considering dynamic coupling, different executions, corresponding to dif-
ferent inputs, could lead to different interactions between the considered class
and the other elements of a program. Consequently, each execution results in a
particular coupling value. After performing a relatively large sample of execu-
tions defined by the distribution of the inputs, those executions could be grouped
according to their coupling values, which defines a distribution.

We conjecture that there is a causality chain between the input, the behav-
ior, and the coupling value. Indeed, the input values may impact the execution
control flow, i.e., the class’s behavior, which may lead to variations in the in-
teractions between objects, and then in the class’s coupling value. Note that
variations in the interactions do not necessarily mean changes in the coupling
value. The same value could be the result of different interaction sets. In the
following paragraphs, we show examples of regular distributions that could be



obtained. We discuss them in the basis of our conjecture. The relationship be-
tween the coupling values and the behavior will be discussed in Section 3.

Single-Bar Distribution This situation occurs when the class has
the same coupling regardless of the inputs.

Exponential-like Distribution In this distribution, the lowest
coupling value is obtained by the highest number of executions. Then the fre-
quency of executions decreases as the coupling increases.

Normal-like Distribution This is another variation of the previ-
ous distributions. The distribution mode corresponds to a middle coupling value.
The frequency of execution decreases gradually as the coupling value increases
or decreases.

Multimodal Distribution Classes having this kind of distribu-
tion do not have a clear pattern for the frequency change with respect to the
coupling change. When the coupling values have equal or close frequencies, the
distribution takes the shape of a uniform distribution.

3 Understanding a Class’s Behavior

3.1 Class Behavior

In the object-oriented programming paradigm, objects interact together in order
to achieve different functionalities of a given program. Typically, the behavior of
a program corresponds to the set of the implemented use cases. Each use case
could have different scenarios depending on the inputs. Consider, for example,
the use case of borrowing books in a library loan management system. The fre-
quent and main scenario is to identify the reader, check his record, and register
the loan. This scenario could be extended (extend relationship) by renewing the
membership prior to the loan, for example, or truncated if the borrower ex-
ceeds the allowed number of books or if the concerned book cannot be borrowed
(violation of use-case scenario preconditions).

These variations at the program level are reflected at the class level. As classes
implement services that contribute to use cases. An alternative use-case scenario
could require an additional service, do not use a service or use a variation of a
service with respect to the main scenario. For example, when the loan is not
registered, class Book will not decrease the number of available book copies.
Therefore, a class could offer one or more services, each with possible variations.
For a particular use case, the main scenario is the most frequently executed which
in turn define a main and frequent contribution of a given class in this scenario.
This contribution could vary according to the use case alternative scenarios.

3.2 Relating Coupling Distributions to Class Behavior

As mentioned earlier, we conjecture that there is a causality chain between the
inputs, the class’s behavior and the class’s dynamic coupling. According to our



probabilistic setting defined in Section 2, a set of representative executions is
defined by the set of representative inputs. The execution sample produces a
practical coupling distribution for each class of the program. The goal of our
work is to use this distribution to understand the behavior of a class. Under-
standing a class’s behavior in our setting means that we could identify the main
behavior and its variations by looking at its coupling distribution. Relating the
coupling distribution to the behavior is only valid if we accept the three following
hypothesis:

H1: the same behavior results in the same coupling value and con-
versely : A class that executes one or many services in different executions cor-
responding to the same use-case scenarios will produce the same, or very close,
coupling values. Conversely, two equal or very close coupling values correspond-
ing to two executions indicate that these executions are likely to trigger the same
class behavior.

H2: an extended behavior generates more or equal coupling than
the original one : When an alternative scenario AS extends a main scenario
MS, the coupling value corresponding to AS is at least equal to the one of MS.
This means that (almost) all the interactions in MS remain in AS and that the
extension could add new interactions.

H3: a truncated behavior generates less or equal coupling than the
original one : When an alternative scenario AS is executed because of a pre-
condition violation of the main scenario, the coupling value corresponding to AS
is at most equal to the one of MS. This could be explained by the fact that most
of the behavior of MS is not performed, which may cancel many interactions.

The above-mentioned hypotheses could be assessed automatically for any
studied system. It is possible to check if executions belonging to the same block,
i.e., having the same coupling value, trigger the same set of method calls 2. It
is also possible to evaluate the similarity between executions belonging to con-
tiguous blocks, corresponding to two successive coupling values. In the following
paragraphs, we propose intra and inter-block similarity measures to group exe-
cutions by behavior based on coupling.

Intra-block similarity or internal similarity is measured by evaluating the
diversity of method calls inside the block. Formally, for a block b of executions
having a coupling value cb, the internal similarity is defined as IS(b) = cb/nb,
where nb is the number of different method calls observed in all the executions of
b. The ideal situation (IS(b) = 1) is that all the executions in b trigger the same
set of method calls. In that case, cb = nb. The more the values are close to 1, the
more we consider that executions reflect the same behavior. If we assume that
executions belonging to the same block concern the same behavior, the next
step is to identify if contiguous blocks have the same behavior, thus forming
a behavior region, or if an important modification is observed. Modifications

2 For the sake of simplicity, we consider in this section that coupling between classes is
the total of different afferent and efferent method calls. The similarity measures of the
following paragraphs could be easily adapted to other dynamic coupling measures.



include transitions from a truncated scenario to the main scenario within the
same use case, main-scenario extension, and use case change.

Inter-block similarity or external similarity allows to measure the dif-
ference in behavior between execution blocks. In a first step, it is important to
identify methods calls that are relevant in an execution block to exclude marginal
calls that represent non significant behavior variations. Relevant method calls
are those that appear in the majority of the executions of a block b. A method
call a is said to be relevant for a block b if it appears in at least n percent of the
executions in b. n is a threshold parameter, usually set to 50% (half of the block
executions). Once the set Rel(b) of relevant method calls are identified for each
block b, the following step is to determine the behavior regions by comparing
contiguous blocks recursively. The first block b1 (the one with the lowest cou-
pling value) is automatically included in the first region R1. Then for each block
bi, i > 1, we evaluate its similarity with the region Rj containing the previous
blocks. If the similarity is above a given threshold value, then bi is assigned to
the same region Rj , if not, it forms a new region Rj+1. External similarity is
calculated as follows:

ES(Rj , bi) =
|Rel(Rj) ∩Rel(bi)|
|Rel(Rj) ∪Rel(bi)|

(2)

where Rel(Rj) =
⋂
bk∈Rj

Rel(bk).
When relating the coupling distributions to the behavior, the distribution

examples given in Section 2.4, could be used as behavioral patterns. Single-Bar
distribution defines an Assembly-chain pattern as the concerned class behaves
in the same way regardless of the inputs. Exponential-like distribution is seen as
a Clerk pattern. Like a clerk in an office, the class has one common behavior
(main scenario of a use case), and this common behavior is gradually extended
to deal with exceptional situations (alternative scenarios with extensions within
the same use case). A third pattern plumber corresponds to the Normal-like
distribution. Like for the Clerk, the common behavior is extended in some cases,
but like for a plumber, some interventions do not require to perform this common
behavior. This situation occurs when the main use-case scenario has precondi-
tions that, for some executions, are not satisfied, which results in a truncated
behavior, and then a lower coupling. Finally, we view a Multimodal distribution
as a Secretary pattern. Classes having this kind of distribution are generally
involved in different use cases. The choice of the behavior depends on the inputs,
e.g., utility classes. When the use cases have equal probabilities to be performed,
the coupling distribution is uniform-like.

4 Illustrative Case Studies

4.1 General Setting and Implementation

To illustrate our approach, we present in this section the cases of two small Java
programs: Sudoku (13 classes) and Elevator (eight classes) having inputs that are



modeled by respectively a random vector and a Markov chain. For each program,
we built a probabilistic input model according to the framework of Section 2.
To simulate the inputs from the obtained input models, we have used the Java
library SSJ [5], which stands for Stochastic Simulation in Java, and provides a
wide range of facilities for Monte Carlo simulation in general. For each program,
our simulation generated the input data for a sample of 1000 executions. For
each execution, the inputs were given using a class Robot that simulates the
interaction with the GUI, and a trace was produced using the tool JTracert3.
These traces were then used to calculate the class coupling metrics. For the
sake of generality, we considered a different coupling metric for each program,
IC OM (c) (Import Coupling of a class c for Objects with distinct Methods) for
Sudoku and IC CM (c) (Import Coupling of a class c for Classes with distinct
Methods). The definitions of these dynamic metrics are given in [2]. SSJ was
also used to produce the distribution histograms.

4.2 Case 1: Sudoku Grid Generator

System Description and Input Probabilistic Model. Sudoku grid gener-
ator has 10 inputs. Nine of them are positions in the grid (fixed spots) where
the digits 1 to 9 should be placed. We assume a 9× 9 grid with cells numbered
from 1 (top-left) to 81 (bottom-right). The tenth input is the level of difficulty
of the grid to be generated, in a scale from 1 to 5. Starting from the first nine
inputs, the program generates a grid by filling the remaining 72 cells to produce
a correct solution if one exists. If not, it displays a message indicating that no
solution was found for this input. When a solution is found, the level of difficulty
is used to determine the number of cells to hide when displaying the puzzle.

With respect to our framework, the input vector is X = (X1, . . . , X10)
where X1, . . . , X9 ∈ {1, 2, . . . , 81}, with Xi 6= Xj whenever i 6= j, and X10 ∈
{1, 2, . . . , 5}. Given this space of inputs, the number of possible executions (or
realizations of the input vector) is N = 81×80× . . .×73×5 ≈ 4.73354887×1017.
In our model, we assume that each of those input vector realizations has the same
probability 1/N . This means that the positions of the 9 fixed digits are selected
at random, uniformly and independently, without replacement (so they are all
distinct), and that the level of difficulty is also selected at random, uniformly and
independently of the other inputs. The distribution of the input vector is then
F (X1, . . . , X10) = F1(x1) . . . F10(x10). All F1(x1), . . . , F9(x9) are considered as
uniform. We can reasonably consider that the five levels of difficulty have also
equal chances to be selected (F10(x10) is a uniform distribution).

Distributions and Interpretation. Table 1 summarizes the main findings re-
lated to the coupling distributions. The first observation is that for all classes of
the Sudoku program, the similarity in behavior is very high between executions
producing the same coupling value (average IS per class ranging from 82% to
100%). This indicates that our first hypothesis about the correlation between the

3 http://code.google.com/p/jtracert/



Table 1. Statistics about Sudoku program.

Class Name IS(%) Distribution Regions

Solver 88.71 Exponential-like {b5, b6, b7}, {b8, b9, b11}, {b12, b13,
b14}

Sudoku (main) 96.38 Exponential-like {b4, b5}, {b6, b7, b8}, {b9, b10}
Util 100 Uniform-like {b1}, {b2}, {b3}, {b4}
Valid 90.66 Normal-like {b1, b2}, {b3, b4, b5, b6}, {b7, b8}
GridGenerator 90.67 Exponential-like {b4}, {b5, b6, b7}, {b8, b9, b11}
GridFrame 100 Single Bar {b3}
GridConfiguration 85.20 Exponential-like {b4}, {b5, b6}
Grid 93.42 Normal-like {b1}, {b2, b3, b4}, {b5}
Case 87.25 Uniform-like {b1, b2, b3}
BoxPanel 100 Single Bar {b1}
ButtonPanel 82.66 Exponential-like {b2}, {b3, b4, b5}
InitSquare 100 Single Bar {b3}
GridPanel 88.27 Single Bar {b3, b4}

coupling and the behavior is true in this case. Regarding the distributions, we
found that the 13 classes are instances of the patterns described in Section 3. All
exponential-like distributions include three regions, except for GridConfigura-
tion with two regions. In all cases, the first, which contains the higher number of
executions corresponds to the main scenario of a use case and the other regions
highlight successive extensions. For example, the first region of the class Solver
corresponds to the standard process of searching for a solution when the user
initializes the grid and asks for a valid solution (see Figure 2-left). This behavior
is very frequent because in most of the cases, a solution is easy to find. The sec-
ond region corresponds to an extended behavior of the first one. Indeed, when
a solution is difficult to find or may not exist, the solver uses another resolution
strategy based on back-tracking, and then calls other methods, especially those
of the class Valid. The third region that we identified for the Solver class, corre-
sponds to a surprisingly less-frequent case where the solver checks if an existing
solution is unique or not. This task requires that from the Solver class to use new
interactions with classes Sudoku, Grid and Valid. The two normal-like distribu-
tions also have three regions with the first (lower values) indicating a truncated
behavior due to precondition violations, the second (middle values) representing
the common behavior, and the third (highest values) including common behav-
ior extensions. The two uniform-like distributions were not similar in behavior.
Whereas Util with four different coupling values, defines clearly four different
services (regions) with almost equal frequencies, Case, with three coupling val-
ues includes only marginal variations of the same behavior which lead to a single
region. Finally, single-bar distributions have a unique coupling value defining a
unique behavior. The only case with two coupling values exhibits unbalanced
frequencies but with similar behavior.



Fig. 2. Coupling distributions of classes Solver (left) and ElevatorGroup (right).

4.3 Case 2 : Elevator System

System Description and Input Probabilistic Model. The second program
that we considered in this study is a simple elevator operating system. To run
the program, the user has to give the number of elevators and the number of
floors. Then it is possible to enter as many times as desired the events calling
elevators from a particular floor to go up or down, and selecting the destination
floors. The program ends when the user enters the event stop. Obviously, the
number of inputs cannot be fixed a priori. In that case, we model the program
inputs by a Markov chain. We consider that there is an arbitrary number of
subjects that use the elevators. Subject arrivals are random and mutually inde-
pendent. Times between two successive arrivals are independent and identically
distributed, and exponential with mean 1/λ. In our simulation program, we took
λ = 1/2. Each subject is modeled by a Markov chain that is triggered when he
enters the building, and is stopped when he leaves it. The subjects’ Markov
chains are independent. A transition probability matrix is assigned to each sub-
ject. It defines the probabilities to travel between pairs of floors or to stay within
the same floor. We also supposed that these Markov chains are homogenous, (i.e.
the transition matrix doesn’t change over time).

Distributions and Interpretation. Like for the first case, the average of
internal similarities of all the classes are above 83% as shown in Table 2. Seven
over the eight classes have average similarities of 93% or more. This confirms
once again our intuition about the correlation between the coupling and the
behavior uniformity. For the distributions, we observed some differences with
the first case. One of them is a non regular distribution observed for the class
ArrivalSensor. This distribution includes three blocks corresponding to three
small coupling values, respectively 3 (for 20% of the executions), 4 (for 40%),
and 5 (for 40%). This distribution could be considered, to some extent, as a
single-bar one before the behavior in the three blocks is very similar. However,



as we do not have a block that contains a clearly majority of executions, we
classified it as “non regular”. Another difference is that except for this marginal
case, we did not observe single-bar distributions. This could be explained by the
fact that the considered program is more complex than the one of Sudoku. This
complexity introduces many variations in behavior.

Table 2. Statistics about Elevator program.

Class Name IS(%) Distribution Regions

ArrivalSensor 83.72 - {b3, b4, b5}
Elevator (main) 95.24 Exponential-like {b9, b10, b11, b12}, {b13, b14, b15, b16,

b17}, {b18, b19, b21, b23, b24}
ElevatorGroup 95.67 Normal-like {b9, b10, b11, b12}, {b13, b14, b15, b16,

b17, b18, b20, b21}, {b23, b24, b25, b26, b29}
ElevatorControl 93.90 Exponential-like {b4, b5, b6, b7},

{b8, b9, b10, b11, b12, b13, b14}, {b15, b16}
ElevatorInterface 96.57 Normal-like {b10, b12, b13, b14}, {b15, b16, b18,

b19, b20, b22, b23, b24}, {b25, b26, b27, b28}
Floor 98.11 Exponential-like {b12, b13, b14}, {b15, b16, b17, b19, b20},

{b21, b23, b25, b27}
FloorControl 96.24 Uniform-like {b6, b8, b10} {b12, b14, b16},

{b18, b20, b22}, {b24, b26, b28}
FloorInterface 92.99 Exponential-like {b2, b3, b4}, {b5, b6, b7, b8}, {b9, b11}

The most frequent distribution is the exponential-like one, found for half of
the classes. For example, class Elevator has three regions. The first region with
the lower coupling values corresponds to the common elevator behavior with
interactions mainly with Floor and ArrivalSensor. The coupling increases to
deal with exceptional situations such as considering a new elevator call during
the movement, and less frequently to manage a high level of calls, which requires
to create a queue and to start a new thread to manage the behavior concurrency.

The three remaining distributions are normal-like (two classes) and uniform-
like ones. To illustrate how two distributions could be impacted by the same
variation in a use case, consider the distribution of class ElevatorGroup (normal-
like) shown in Figure 2-right. We identified three regions and three blocks that
were not included in any region. This is a variation of our algorithm that consists
in not creating regions for single blocks that have low similarities with previous
and following blocks together with a very low number of executions. The first
region corresponds to a minimal behavior that results from the violation of
preconditions during the creating of the elevators. Indeed, during the creation,
ElevatorGroup checks if the number of elevators and the number of floors are
within a certain range. Then, it checks if the number of elevators is consistent
with the number of floors. The second region that we identified corresponds to
the common behavior of assigning calls to elevators, etc. Finally, the third region
corresponds to an exceptional situation related to one of the class Elevator in



the previous paragraph. This situation concerns the management of busy periods
with a high number of calls.

5 Related Work and Discussion

The work proposed in this paper crosscuts several research areas. Compared to
contributions in dynamic coupling calculations, our approach allows to select a
representative set of executions. Indeed, Arisholm et al. [2] pick an arbitrary set
of executions and take the average of the metric value over these executions. Ya-
coub et al. [12] assign probabilities to a finite set of execution scenarios, compute
the dynamic metric for each scenario, and take the weighted average across sce-
narios. Although assigning probabilities to executions is close to our approach,
in practice, the number of possible executions is extremely large, which limits
the applicability.

Our work defines probabilistic models for inputs that are used to generate
representative samples of executions and then to better characterize the dy-
namic coupling. Stochastic simulation was used in software engineering, mainly
to understand the development process (e.g., [8]) or to characterize the evolu-
tion of a given program (e.g., [10]). In both cases, the simulation is related to
requirements and change request, but does not involve program inputs or class
dependencies. The work of Zhou et al. [14] is maybe more or less closely related
to our contribution. They propose a navigation model that abstracts the user
Web surfing behavior as a Markov model. This model is used to quantify naviga-
bility. Modeling inputs as a Markov chain seems natural here because the inputs
for Web sites are different from ones of classical software. Indeed, in this work,
only mouse clicks on links are considered but not inputs using forms.

The work presented in this paper is an initial initiative to propose a frame-
work for understanding the relationship between the coupling and the behavior
of a class. Although the first findings are very encouraging, there are many open
issues that need to be addressed. Firstly, in practice, it is difficult to define input
distributions. When the program is in use, it is possible to record the inputs as
the users provide them and after a certain period, estimate the distribution from
the collected data. However, when the program is under development, i.e., not
released yet, these data are not available. Of course, one could decide theoret-
ically that an input should have a particular distribution (say normal). Still,
there is a need for estimating the distribution parameters (mean and variance
in the case of normal distribution). Another problem concerns the nature of the
input data. In our study, we considered inputs that take values in a finite set.
In most of the programs, inputs could be strings with theoretically an infinite
set of values such as person names, files, etc. The random generation of strings
according to a particular distribution could be modeled easily. However, random
generation of files, such as source code for compilers, is not an obvious task.



6 Conclusion

In this paper, we proposed a framework for modeling program inputs using a
probabilistic setting. These models allow to derive class coupling metric distri-
butions. We showed how these distributions could be used to understand the
behavior of classes. We illustrated our approach with two small case studies.
The first has a finite set of inputs, which are modeled by a random vector.
In contrary, the second program has an infinite set of inputs that are modeled
by a (homogenous) Markov chain. We observed in these cases that recurrent
distribution patterns correspond to regular behavior schemes.

Our future work will be mainly dedicated to make our framework more effec-
tive. The issues to be addressed include scalability and support for input model
definition. We additionally intend to assess more dynamic coupling metrics, so
that to improve the generalizability of our approach.
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