
Delay Predictors in Multi-skill Call Centers:
An Empirical Comparison with Real Data

Mamadou Thiongane1, Wyean Chan2 and Pierre L’Ecuyer2
1Department of Mathematics and Computer Science, University Cheikh Anta Diop, Dakar, Sénégal

2Department of Computer Science and Operations Research, University of Montreal, Montréal QC, Canada
mamadou.thiongane@ucad.edu.sn, {chanwyea, lecuyer}@iro.umontreal.ca

Keywords:
Delay prediction, waiting time, automatic learning, neural networks, service systems, multi-skill
call centers

Abstract:
We examine and compare different delay predictors for multi-skill call centers. Each time a new
call (customer) arrives, a predictor takes as input some observable information from the current
state of the system, and returns as output a forecast of the waiting time for this call, which is an
estimate of the expected waiting time conditional on the current state. Any relevant observable
information can be included, e.g., the time of the day, the set of agents at work, the queue size
for each call type, the waiting times of the most recent calls who started their service, etc. We
consider predictors based on delay history, regularized regression, cubic spline regression, and
deep feedforward artificial neural networks. We compare them using real data obtained from a
call center. We also examine the issue of how to select the input variables for the predictors.

1 INTRODUCTION

In service systems such as call centers, medical
clinics, emergency services, and many others, an-
nouncing to new arriving customers an accurate
estimate of their waiting time until the call is an-
swered or the service begins, immediately upon
arrival, can be improve the customer’s experience
and satisfaction. For first-come first-served sys-
tems with a single type of customer and server,
simple formulas are sometimes available for the
expected waiting time conditional on the state of
the system. But for more complex systems in
which several types of customers share different
types of servers with certain priority rules (such
as in multi-skill call centers), computing good
predictors is generally much more difficult, be-
cause for example there are more sources of un-
certainty and the conditional waiting time dis-
tribution depends on a much larger number of
variables that determine the state of the system.
For instance, we may not know which type of
server will serve this customer, higher-priority
customers may arrive before the service starts,
etc. Proposed solutions to this problem are cur-

rently very limited.

The aim of this paper is to examine different
learning-based delay predictors for multi-skill call
centers. We compare their effectiveness using real
data collected from a multi-skill call center. The
parameters of the predictors are learned from part
of this data, and the rest of the data is used to
measure the accuracy of these delay predictors.

Most previous work on delay estimation was
for queueing systems with a single type of cus-
tomer and identical servers. The proposed meth-
ods for this case can be classified in two cate-
gories: queue-length (QL) predictors and delay-
history (DH) predictors. A QL predictor esti-
mates the waiting time of a new arriving cus-
tomer with a function of the queue length when
this customer arrives. This function generally de-
pends on system parameters. In simple cases,
with exponential service times, it may correspond
to an analytical formula that gives the exact
expected waiting time conditional on the cur-
rent state of the system; see, e.g., Whitt (1999);
Ibrahim and Whitt (2009a, 2010, 2011). A DH
predictor, on the other hand, uses the past cus-
tomer delays to predict the waiting time of a



new arriving customer (Nakibly, 2002; Armony
et al., 2009; Ibrahim and Whitt, 2009b; Thion-
gane et al., 2016; Dong et al., 2018). We discuss
them in Section 2.

There has been only limited work on develop-
ing predictors for queueing systems with multiple
types of customers and multiple queues that can
share some servers, as in multi-skill call centers,
in which each server is an agent that can handle
a subset of the call types, and each call type has
its own queue. The QL predictors perform well
in single-queue systems but do not apply (and
are very difficult to adapt) to multi-skill systems.
The DH predictors can be used for multi-skill sys-
tems but they often give large prediction errors
for those systems (Thiongane et al., 2016).

Senderovich et al. (2015) proposed predictors
for a multi-skill call center with multiple call
types but a single type (or group) of agents that
can handle all call types. Thiongane et al. (2015)
proposed data-based delay predictors that can be
used for more general multi-skill call centers or
service systems. The predicting functions were
regression splines (RS) and artificial neural net-
work (ANN), and the input state variables were
the waiting time of the last customer of the same
type to have entered service, and the lengths of
some queues. The predictors were compared em-
pirically on small and simple simulation models,
but not on real data. In a similar vein, Ang et al.
(2016) studied the lasso regression (LR) method
(Tibshirani, 1999) to predict waiting times in
emergency (health-care) departments, based on
input variables such as the queue length, and
functions of them. Some of these variables cor-
respond to QL predictors that are not directly
applicable in the multi-skill setting. Nevertheless,
RL can be used in multi-skill call centers as well,
with appropriate input variables. In these paper,
the RS, LR, and ANN predictors are referred to as
machine learning (ML) delays predictors. Their
performance will depend largely on the input vari-
ables considered. If important variables are left
out, the forecast may lose accuracy significantly.

In this work, we compare the performances
of RS, LR, ANN, and various types of DH pre-
dictors, on real data taken from an existing call
center. The ANNs we use are multilayer feed-
forward neural networks. Our main contributions
are: (i) we propose a method to select the relevant
variables to predict the customers wait times in
multi-skill setting with the ML predictors; (ii) we
show the impact of leaving out some important
input variables on the accuracy of ML predictors;

(iii) we test the accuracy of all these predictors in
a real multi-skill setting.

The remainder is organized as follows. In Sec-
tion 2, we recall the definitions of various DH and
ML delay predictors. Section 3 describes the call
center and the data used for our experiments, and
how we have recovered the needed data that was
not directly available. Section 4 Numerical results
are reported and discussed in Section 5 contains
a conclusion and final remarks.

2 DELAY PREDICTORS

In this section, we briefly describe the DH and
ML delay predictors used in this work. We do not
consider the QL predictors in this work because
they do not apply in multi-skill settings.

2.1 DH predictors

DH predictors use past customer delays to predict
the waiting time of a newly arriving customer.
They do not require a learning phase to optimize
several parameters and they are easy to imple-
ment in practice. The DH predictors considered
here are the best performers on experiments with
simulated system, among those we found in the
literature. They are defined as follows.

Last-to-Enter-Service (LES). This predic-
tor returns the wait time experienced by the cus-
tomer of the same class who was the last enter the
system, among those who had to wait and have
started their service (Ibrahim and Whitt, 2009b).
It is the most popular DH predictor.

Average LES (Avg-LES). This one returns
the average delay experienced by the N (a fixed
integer) most recent customers of the same class
who entered service after waiting a positive time.
It is often used in practice (Dong et al., 2018).

Average LES Conditional on Queue Length
(AvgC-LES). This one returns an average of
the wait times of past customers of the same class
who found the same queue length when they ar-
rived. It was introduced in (Thiongane et al.,
2016) and was the best performing DH predictor
in some experiments with simulated systems in
that paper.



Extrapolated LES (E-LES). For a new cus-
tomer of class j, this predictor use the delay in-
formation of all customers of the same class that
are currently waiting in queue. The final wait
times of these customers are still unknown, but
the elapsed (partial) delays are extrapolated to
predict the final delays of all these customers,
and E-LES returns a weighted average of these
extrapolated delays (Thiongane et al., 2016).

Proportional Queue LES (P-LES). P-LES
readjusts the time delay x of the LES customer
to account for the difference in the queue length
seen by the LES and the new arriving customer
(Ibrahim et al., 2016). If QLES denotes the num-
ber of customers in queue when the LES customer
arrived, and Q the number of customers in queue
ahead of the new arrival, the waiting time of this
new customer is predicted by

D = x
Q+ 1

QLES + 1
.

2.2 ML delay predictors

The idea behind ML predictors is to approximate
the conditional expectation of the waiting time W
of an arriving customer of type k, conditional on
all observable state variables of the system at that
time, by some predictor function of selected ob-
servable variables deemed important. We denote
by x the values of these selected (input) variables,
and the prediction is Fk,θ(x) where Fk,θ is the
predictor function for call type k, which depends
on a vector of parameters θ, which is learned from
data in a preliminary training step.

In a simple system such as a GI/M/s queue,
the relevant state variables are the number of cus-
tomers in queue, the number s of servers, and the
service rate µ. But for more complex multi-skill
centers, identifying the variables that are most
relevant to estimate the expected waiting time
for a given customer type k can be challenging.

In our experiments, we proceed as follows. We
first include all observable state variables that
might have an influence on the expected wait-
ing time. Then we make a selection by using a
feature-selection method which provides an “im-
portance” score for each variable in terms of its
estimated predictive power. The variables are
then ranked according to these scores, and those
with sufficiently high scores are selected. Es-
timating relevant predictive-power scores for a
large number of candidate variables is generally
difficult. In our work, we do this with the Boruta

feature selection algorithm (Kursa and Rudnicki,
2010), which was the best performer among sev-
eral feature selection algorithms compared by De-
genhardt et al. (2017).

Boruta is actually a wrapper built over the
random forest algorithm proposed by Breiman
(2001), which uses bootstrapping to generate a
forest of several decision trees. In our setting,
each node in a decision tree corresponds to a se-
lection decision for one input variable. Boruta
first extends the data by adding copies of all in-
put variables, and shuffles these variables to re-
duce their correlations with the response. These
shuffled copies are called shadow features. Boruta
runs a random forest classifier on the extended
data set. Trees are independently developed
on different bagging (bootstrap) samples of the
training set. The importance measure of each at-
tribute (i.e., input variable) is obtained as the loss
of accuracy of the model caused by the random
permutation of the values of this attribute across
objects (the mean decrease accuracy). This mea-
sure is computed separately for all trees in the
forest that use a given attribute. Then, for each
attribute, the average and standard deviation of
the loss of accuracy is computed, a Z score is com-
puted by dividing the average loss by its standard
deviation, and the latter is used as the impor-
tance measure. The maximum Z-score among the
shadow features (MZSA) are used to determine
which variables are useful to predict the response
(i.e., the waiting time). The attributes whose Z-
scores are significantly lower than MZSA is de-
clared “unimportant”, those whose Z-scores are
significantly higher than MZSA as declared “im-
portant” (Kursa and Rudnicki, 2010), and deci-
sions about the other ones are made using other
rules.

In this study, our candidate input variables are
the queue length for all call types (r is the vector
of these queues length, and the queue length for
call type T1 to T5 are named q1 to q5 respec-
tively), the number s of agents that are serving
the given call type, the total number n of agents
currently working in the system, the arrival time
t of the arriving customer, the wait time of the N
most recently served customers of the given call
type (they are named LES1,LES2, . . . , and l is
the vector of these waiting times), and the waiting
time predicted by the DH predictors LES, P-LES,
E-LES, Avg-LES, and AvgC-LES (d the vector
that contains these predicted waiting times).

We consider three ways of defining the predic-
tor function Fk,θ: (1) a smoothing (least-squares



regression) cubic spline which is additive in the
input variables (RS), (2) a lasso (linear) regres-
sion (LR), and (3) a deep feedforward multilayer
artificial neural network (ANN). The parameter
vector θ is selected in each case by minimizing the
mean squared error (MSE) of predictions. That
is, if E = Fk,θ(x) is the predicted delay for a
“random” customer of type k who receives ser-
vice after some realized wait time W , then the
MSE for type k calls is

MSEk = E[(W − E)2].

We cannot compute this MSE exactly, so we esti-
mate it by its empirical counterpart, the average
squared error (ASE), defined as

ASEk =
1

Ck

Ck∑
c=1

(Wk,c − Ek,c)2 (1)

for customer type k, where Ck is the number of
served customers of type k who had to wait in
queue. We will in fact use a normalized version of
the ASE, called the root relative average squared
error (RRASE), which is the square root of the
ASE divided by the average wait time of the Ck
served customers, rescaled by a factor of 100:

RRASE =

√
ASE

(1/Ck)
∑Ck

c=1Wk,c

× 100.

We perform this estimation of the parameter vec-
tor θ with a learning data set that represent 80%
of the collected data. The other 20% is used to
measure and compare the accuracy of these delay
predictors.

2.2.1 Regression Splines (RS)

Regression splines are a powerful class of approxi-
mation methods for general smooth functions (de
Boor, 1978; James et al., 2013; Wood, 2017). Here
we use smoothing additive cubic splines, for which
the parameters are estimated by least-squares re-
gression after adding a penalty term on the func-
tion variation to favor more smoothness. If the
information vector is written as x = (x1, . . . , xD),
the additive spline predictor can be written as

Fk,θ(x) =

D∑
d=1

fd(xd),

where each fd is a one dimensional cubic spline.
The parameters of all these spline functions fd
form the vector θ. We estimated these parameters
using the function gam from the R package mgcv
(Wood, 2019).

2.2.2 Lasso Regression (LR)

Lasso Regression is a type of linear regression
(Tibshirani, 1996; James et al., 2013; Friedman
et al., 2010) in which a penalty term equal to
the sum of absolute values of the magnitude of
coefficients is added before minimizing the mean
squared error, to reduce over-fitting. If the input
vector is x = (x1, . . . , xD), the lasso regression
predictor can be written as

Fk,θ(x) =

D∑
d=1

βd · xd + λ.

One can estimate the parameters by using the
function glmnet from the R package gmlnet
(Friedman et al., 2019).

2.2.3 Deep Feed-Forward Artificial
Neural Network (ANN)

A deep feedforward artificial neural network is
another very popular and effective way to ap-
proximate complicated high-dimensional func-
tions (Bengio et al., 2012; LeCun et al., 2015).
This type of neural network has one input layer,
one output layer, and several hidden layers. The
outputs of nodes at layer l are the inputs of ev-
ery node at the next layer l + 1. The number
of nodes at the input layer is equal to the num-
ber of elements in the input vector x, and the
output layer has only one node which returns
the estimated delay. For each hidden node, we
use a rectifier activation function, of the form
h(z) = max(0, b + w · z), in which z is the vec-
tor of inputs for the node, while the intercept b
and the vector of coefficients w are parameters
learned by training (Glorot et al., 2011). For the
output node in the output layer (which return the
estimated delay), we use a linear activation func-
tion, h(z) = b+ w · z, in which z is the vector of
outputs from the nodes at the last hidden layer.
The (large) vector θ is the set of all these param-
eters b and w, over all nodes. These parameters
are learned by a back-propagation algorithm that
uses a stochastic gradient descent method. Many
other parameters and hyperparameters used in
the training have to be determined empirically.
For a guide on training, see Bergstra and Ben-
gio (2012); Bengio (2012); Gulcehre and Bengio
(2016); Goodfellow et al. (2016). To train our
ANNs (i.e., estimate the vectors θ), we used the
Pylearn2 software Goodfellow et al. (2013).



3 THE CALL CENTER AND
AVAILABLE DATA

We performed an empirical study using data from
a real multi-skill call center from the VANAD
laboratory group, located in Rotterdam, in The
Netherlands. This center operates from 8 a.m to
8 p.m from Monday to Friday. It handles 27 call
types and has 312 agents. Each agent has a set
of skills, which corresponds to a subset of the call
types. The routing mechanism works as follows.
When a call arrives, the customer first interacts
with the IVR (interactive voice response unit) to
choose the call type. If there is an available agent
with this skill, the call is assigned to the longest
idle agent among those. Otherwise, the call joins
an invisible FCFS (first come first served) queue.

The call log data has 1,543,164 calls recorded
over one year, from January 1 to December 31,
2014. About 56% of those calls are answered im-
mediately, 38% are answered after some wait, and
about 6% abandon. In this study, we consider
only the five call types with the largest call vol-
ume. They account for more than 80% of the to-
tal volume. Table 1 gives a statistical summary of
the arrival counts for these five call types, named
T1 to T5. It also gives the average waiting time
(AWT), average service time (AST), and aver-
age queue size (AQS) for each one. The other
call types, not considered here, accounted for less
than 10 000 calls altogether during the year. Each
one had less than 30 calls a day on average. We
do not study delay predictors for them.

Figure 1 shows the average number of arrivals
per hour per call type, for each day of the week,
over the year. We see from this figure that the
arrival behavior for Monday differs significantly
from that of the other days, especially in the
morning. A plausible explanation for this is that
Monday is the first day of the week and the center
is closed on the two previous days. This means
that it would make sense to develop two separate
sets of predictors: one for Monday’s and one for
the other days. In this paper, we focus on the
other days (Tuesday to Friday). Figure 2 shows a
density estimate of the waiting time for calls who
waited and did not abandon, for the five consid-
ered call types. These densities were estimated
using kernel density estimators with a normal ker-
nel. This explains the fact that part of the density
near zero “leaks” to the negative side. The true
density starts at zero.

The data contains the following information
on each call received in the one-year period: the

call type, the arrival time, the date, the desired
service, and the VRU entry and exit time. There
is also a queue entry time and a queue exit time,
but only for the calls that have to wait. For
those calls, we also know if they received service
or abandoned. Finally, for the called that were
served, we have the times when service started
and when it ended, and we can easily compute
the realized waiting time of the call.

For the ML predictors, when a call arrives, we
need to observe a large number of candidate in-
put variables (features) in x = (r, s, n, l,d, t) that
are required to predict the waiting time of this
call. However, most of this information is not
directly available in the data. Similarly, much
of the information required for the DH predic-
tors is not directly observable in the historical
data. To address this issue, we had to build a
simulator that could replay the history from the
available data and compute all this missing infor-
mation (e.g., the detailed state of the system each
time a customer arrives, the LES, Avg-LES, etc.).
This simulator was implemented in Java using the
simevent package of the SSJ simulation library
(L’Ecuyer et al., 2002; L’Ecuyer, 2016).

4 NUMERICAL EXPERIMENTS

4.1 Identifying the Important
Input Variables

After reconstructing the detailed data, we ran the
Boruta algorithm on the data set for each call
type to identify the candidate variables that are
important to predict the waiting time. As an il-
lustration of the results, Figure 3 reports the im-
portance scores of the input variables for call type
T1. It shows a box plot of the Z-scores of all the
attributes (input variables), plus the minimum,
the average, and the maximum shadow scores.
All the candidate variables have their boxplots
(in green) much higher than the shadow scores,
which means that they are all declared “impor-
tant” by Boruta. The same was observed for all
other call types.

We also see in the figure that the most im-
portant input variables to predict waiting times
(those with the highest Z-scores) for call type T1
are (in this order) the arrival time t of the call,
the queues length, the prediction of AvgC-LES,
the total number n of agents in the system, and
the number s of agents serving this call type. The



Table 1: Arrival counts and statistical summary for the five selected call types over the year. The AWT
and AST are in seconds.

T1 T2 T3 T4 T5
Number 568 554 270 675 311 523 112 711 25 839
No wait 61% 52% 55% 45% 34%
Wait 35% 40% 40% 46% 54%
Abandon 4% 7% 5% 8% 12%
AWT 77 91 83 85 110
AST 350 308 281 411 311
AQS 8.2 3.3 4.4 4.3 0.9

8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

120

140

160

Period of 1 hour (call type T1)

M
ea

n
a
rr

iv
al

co
u

n
ts

Mo
Th
We
Th
Fr

8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

Period of 1 hour (call type T2)

M
ea

n
ar

ri
va

l
co

u
n
ts

8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

100

Period of 1 hour (call type T3)

M
ea

n
a
rr

iv
al

co
u

n
ts

8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

60

80

Period of 1 hour (call type T4)

M
ea

n
ar

ri
va

l
co

u
n
ts

8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15

20

Period of 1 hour (call type T5)

M
ea

n
ar

ri
va

l
co

u
n
ts

Figure 1: Average arrival counts per hour and per call type, for each type of day, over the year

other variables have a lower score.

We then made an experiment to see if remov-
ing all these lower-score input variables from the
selected inputs would make a difference in pre-
diction accuracy, and found no significant differ-

ence (less than 0.1% in all cases). Therefore, we
decided not to include them as input variables
when comparing our predictors (in the next sub-
section).



0 50 100 150 200 250 300

0.
0
00

0.
0
02

0.
0
04

0.
00

6
0.

0
08

0.
0
10

Waiting time (sec)

D
en

si
ty

T1
T2
T3
T4
T5

Figure 2: Waiting time density for calls who waited
and were served, per call type.

4.2 RRASE with delay predictors

Table 2: RRASE of delay predictors.

Call Types
Predictors T1 T2 T3 T4 T5
Avg-LES 48.9 61.0 56.7 48.7 69.7
LES 44.3 57.7 51.8 44.5 66.1
AvgC-LES 44.3 56.5 51.6 42.4 62.4
E-LES 63.7 65.4 64.0 58.8 77.5
P-LES 71.2 70.5 71.4 68.5 80.3
RS 39.6 49.2 45.5 39.5 50.1
RL 41.5 51.5 47.1 38.5 51.7
ANN 36.1 46.2 44.8 37.7 48.7

Here we compare the different delay predictors
in terms of RRASE, for each call type. For all
the ML predictors, our vector of selected input
variables was x =(t, q1, q2, q3, q4, q5, n, s, LES,
AvgC-LES). Table 2 reports the RRASEs. We
find that the ML predictors perform significantly
better than the DH predictors in all cases, and
that the best performer is ANN. Among the DH
predictors, AvgC-LES is the best performer, and
it is closely followed by LES and Avg-LES. E-LES
was the second best DH predictors in previous
experiments with simulated systems (Thiongane
et al., 2016), but it does not perform well with
this real data. P-LES also performs very poorly.

4.3 Impact of leaving out
important input variables

We made some empirical experiments to study
the impact of leaving out some input variables
deemed important by Boruta, for the ML pre-
dictors. In particular, we want to compare our
ML predictors with those proposed by Thiongane
et al. (2015), for which some of the input vari-
ables considered here were not present. We first
remove the arrival time t and the predicted de-
lay with AvgC-LES from the input variables. We
name the ML predictors without these two vari-
ables as RS-2, LR-2, and ANN-2. Then, in addi-
tion to the two previous variables, we also remove
a queue length for a call type that differs arriv-
ing call. We name the resulting ML predictors
RS-3, LR-3, and ANN-3. Note that none of those
three input variables are included in x as input
variables by Thiongane et al. (2015).

Table 3 shows the RRASE of these
“weakeaned” predictors. We find that removing
the first two features reduces significantly the
accuracy of ML predictors, and removing an
additional one reduces the accuracy further,
again significantly. Thus, at least for this call
center, our ML predictors are more accurate
than those proposed by Thiongane et al. (2015).
This shows that the choice of input variables is
very important when building ML predictors.

Table 3: RRASE of delay predictors.

Call Types
Predictors T1 T2 T3 T4 T5
RS 39.6 49.2 45.5 39.5 50.1
LR 41.5 51.5 47.1 38.5 51.7
ANN 36.1 46.2 44.8 37.7 48.7
RS-2 41.9 52.0 47.7 40.9 52.5
LR-2 43.9 54.0 49.1 39.2 53.1
ANN-2 39.7 49.2 46.9 38.5 50.3
RS-3 42.5 53.0 47.9 41.2 52.9
LR-3 44.3 55.4 50.7 39.8 54.0
ANN-3 40.4 50.2 47.0 38.7 50.9

5 CONCLUSION

We have examined and compared several DH and
ML delay predictors on data from a real multi-
skill call center. We found that the ML predic-
tors are much more accurate than the DH pre-
dictors. Within the ML predictors, ANN was



0
20

60
8
0

Im
p

o
rt

a
n

ce

sh
.

M
in

sh
.M

ea
n

sh
.

M
ax

E
-L

E
S

P
-L

E
S

L
E

S
9

L
E

S
10

L
E

S
6

A
v
g-

L
E

S

L
E

S
5

L
E

S
3

L
E

S
4

L
E

S
7

L
E

S
8

L
E

S
2

L
E

S
1

L
E

S s n

A
v
gC

-L
E

S

q
5

q
1

q
4

q
2

q
3 t

Figure 3: Box plot of score of variable importance

more accurate than RS and LR, but the latter
can be trained much faster than ANN, and could
be more accurate when the amount of available
data is smaller. We saw the negative impact of
leaving out relevant input variables on the accu-
racy of the ML predictors, and illustrated how
well Boruta can identify the most relevant input
variables. In on-going work, we want to develop
effective methods to predict and announce not
only a point estimate of the waiting time, but an
estimate of the entire conditional distribution of
the delay.

ACKNOWLEDGEMENTS

This work has been supported by grants
from NSERC-Canada and Hydro-Québec, and a
Canada Research Chair to P. L’Ecuyer. We thank
Ger Koole, from VU Amsterdam, who provided
the data.

REFERENCES

Ang, E., Kwasnick, S., Bayati, M., Plambeck, E.,
and Aratow, M. (2016). Accurate emergency
department wait time prediction. Manufac-
turing & Service Operations Management,
18(1):141–156.

Armony, M., Shimkin, N., and Whitt, W.
(2009). The impact of delay announcements
in many-server queues with abandonments.
Operations Research, 57:66–81.

Bengio, Y. (2012). Practical recommendations
for gradient-based training of deep architec-
tures. Neural Networks: Tricks of the Trade,
7700:437–478.

Bengio, Y., Courville, A. C., and Vincent, P.
(2012). Unsupervised feature learning and
deep learning: A review and new perspec-
tives. CoRR, abs/1206.5538:1–30.

Bergstra, J. and Bengio, Y. (2012). Ran-
dom search for hyper-parameter optimiza-
tion. Journal of Machine Learning Research,
13:281–305.



Breiman, L. (2001). Random forests. Machine
learning, 45(1):5–32.

de Boor, C. (1978). A Practical Guide to Splines.
Number 27 in Applied Mathematical Sci-
ences Series. Springer-Verlag, New York.

Degenhardt, F., Seifert, S., and Szymczak, S.
(2017). Evaluation of variable selection
methods for random forests and omics data
sets. Briefings in Bioinformatics, 20(2):492–
503.

Dong, J., Yom Tov, E., and Yom Tov, G.
(2018). The impact of delay announcements
on hospital network coordination and wait-
ing times. Management Science, 65(5):1949–
2443.

Friedman, J., Hastie, T., and Tibshirani, R.
(2010). Regularization paths for generalized
linear models via coordinate descent. Jour-
nal of Statistical Software, 33(1):1–22.

Friedman, J., Hastie, T., Tibshirani, R.,
Narasimhan, B., Simon, N., and Qian, J.
(2019). R Package glmnet: Lasso and
Elastic-Net Regularized Generalized Linear
Models. https://CRAN.R-project.org/
package=glmnet.

Glorot, X., Bordes, A., and Bengio, Y. (2011).
Deep sparse rectifier neural networks. In
Gordon, G., Dunson, D., and Miroslav, edi-
tors, Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence
and Statistics, volume 15 of Proceedings of
Machine Learning Research, pages 315–323,
Fort Lauderdale, FL, USA. PMLR.

Goodfellow, I., Bengio, Y., and Courville, A.
(2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Goodfellow, I., Warde-Farley, D., Lamblin, P.,
Dumoulin, V., Mirza, M., Pascanu, R.,
Bergstra, J., Bastien, F., and Bengio, Y.
(2013). Pylearn2: A machine learning re-
search library.

Gulcehre, C. and Bengio, Y. (2016). Knowledge
matters: Importance of prior information for
optimization. Journal of Machine Learning
Research, 17:1–32.

Ibrahim, R., L’Ecuyer, P., Shen, H., and Thion-
gane, M. (2016). Inter-dependent, heteroge-
neous, and time-varying service-time distri-
butions in call centers. European Journal of
Operational Research, 250:480–492.

Ibrahim, R. and Whitt, W. (2009a). Real-
time delay estimation based on delay his-

tory. Manufacturing and Services Operations
Management, 11:397–415.

Ibrahim, R. and Whitt, W. (2009b). Real-time
delay estimation in overloaded multiserver
queues with abandonments. Management
Science, 55(10):1729–1742.

Ibrahim, R. and Whitt, W. (2010). Delay predic-
tors for customer service systems with time-
varying parameters. In Proceedings of the
2010 Winter Simulation Conference, pages
2375–2386. IEEE Press.

Ibrahim, R. and Whitt, W. (2011). Real-
time delay estimation based on delay history
in many-server service systems with time-
varying arrivals. Production and Operations
Management, 20(5):654–667.

James, G., Witten, D., Hastie, T., and Tibshi-
rani, R. (2013). An Introduction to Statistical
Learning, with Applications in R. Springer-
Verlag, New York.

Kursa, M. B. and Rudnicki, W. R. (2010). Fea-
ture selection with the boruta package. Jour-
nal of Statistical Software, 36:1–13.

LeCun, Y., Bengio, Y., and Hinton, G. (2015).
Deep learning. Nature, 521:436–444.

L’Ecuyer, P. (2016). SSJ: Stochastic simulation
in Java. http://simul.iro.umontreal.ca/
ssj/.

L’Ecuyer, P., Meliani, L., and Vaucher, J. (2002).
SSJ: A framework for stochastic simulation
in Java. In Yücesan, E., Chen, C.-H., Snow-
don, J. L., and Charnes, J. M., editors, Pro-
ceedings of the 2002 Winter Simulation Con-
ference, pages 234–242. IEEE Press.

Nakibly, E. (2002). Predicting waiting times in
telephone service systems. Master’s thesis,
Technion, Haifa, Israel.

Senderovich, A., Weidlich, M., Gal, A., and Man-
delbaum, A. (2015). Queue mining for delay
prediction in multi-class service processes.
Information Systems, 53:278–295.

Thiongane, M., Chan, W., and L’Ecuyer, P.
(2015). Waiting time predictors for multi-
skill call centers. In Proceedings of the 2015
Winter Simulation Conference, pages 3073–
3084. IEEE Press.

Thiongane, M., Chan, W., and L’Ecuyer, P.
(2016). New history-based delay predictors
for service systems. In Proceedings of the
2016 Winter Simulation Conference, pages
425–436. IEEE Press.

Tibshirani, R. (1996). Regression shrinkage and
selection via the LASSO. Journal of the



Royal Statistical Society, Series B (Method-
ological), pages 267–288.

Tibshirani, R. (1999). Regression shrinkage and
selection via the lasso. Journal of the Royal
Statistical Society, 7(0):267–288.

Whitt, W. (1999). Predicting queueing delays.
Management Science, 45(6):870–888.

Wood, S. N. (2017). Generalized Additive Models:
An Introduction with R. Chapman and Hall /
CRC Press, Boca Raton, FL, second edition.

Wood, S. N. (2019). R Package mgcv: Mixed
GAM Computation Vehicle with Automatic
Smoothness Estimation. https://CRAN.
R-project.org/package=mgcv.


