
15

Algorithm 958: Lattice Builder: A General Software Tool for
Constructing Rank-1 Lattice Rules

PIERRE L’ECUYER and DAVID MUNGER, Université de Montréal

We introduce a new software tool and library named Lattice Builder, written in C++, that implements a
variety of construction algorithms for good rank-1 lattice rules. It supports exhaustive and random searches,
as well as component-by-component (CBC) and random CBC constructions, for any number of points, and
for various measures of (non)uniformity of the points. The measures currently implemented are all shift-
invariant and represent the worst-case integration error for certain classes of integrands. They include, for
example, the weighted Pα square discrepancy, the Rα criterion, and figures of merit based on the spectral
test, with projection-dependent weights. Each of these measures can be computed as a finite sum. For the
Pα and Rα criteria, efficient specializations of the CBC algorithm are provided for projection-dependent,
order-dependent, and product weights. For numbers of points that are integer powers of a prime base, the
construction of embedded rank-1 lattice rules is supported through any of these algorithms, and through a
fast CBC algorithm, with a variety of possibilities for the normalization of the merit values of individual
embedded levels and for their combination into a single merit value. The library is extensible, thanks to the
decomposition of the algorithms into decoupled components, which makes it easy to implement new types of
weights, new search domains, new figures of merit, and so on.

Categories and Subject Descriptors: G.4 [Mathematical Software]

General Terms: Algorithms

Additional Key Words and Phrases: Lattice rules, figures of merit, quasi-Monte Carlo, multidimensional
integration, CBC construction

ACM Reference Format:
Pierre L’Ecuyer and David Munger. 2016. Algorithm 958: Lattice Builder: A general software tool for con-
structing rank-1 lattice rules. ACM Trans. Math. Softw. 42, 2, Article 15 (May 2016), 30 pages.
DOI: http://dx.doi.org/10.1145/2754929

1. INTRODUCTION

Lattice rules are often used as a replacement for Monte Carlo (MC) to integrate multi-
dimensional functions. To estimate the integral, say, over the unit hypercube of volume
one in s dimensions, [0, 1)s, the simple MC method samples the integrand at n inde-
pendent random points having uniform distribution in the hypercube, and takes the
average. These independent random points tend to spread irregularly, with clusters

This work has been supported by NSERC-Canada grant no. ODGP0110050 and a Canada Research Chair to
the first author. Computations were performed using the infrastructure from the Réseau québécois de calcul
haute performance (RQCHP), a member of the Compute Canada network.
Authors’ address: P. L’Ecuyer and D. Munger, Département d’Informatique et de Recherche Opérationnelle,
Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, H3C 3J7, Canada; emails: lecuyer@iro.
umontreal.ca, mungerd@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0098-3500/2016/05-ART15 $15.00
DOI: http://dx.doi.org/10.1145/2754929

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

http://dx.doi.org/10.1145/2754929
http://dx.doi.org/10.1145/2754929

15:2 P. L’Ecuyer and D. Munger

and gaps, over the integration region (the unit hypercube). Quasi-Monte Carlo (QMC)
methods, which include lattice rules, aim at sampling at a set of (structured) points
that cover the integration region more evenly than MC, that is, with a low discrep-
ancy with respect to the uniform distribution. With a lattice rule, these points are the
points of an integration lattice that fall in the unit hypercube (see the next section).
In randomized QMC (RQMC), the structured points are randomized in a way that the
point set keeps its good uniformity, while each individual point has a uniform distri-
bution over the integration region; thus, the average is an unbiased estimator of the
integral. This randomization can be replicated independently if one wishes to estimate
the variance. When the integrand is smooth enough, QMC (resp., RQMC) can reduce
the integration error (resp., the variance of the estimator) significantly compared with
MC, with the same number n of function evaluations. For detailed background on QMC,
RQMC, and lattice rules, see Niederreiter [1992a], Sloan and Joe [1994], L’Ecuyer and
Lemieux [2000], L’Ecuyer [2009], Lemieux [2009], Dick and Pillichshammer [2010],
Nuyens [2014], and the references given there.

A lattice rule is defined by a set of numerical parameters that determine its point set.
These lattice parameters are selected to (try to) minimize a measure of nonuniformity
of the points, which should depend, in general, on the class of integrands that we want
to consider. The nonuniformity measure is also parameterized (typically) by continuous
parameters (e.g., weights given to the quality of the lower-dimensional projections of
the point set to suit specific classes of integrand, which yields a weighted figure of
merit); thus, there is an infinite number of possibilities. The lattice parameters would
also depend on the desired type of lattice, dimension, and number of points. It is clearly
impossible to definitively search and tabulate the best lattice rules for all of these
possibilities. We need a tool that can construct good integration lattices on demand,
with an arbitrary number of points, in an arbitrary dimension, for various ways of
measuring the uniformity of the points (so that one can use a figure of merit adapted
to the problem at hand), and with various construction methods. The lack of such a
tool so far has hindered the widespread use of lattice rules in simulation experiments.
Other methods such as Sobol’ point sets and sequences turn out to be more widely
used even though (randomly shifted) lattice rules are easier to implement, because
robust general-purpose parameters are more easily available for the former. The main
purpose of the Lattice Builder software tool proposed here is to fill this gap. This tool is
also very handy for doing research on lattice rules; we give a few illustrations of that
in this article. When searching for good lattice rules for a particular application, the
CPU time required to search for a good rule is usually much smaller than the CPU
time for running the experiments using the rule. We stress that the search does not
have to be exhaustive among all possibilities; typically, a rule that is good enough can
be found very quickly with Lattice Builder after examining only a tiny fraction of the
possibilities.

Integration lattices and other QMC or RQMC point sets are also used for other
applications, such as function approximation, solving stochastic partial differential
equations, global optimization of a function, and so on (e.g., see Niederreiter [1992b],
Kuo et al. [2008], L’Ecuyer and Owen [2009], and Woźniakowski and Plaskota [2012]).
Lattice Builder can find lattices not only for multivariate integration, but for these other
applications as well, with an appropriate choice for the measure of nonuniformity (or
discrepancy from the uniform distribution) of the points.

Lattice Builder is implemented in the form of a C++ software library, which can be
used from other programs via its application programming interface (API). It also offers
an executable program that can be called either via a command-line interface (CLI)
or via a graphical web interface to search for a good lattice with specified constraints

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

A General Software Tool for Constructing Rank-1 Lattice Rules 15:3

and criteria. It is available for download from the first author’s web page and other
distribution sites [L’Ecuyer and Munger 2016].

The remainder of the article is organized as follows. In Section 2, we recall some back-
ground on RQMC methods and lattice rules, discuss related work, existing software
and tables, and summarize the main features of Lattice Builder, including software en-
gineering techniques used to speed up the execution. In Sections 3 and 4, we review the
theoretical objects and algorithms implemented by the software tool and explain how
we generalized certain methods, for example, by adapting existing search algorithms
to support more general parameterizations of figures of merit, or to improve on certain
computational aspects required in the implementation. A primary goal was to make
the search for good lattices as fast as possible while allowing flexibility in the choice of
figures of merits and search algorithms. Section 5 discusses the interfaces and usage of
Lattice Builder. In Section 6, we provide examples of applications in which we compare
the behavior and distribution of different figures of merit and different choices of the
weights.

2. LATTICE RULES AND THE PURPOSE OF LATTICE BUILDER

2.1. MC, QMC, and RQMC Integration

The MC method is widely used to estimate the expectation μ = E[X] of a real-valued
random variate X by computing the arithmetic average of n independent simulated
realizations of X. In practice, X is simulated by generating, say, s (pseudo)random
numbers uniformly distributed over (0, 1) and transforming them appropriately. That
is, we can write X = f (U) for some function f : R

s → R, where U is a random vector
uniformly distributed in (0, 1)s, and

μ = E[X] = E[f (U)] =
∫

[0,1)s
f (u) du.

(If s is random, we can take an upper bound or even ∞ in this expression.) The crude
MC estimator of μ averages n independent replications of f (U):

μ̂n,MC = 1
n

n−1∑
i=0

f (U i), (1)

where U0, . . . , Un−1 are n independent points uniformly distributed in (0, 1)s. MC in-
tegration is easy to implement, but its variance Var[μ̂n,MC] = E[(μ̂n,MC − μ)2] = O(n−1)
converges slowly as a function of n.

The idea behind QMC is to replace the n independent random points by a set Pn of
n points that cover the unit hypercube [0, 1)s more evenly, to reduce the integration
error [Niederreiter 1992b; Sloan and Joe 1994; Dick and Pillichshammer 2010]. In
ordinary QMC, these points are deterministic. With RQMC, the n points U0, . . . , Un−1
in Equation (1) are constructed in a way that U i is uniformly distributed over [0, 1)s for
each i, but, in contrast with MC, these points are not independent and are constructed
so that they keep their QMC property of covering the unit hypercube very evenly.
The first property implies that the average is an unbiased estimator of μ, while its
variance can be smaller than for MC because of the second property. Under appropriate
conditions on the integrand, the variance can be proved to converge at a faster rate
than for MC, as a function of n. Overviews of prominent RQMC methods can be found
in L’Ecuyer [2009] and Lemieux [2009]. Here, we shall focus on randomly shifted lattice
rules, discussed in Section 2.2.

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

15:4 P. L’Ecuyer and D. Munger

2.2. Rank-1 Lattice Rules

An integration lattice is a vector space of the form

Ls =
⎧⎨
⎩v =

s∑
j=1

hjv j such that hj ∈ Z for all j = 1, . . . , s

⎫⎬
⎭ ,

where v1, . . . , vs ∈ R
s are linearly independent over R and where Ls contains the set of

integer vectors Z
s. This implies that all the components of each v j are multiples of 1/n,

where n is the number of lattice points per unit of volume. A lattice rule is the QMC
method obtained by replacing the n independent uniform points U0, . . . , Un−1 in (1) by
the point set Pn = {u0, . . . , un−1} = Ls ∩ [0, 1)s [Sloan and Joe 1994].

A randomized counterpart of Pn can be obtained by applying the same random shift
U uniformly distributed in [0, 1)s, modulo 1, to each point of Pn:

P ′
n = {

U i = (ui + U) mod 1 : i = 0, . . . , n − 1
}
, (2)

where the modulo 1 applies componentwise. The RQMC estimator μ̂n,RQMC obtained
with the points U0, . . . , Un−1 of P ′

n is called a randomly shifted lattice rule [L’Ecuyer
and Lemieux 2000]. It was proposed by Cranley and Patterson [1976].

The rank of Ls is the smallest r such that one can find a basis of the form
v1, . . . , vr, er+1, . . . , es, where ej is the jth unit vector in s-dimensions. For a lattice
of rank 1, the point set Pn can be written as

Pn = {
ui = (ia/n) mod 1 = iv1 mod 1 : i = 0, . . . , n − 1

}
, (3)

where a = (a1, . . . , as) ∈ Z
s is an integer generating vector and v1 = a/n. We call

this Pn a rank-1 lattice point set. A Korobov rule is a lattice rule of rank 1 whose
generating vector has the special form a = (1, a, a2 mod n, . . . , as−1 mod n) for some
a ∈ Z

∗
n = {1, . . . , n − 1}.

Each projection of an integration lattice Ls over a subset of coordinates u ⊆ {1, . . . , s}
is also an integration lattice Ls(u) whose corresponding point set Pn(u) is the projection
of Pn over the coordinates in u. It is customary to write the QMC integration error
(and the RQMC variance) for f as sums of errors (and variances) for integrating some
projections fu of f by the projected points Pn(u), over all subsets u ⊆ {1, . . . , s}. To
reduce each term of the sum, we want each projection Pn(u) to cover the unit cube
[0, 1)|u| as evenly as possible [L’Ecuyer 2009]. In particular, it is preferable that all
the points of each projection be distinct. L’Ecuyer and Lemieux [2000] call a lattice
rule fully projection-regular if Pn(u) contains n distinct points for all u 	= ∅, that is,
if the points never superpose on each other in lower-dimensional projections. This
happens if and only if the rule has rank 1 and the coordinates of a are all relatively
prime with n [L’Ecuyer and Lemieux 2000].

Currently, Lattice Builder considers only fully projection-regular rules, which must
be of rank 1. In the rest of this article, for simplification, the term lattice rule will always
refer to fully projection-regular rank-1 rules. All the figures of merit that we consider
are shift-invariant, that is, their values do not change with the random shift; thus, we
express them in terms of the deterministic point set Pn directly. Further coverage of
randomly shifted lattice rules can be found in L’Ecuyer and Lemieux [2000], Kuo et al.
[2006], L’Ecuyer et al. [2010], and L’Ecuyer and Munger [2012], and the references
given there.

Figure 1 illustrates the point sets Pn for two rank-1 lattices with n = 100, one with
a = (1, 23), and the other with a = (1, 3), in the upper panels. Clearly, the first point
set has better uniformity than the second. Applying a random shift will slide all the
points together (modulo 1), keeping their general structure intact. For comparison,

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

A General Software Tool for Constructing Rank-1 Lattice Rules 15:5

Fig. 1. Comparison of two-dimensional point sets in the unit square: lattice points Pn with n = 100 and
a= (1, 23) (top left) and a= (1, 3) (top right), 10×10 grid points (bottom left), and 100 random points (bottom
right).

the lower-left panel shows a centered rectangular grid with n = 100 points, whose
projection to the first coordinate contains only 10 distinct points, and similarly for the
second coordinate. This is actually the point set of a rank-2 lattice rule with n = 100,
v1 = (1/10, 0), and v2 = (0, 1/10), shifted by the vector U = (1/20, 1/20). In the lower-
right panel, we have 100 random points, which cover the space much less evenly than
the lattice points in the upper left.

As illustrated in the figure, the choice of a can make a significant difference in the
uniformity of Pn. Another obvious example of a bad choice is when all coordinates of a
are equal; then, all the points of Pn are on the diagonal line from (0, . . . , 0) to (1, . . . , 1).
To measure the quality of lattice rules and find good values of a, Lattice Builder looks
at the uniformity of the projections Pn(u) for u ⊆ {1, . . . , s} (either all of them or a
subset), and tries to minimize a figure of merit that combines some measures of the
nonuniformity of the projections Pn(u). This process is implemented for various figures
of merit and search spaces for a, as explained in Sections 3 and 4.

2.3. Embedded Lattice Rules

QMC or RQMC estimators sometimes need to be refined by increasing the number
of points, most preferably without throwing away the previous function evaluations.

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

15:6 P. L’Ecuyer and D. Munger

This can be achieved by using embedded point sets Pn1 ⊂ Pn2 ⊂ . . . Pnm with increasing
numbers of points n1 < n2 < · · · < nm for some positive integer m(the maximum number
of nested levels). With lattice rules, this means taking nk = bk for each embedded level k
and for some prime base b, while keeping the same generating vector afor all embedded
levels (or, equivalently, ak = ak+1 mod nk at level k for all k < m) and the same random
shift. Such RQMC estimators are called embedded lattice rules [Hickernell et al. 2001;
Cools et al. 2006]. When m = ∞, they are called extensible [Dick et al. 2008]. For
practical reasons, Lattice Builder assumes that m < ∞. Choosing a good generating
vector a for embedded lattice rules requires a figure of merit that reflects the quality
of the different embedded levels. This is dealt with in Section 3.5. Lattice Builder also
supports the extension of the number of points by modifying the generating vector
of a given sequence of embedded lattice rules so that m can be incremented without
affecting the point sets at levels up to its current value.

The points in successive embedded levels can be enumerated elegantly as a lattice
sequence by using a permutation based on the radical inverse function [Hickernell et al.
2001]. Or, more simply, the new points added from level k − 1 to level k are given by

Pbk \ Pbk−1 = {
U (ib+ j)bm−k : i = 0, . . . , bk−1 − 1; j = 1, . . . , b − 1

}
,

for k = 1, . . . , m, starting with Pb0 = {U0}, and where U j is the jth point from the
point set Pnm at the highest level, given by Equation (2) with n = bm. We shall refer to
the lattices described in Section 2.2 as ordinary lattices when we need to differentiate
them from embedded lattices.

2.4. Related Work and Existing Tools

Currently available software tools for finding good parameters for lattice rules apply to
a limited selection of figures of merit and algorithms. To our knowledge, there is none
at the level of generality of Lattice Builder. Nuyens [2012] provides MATLAB code
for the fast component-by-component (CBC) construction of ordinary and embedded
lattice rules with product and order-dependent weights. Precomputed tables of good
parameters for lattice rules can also be found in articles, books, and websites (e.g.,
see Maisonneuve [1972], Sloan and Joe [1994], L’Ecuyer and Lemieux [2000], and
Kuo [2012]). These parameters were found by making certain assumptions on the
integrand, which are not necessarily appropriate in specific practical applications.
The main drawback of such tables is that it is not possible to tabulate good lattice
parameters in advance for all numbers of points, all dimensions, and any type of figure
of merit that may be needed.

Software is also available for using lattice rules in RQMC settings. For example, the
Java simulation library SSJ [L’Ecuyer 2008] permits one to replace easily any stream
of uniform random numbers by QMC or RQMC points, including those of an arbitrary
lattice rule. Burkardt [2012] offers C++, Fortran, and MATLAB code for several QMC
methods, including lattice rules. Lemieux [2012] provides C code for using lattice rules
of the Korobov type as part of a library that supports QMC methods.

2.5. Features of Lattice Builder

Lattice Builder permits one to find good lattice parameters for figures of merit that
give arbitrary weights to the projections Pn(u); thus, the weights can be tailored to a
given problem. It can be used as a standalone tool or invoked from another program to
construct an integration lattice when needed, with the appropriate dimension, number
of points, and figure of merit that may not be known in advance. It allows researchers
to study empirically the properties of various figures of merit, such as the distribution
of values of a figure of merit over a given family of lattices or the joint distribution for
two or more figures of merit. It can also be used to compare the behavior and properties

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

A General Software Tool for Constructing Rank-1 Lattice Rules 15:7

of different search algorithms, or simply to evaluate the quality of a given lattice rule,
or even search for bad lattices.

Cools et al. [2006] opened the way to efficient search algorithms with their fast
CBC algorithm that reuses intermediate results during the computation of a figure of
merit, for special parameterizations of the weights given to the projections. We extend
these methods to more general weight parameterizations. Lattice Builder supports
various combinations of figures of merit types and search methods not found in existing
software, and offers enough flexibility to easily add new combinations in the future.

Such generality and flexibility requires decomposing the search process into decou-
pled software components, each corresponding to distinct tasks that are part of the
search process (e.g., enumerating candidate generating vectors) and that can be per-
formed using different approaches (e.g., enumerating all possible vectors or choosing
a few at random). The software offers a choice of alternative implementations for each
of these tasks. The usual approach consists of defining for each task an API, that is, a
set of functionalities and properties that specifies precisely how a user of the API can
communicate with a software component that performs a given task (e.g., how to get
the next candidate vector), without telling how it is implemented. Thus, various objects
can implement the same interface in distinct ways. This is called polymorphism. The
traditional object-oriented approach relies on dynamic polymorphism, that is, when a
user calls a function from a given interface, the particular implementation that must be
used is resolved at runtime every time the function is called. This consumes CPU time
and can cause significant overhead if this resolution process takes time comparable
to that required to actually execute the function. This is especially true for a function
that does very little work, such as mapping indices of a symmetric vector, and that is
called relatively frequently, as in a loop that is repeated a large number of times, which
is common in our software. Dynamic polymorphism thus prevents the compiler from
performing certain kinds of optimizations, such as function inlining. We managed to
retain good performance by designing the code in a way that the compiler itself can re-
solve the polymorphic functions. We did this through the use of C++ templates that act
as a code generation tool. This is known as static polymorphism [Alexanderscu 2001;
Lischner 2009]. In addition to moving the resolution process from runtime to compile
time, this approach allows the compiler to perform further optimizations.

Of course, using C++ libraries directly from other languages is not easy in general.
However, the latbuilder executable program should be able to carry out the most
common tasks for a majority of users. It is reasonably simple to call this executable
from other languages such as C, Java, and Python, for example. Contributors are also
welcome to write interface layers for the library in other languages.

Designing these decoupled, heterogeneous components was not straightforward. For
example, the fast CBC construction method described in Section 4.4 evaluates a figure
of merit for all candidate lattice rules simultaneously, in contrast to other construction
methods that normally evaluate the figure of merit for one lattice at a time. Thus,
accessing the values of a figure of merit for the different lattice rules sequentially must
be implemented differently. To make this transparent to the user at the API level, we
use an iterator design closely inspired by that of the containers in the C++ standard
template library (STL), which relies on code generation through class templates rather
than on polymorphism.

3. FIGURES OF MERIT

In this section, we describe the different types of figures of merit currently implemented
in Lattice Builder. Our generic notation for a figure of merit is Dq(Pn). In the QMC
literature, this is a standard notation for discrepancies, which measure the distance (in
some sense) between the distribution of the points of Pn and the uniform distribution

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

15:8 P. L’Ecuyer and D. Munger

over [0, 1)s. Here, we broaden its usage to positive real-valued figures of merit that
are not necessarily discrepancies. Our figures of merit are weighted combinations of
measures of nonuniformity of the projections Pn(u), as we now explain.

3.1. Weighted Figures of Merit

3.1.1. The ANOVA Decomposition and Weighted Projections. The general figures of merit
supported in Lattice Builder are expressed as a weighted �q-norm with respect to the
projections Pn(u) of Pn: [

Dq(Pn)
]q =

∑
∅ 	=u⊆{1,...,s}

γ q
u

[
Du(Pn)

]q
, (4)

where q ≥ 1 is a real number (the most common choice is q = 2) and where, for
every set of coordinates u, the projection-dependent weight γ

q
u is a real-valued (finite)

constant and the projection-dependent figure of merit Du(Pn) = Du(Pn(u)) depends only
on Pn(u). The weights γ

q
u can be set to any real numbers; there are several choices

for Du, described further in this section. When searching for good lattices, all weights
γ

q
u should be nonnegative, but our software can handle negative values of γ

q
u as well.

This could be useful for experimental purposes, for example, if one seeks a lattice that
is good in most projections but bad in one or more particular projection(s), or if we
want to add a negative correction to the weight of some projection when combining
different types of weights. Here, we refer to γ

q
u instead of γu for the weights to allow for

negative weights. Of course, error and variance bounds based on Hölder’s inequality,
as in Equation (11), for example, are not valid with negative weights. Other authors
sometimes use a different formulation of the �q norm, for example, Nuyens [2014], who
takes the �q norm with respect to the terms of the Fourier expansion (the sum is over
Z

s). We also note that the presence of q in Equation (11) does not really enlarge the
class of figures of merit that can be considered, because one can always redefine γu

and Du(Pn) in a way that they incorporate the power q. However, this parameter q can
be convenient for proving integration error or variance bounds for various classes of
functions via Hölder’s inequality.

The general figure of merit (Equation (4)) is related to (and motivated by) the func-
tional ANOVA decomposition of f [Efron and Stein 1981; Owen 1998; Sobol’ 2001; Liu
and Owen 2006]:

f (x) = μ +
∑

∅ 	=u⊆{1,...,s}
fu(x),

where, for each nonempty u ⊆ {1, . . . , s}, the ANOVA component fu(x) integrates to zero
and depends only on the components of x whose indices are in u (its definition can be
found in the earlier references in this section), these components are orthogonal with
respect to the L2 inner product, and the variance of the RQMC estimator decomposes
in the same way:

Var[μ̂n,RQMC] =
∑

∅ 	=u⊆{1,...,s}
Var[μ̂n,RQMC,u], (5)

where μ̂n,RQMC,u is the RQMC estimator for
∫

[0,1)s fu(x) dx using the same points as
μ̂n,RQMC. Thus, the RQMC variance for f is the sum of RQMC variances for the ANOVA
components fu. Minimizing this RQMC variance would be equivalent to minimizing
Equation (4) if γ

q
u [Du(Pn)]q was exactly proportional to Var[μ̂n,RQMC,u] for all u, and

q < ∞. In the former expression, Du(Pn) pertains to the quality of the projection Pn(u),
while the weight γ

q
u should reflect the variability of fu or, more precisely, its anticipated

contribution to the variance (more on this later; see also L’Ecuyer and Munger [2012]).

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

A General Software Tool for Constructing Rank-1 Lattice Rules 15:9

Note that all one-dimensional projections (before random shift) are the same. Thus,
the weights γ

q
u for |u| = 1 are irrelevant if we assume that all computations are exact.

In practice, however, computations are in floating point (they are not exact) and these
weights may have an impact on what vector a is retained.

For q = ∞, the sum in Equation (4) is interpreted by Lattice Builder as a maximum
that retains only the worst weighted value:

D∞(Pn) = max
∅ 	=u⊆{1,...,s}

γu Du(Pn), (6)

and the user specifies the weights as γu rather than γ
q
u . The set operators

∑
(sum) and

max (maximum) in the context of Equations (4) and (6) are implemented with distinct
algorithms; we refer to them as accumulators henceforth.

3.1.2. Saving Work. In some situations, Dq must be evaluated for a j-dimensional lat-
tice with generating vector (a1, . . . , aj) when the merit value for the (j −1)-dimensional
lattice with generating vector (a1, . . . , aj−1) is already available. In that case, Lattice
Builder reuses the work already done, as follows. If Dq, j(Pn) denotes the contribution
to (4) that depends only on the first j coordinates of Pn, we can write the recurrence[
Dq, j(Pn)

]q =
∑

∅ 	=u⊆{1,..., j}

[
γu Du(Pn)

]q = [
Dq, j−1(Pn)

]q +
∑

u⊆{1,..., j−1}

[
γu∪{ j} Du∪{ j}(Pn)

]q
, (7)

for j = 1, . . . , s, with Dq,0(Pn) = 0. In particular, Dq,s(Pn) = Dq(Pn). Lattice Builder
stores Dq, j−1(Pn) to accelerate the computation of Dq, j(Pn). The time complexity to
evaluate Equation (7) depends on the time complexity to evaluate each Du(Pn); in the
general cases, however, it requires 2 j − 1 such evaluations. We will see later that con-
siderable savings are possible for certain choices of discrepancy and weight structure.

It is also possible in Lattice Builder to prevent the complete term-by-term evaluation
of the sum in Equation (4) by specifying an early exit condition on the value of the
partial sum, which is checked after adding each new term. This can be used to reject a
candidate Pn as soon as the sum is known to exceed some threshold, for example, the
merit value of the best candidate Pn found by the construction algorithm so far.

Lattice Builder implements specific types of projection-dependent figures of merit,
described here, and can be easily extended to implement other projection-dependent
figures of merit.

3.1.3. The Pα Criterion. One common figure of merit supported by Lattice Builder is
based on the Pα square discrepancy (see Sloan and Joe [1994], Hickernell [1998a],
Nuyens [2014], and the references given there):

D2
u(Pn) = 1

n

n−1∑
i=0

∏
j∈u

pα((iaj/n) mod 1), (8)

where

pα(x) = −(−4π2)α/2 Bα(x)
α!

(9)

with α = 2, 4, . . . , and Bα is the Bernoulli polynomial of even degree α. The Pα criterion
is actually defined for any α > 1 [Sloan and Joe 1994; Hickernell 1998a], but its
expression as a finite sum given in Equation (8) holds only for α = 2, 4, With D2

u

as defined in Equation (8), D2
2 is the weighted Pα square discrepancy [Dick et al. 2004,

2006] and it is known (see also L’Ecuyer and Munger [2012, Section 4]) that for all

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

15:10 P. L’Ecuyer and D. Munger

n ≥ 3 and even α,

Var[μ̂n,RQMC,u] ≤ V2
u(f)D2

u(Pn), (10)
where

V2
u(f) = (2π)−α|u|

∫
[0,1)|u|

∣∣∣∣∂α|u|/2 fu(x)

∂xα/2
u

∣∣∣∣
2

dx

is the square variation of fu [Hickernell 1998a], where ∂α|u|/2 fu(x)/∂xα/2
u denotes the

mixed partial derivative of order α/2 of fu with respect to each coordinate in u. This
V2

u(f) measures the variability of fu. If V2
u(f) < ∞ for each u and we take γ 2

u = V2
u(f),

so that the weights correspond to the variabilities of the projections, by combining
Equations (10), (5), and (4) for q = 2, we obtain that

Var[μ̂n,RQMC] ≤ D2
2(Pn). (11)

In fact, the variance bound Equation (11) holds for all integrands f for which

V2
u(f) ≤ γ 2

u < ∞. (12)

The worst-case function f that satisfies Condition (12), and for which the RQMC
variance upper bound is attained, is (see L’Ecuyer and Munger [2012]):

f ∗
α (x1, . . . , xs) =

∑
u⊆{1,...,s}

γu

∏
j∈u

(2π)α/2

(α/2)!
Bα/2(xj). (13)

It is also known that, regardless of the choice of weights γu (for fixed s), lattice rules can
be constructed such that D2

2(Pn) converges almost as fast as n−α asymptotically when
n → ∞ [Sloan and Joe 1994; Dick et al. 2006; Sinescu and L’Ecuyer 2012]. Therefore,
for all f such that V2

u(f) ≤ γ 2
u < ∞ for each u, the same convergence rate can be

obtained for the variance.
The square variations V2

u(f) cannot be computed explicitly in most practical appli-
cations; thus, to choose the weights γu, the variability of the integrand along each
projection must be approximated by making certain assumptions on the structure of
the integrand [Wang and Sloan 2006; Wang 2007; Kuo et al. 2011, 2012; L’Ecuyer and
Munger 2012]. In any case, when searching for good rules, the weights should account
for the fact that more variance on μ̂n,RQMC is built from a poor distribution of the points
in certain projections of Pn, those with the larger square variations, than in others.
In particular, if f is the sum of two functions that depend on disjoint sets u and v of
variables, that is, f (x) = fu(x) + fv(x) with u ∩ v = ∅, projections that comprise coor-
dinates from both sets u and v cannot contribute any variance on μ̂n,RQMC. Thus, their
individual weights should be set to zero for D2

2(Pn) to be representative of Var[μ̂n,RQMC].

3.1.4. The Rα Criterion. The Rα criterion [Niederreiter 1992b; Hickernell and
Niederreiter 2003] has the same structure as Equation (8), but with pα(x) replaced
with

rα,n(x) =
�n/2�∑

h=−�(n−1)/2�
max(1, |h|)−αe2πihx − 1. (14)

Note the dependence of rα,n on n. For even n, the sum in Equation (14) is over h =
−n/2 + 1, . . . , n/2; for odd n, the sum is over h = −(n − 1)/2, . . . , (n − 1)/2.

The bound Equation (10) holds for Rα, but only if the integrand f has Fourier
coefficients

f̂ (h) =
∫

[0,1)s
f (x) e−2π

√−1h·x dx,

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

A General Software Tool for Constructing Rank-1 Lattice Rules 15:11

defined for h ∈ Z
s, that vanish for h 	∈ (−n/2, n/2]s ∩ Z

s. This might be quite restrictive.
On the other hand, the bound holds and can be computed for any α ≥ 0; for the Pα

criterion, however, it holds only for α > 1, and the criterion can be computed directly
with Equations (8) and (9) only when α is an even integer. For other values of α, we have
no formula to compute Pα exactly and efficiently. Although the bound Equation (10)
with Rα and α > 1 holds for a smaller class of functions than with Pα (for the same
α), upper bounds on Pα can be derived in terms of Rα, which is itself bounded by R1
[Niederreiter 1992b; Hickernell and Niederreiter 2003]. The rationale is that, for fixed
α > 1, extending the sum in Equation (14) to all of Z adds only a “limited” contribution
to the figure of merit when n is “large enough” (bounds on that contribution are given
in earlier references, and the question of how large n should be for the contribution to
be negligible is investigated empirically in Section 6.5). It depends very much on s, α,
the generating vector, and the choice of weights. Moreover, other well-known measures
of nonuniformity, such as the (weighted) star discrepancy, can also be bounded in terms
of R1. This makes R1 a very general criterion, in some sense.

To evaluate Rα, only the values of rα,n(x) evaluated at x = i/n for i = 0, . . . , n− 1 are
needed. These can be efficiently calculated through the use of fast Fourier transforms
(FFT), as follows (based on an idea suggested to us by Fred Hickernell). First, we need
to rewrite Equation (14) in the form of a discrete Fourier transform. To do so, we replace
h with h − n in the part of the sum that is over the negative values of h:

rα,n(x) =
n−1∑
h=0

r̂α,n(h) e2πihx,

where

r̂α,n(h) =
{ 0 if h = 0

h−α if 0 < h ≤ n/2
(n − h)−α if n/2 < h < n.

The values of rα,n(i/n) for i = 0, . . . , n − 1 are given by the n-point discrete Fourier
transform of r̂α,n(h) at h = 0, . . . , n − 1, and can be calculated with an FFT. This is how
it is done in Lattice Builder.

3.1.5. Criteria Based on the Spectral Test. Another type of projection-dependent figure of
merit supported by Lattice Builder is based on the spectral test, as in L’Ecuyer and
Lemieux [2000]. The projection of the lattice Ls onto the coordinates in u has its points
arranged in a family of equidistant parallel hyperplanes in R

|u|. Let Lu(Pn) = Lu(Pn(u))
denote the distance between the successive parallel hyperplanes, maximized over all
parallel hyperplane families that cover all the points. This distance is computed as in
L’Ecuyer and Couture [1997]. We define the spectral figure of merit as

Du(Pn) = Lu(Pn)
L∗

|u|(n)
≥ 1, (15)

where L∗
|u|(n) is a lower bound on the distance Lu(Pn) that depends only on |u| and

n, obtained from lattice theory [Conway and Sloane 1999; L’Ecuyer 1999a; L’Ecuyer
and Lemieux 2000]. This figure of merit (Equation (15)) cannot be smaller than 1, and
we want to minimize it. The normalization in Equation (15) permits one to consis-
tently compare the merit values of the projections Pn(u) of different orders |u|. In Lat-
tice Builder, user-defined normalization constants can also replace the bounds L∗

|u|(n).
L’Ecuyer and Lemieux [2000] used Du(Pn) as given by Equation (15) together with
q = ∞ in Equation (4) with a unit weight assigned to a selection of projections, and
zero weight to others. Equation (4) used with Equation (15) constitutes, in a sense, an

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

15:12 P. L’Ecuyer and D. Munger

approximation to the right-hand side of Equation (11) [L’Ecuyer and Lemieux 2000],
with different conditions on f . The weights should still reflect the relative magnitude of
the contributions associated to the different projections of the point set to the variance
of the RQMC estimator.

3.2. Types of Weights

Under some special configurations, the 2s − 1 projection-dependent weights γu can be
expressed in terms of fewer than 2s −1 independent parameters. This allows for a more
efficient evaluation of certain types of figures of merit, as will be explained in Sec-
tion 3.3. In Lattice Builder, the weights can be specified for individual projections and
default weights can be applied to groups of projections of the same dimension. Lattice
Builder also implements three special classes of weights known as order-dependent
weights, product weights, as well as product and order-dependent (POD) weights.

The weights are called order-dependent when all projections Pn(u) of the same order
|u| have the same weight, that is, when there exists nonnegative constants �1, . . . , �s
such that γu = �|u| for ∅ 	= u ⊆ {1, . . . , s} [Dick et al. 2006]. If �k 	= 0 and � j = 0 for
all j > k, the order-dependent weights are said to be finite-order of order k. In Lattice
Builder, a weight can be specified explicitly for the first few projection orders, then a
default weight can be specified for higher orders.

For product weights [Hickernell 1998a, 1998b; Sloan and Woźniakowski 1998], each
coordinate j = 1, . . . , s is assigned a nonnegative weight γ j such that γu = ∏

j∈u γ j for
∅ 	= u ⊆ {1, . . . , s}. As for the order-dependent weights, Lattice Builder allows the user
to specify explicit weights for the first few coordinates, then to set a default weight for
the rest of them.

POD weights [Kuo et al. 2011, 2012], a hybrid between product weights and order-
dependent weights, are of the form γu = �|u|

∏
j∈u γ j . They can be specified in Lattice

Builder, as would be product weights and order-dependent weights together.
Lattice Builder allows the user to specify the q-th power of the weights, γ

q
u , as a

sum of the q-th power of weights of different types. Thus, it is possible, for instance, to
choose order-dependent weights as a basis, and to add more weight to a few selected
projections by specifying projection-dependent weights for these, on top of the order-
dependent weights. In addition, arbitrary special cases of the projection-dependent
weights can be implemented in Lattice Builder through the API.

When adding weights of different structures together, the corresponding sum in
Equation (4) can be separated into multiple sums, one corresponding to each type
of weight. The software thus computes the figure of merit for each type of weight
separately, using evaluation algorithms specialized for each of them, then sums the
individual results to produce the total figure of merit. One could think of multiply-
ing (instead of adding) weights of different structures, like POD weights result from
multiplying product and order-dependent weights, but then the resulting sum in Equa-
tion (4) cannot be easily decomposed into simpler sums that we know how to evaluate.
This requires implementing new evaluation algorithms, as done for POD weights.

3.3. Weighted Coordinate-Uniform Figures of Merit

In this section, we consider Dq as defined in Equation (4) and with Dq
u as in Equation (8),

where pα is replaced by any function ω : [0, 1) → R:

[Du(Pn)]q = 1
n

n−1∑
i=0

∏
j∈u

ω((iaj/n) mod 1). (16)

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

A General Software Tool for Constructing Rank-1 Lattice Rules 15:13

We call this Dq a coordinate-uniform figure of merit. The software implements Equa-
tion (16) for ω = pα as in Equation (9) and for ω = rα,n as in Equation (14). These
choices, respectively, yield the Pα and Rα criteria when q = 2, but do not correspond to
known criteria for other values of q. To avoid any confusion, the software allows only
q = 2 when using the evaluations methods described here for Equation (16). Note that
choosing any other value of q just raises the final value of the figure of merit to the
power 2/q, and does not change the ranking of lattice rules.

We introduce algorithms that compute figures of merit as in Equation (16) more
efficiently than to independently compute the 2s − 1 terms in Equation (4). For each
type of weight from Section 3.2, there is a specialized algorithm, described here.

3.3.1. Storing vs. Recomputing. Let ω = (ω0, . . . , ωn−1) be the vector with components
ωi = ω(i/n) for i = 0, . . . , n − 1. For j = 1, . . . , s, also let ω(j) = (ωπ j (0), . . . , ωπ j (n−1))
denote vector ω resulting from permutation π j(i) = iaj mod n for i = 0, . . . , n− 1. (Note
that π j is a permutation only if aj and n are coprime, which we have already assumed
in Section 2.2.) The last term on the right-hand side of Equation (7) can thus be written
in vector form as

1
n

n−1∑
i=0

ωπ j (i)

∑
u⊆{1,..., j−1}

γ
q
u∪{ j}

∏
k∈u

ωπk(i) = ω(j)

n
•
⎛
⎝ ∑

∅ 	=u⊆{1,..., j−1}
γ

q
u∪{ j}qu

⎞
⎠ ,

where • denotes the scalar product, and

qu =
(∏

k∈u

ωπk(0), . . . ,
∏
k∈u

ωπk(n−1)

)
=

⊙
k∈u

ω(k),

where � denotes the element-by-element product, for example, (x1, . . . , xs) �
(y1, . . . , ys) = (x1y1, . . . , xs ys). Putting everything together, we obtain for j = 1, . . . , s

Dq
q, j(Pn) = Dq

q, j−1(Pn) + ω(j) • q̄j

n
(17)

q̄j =
∑

u⊆{1,..., j−1}
γ

q
u∪{ j} qu (18)

qu∪{ j} = ω(j) � qu (u ⊆ {1, . . . , j − 1}), (19)

with initial states Dq,0(Pn) = 0 and q∅ = 1. Assuming that qu is already available for
u ⊆ {1, . . . , j − 1}, computing q̄j requires O(2 jn) operations and storage for all states
qu for u ⊆ {1, . . . , j − 1}.

For comparison, computing separately the 2 j terms in the sum on the right-hand
side of Equation (7) in coordinate-uniform form requires constant storage and O(2 j jn)
operations, as explained later. The terms in the sum on the right-hand side of Equa-
tion (7) can be regrouped by projection order � = |u|, ranging from 0 to j − 1. There are
(j−1

�
) projections of order �, and evaluating Dq

u∪{ j} of the form of Equation (16) requires
the multiplication of � + 1 factors and the addition of n terms. Hence, evaluating all
terms on the right-hand side of Equation (7) requires a number of operations of the
order of

j−1∑
�=0

(
j − 1

�

)
(� + 1)n = 2 j−2(j + 1)n

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

15:14 P. L’Ecuyer and D. Munger

because
∑ j

�=0(j
�
)� = 2 j−1 j. This complexity analysis applies to general projection-

dependent weights. Simplifications can be made for special types of weights, as dis-
cussed in Section 3.3.3.

Overall, this second approach takes only O(n) space for the precomputed values
ω(i/n); thus, it needs less storage than the first, but more operations. The user may
select one of these two approaches depending on the situation. In the case of ordinary
lattices, Lattice Builder stores only ω; the components of ω(j) are obtained dynamically
by applying the permutation π j defined earlier to the components of ω.

3.3.2. Embedded Lattices. For embedded lattices in base b, a distinct merit value must
be computed for each level. Thus, we define a distinct vector ωk of length (b− 1)bk−1 for
each level k = 1, . . . , m, whose ith component has value ω(ηb(i)/bk), where the mapping

ηb(i) = i + ⌊
(i − 1)/(b − 1)

⌋
simply skips all multiples of b. For example, with b = 3 and k = 2, we have that

ω2 = (
ω(1/9), ω(2/9), ω(4/9), ω(5/9), ω(7/9), ω(8/9)

)
.

For k = 0, we define ω0 = (ω(0)). Thus, for embedded lattices, Lattice Builder stores

ω = (ω0, . . . ,ωm)

as the concatenation of the subvectors ωk for all individual levels k = 0, . . . , m. The other
state vectors ω(j), q̄j , and qu∪{ j} are defined accordingly, which allows for standard vector
operations (addition, multiplication by a scalar) to be carried out on all levels at the
same time, transparently, using the same syntax as for ordinary lattices. Note that
the first bk components of a vector contain all the information relative to level k; thus,
the scalar product at level k between two vectors x = (x1, . . . , xbm) and y = (y1, . . . , ybm),
which we denote by [x • y]k, can be obtained by computing the scalar product using
exclusively the first bk components of each vector:

[x • y]k =
bk∑

i=1

xi yi = [x • y]k−1 +
bk∑

i=bk−1+1

xi yi,

where the second equality holds for k ≥ 1. It follows that the scalar products for all
levels can be computed incrementally by reusing the results for the lower levels. For
example, the scalar product at level k ≥ 1 can be obtained by adding the scalar product
using only the components of indices bk−1 + 1 to bk to the result of the scalar product
at level k − 1.

3.3.3. Special Types of Weights. Equations (18) and (19) generalize to projection-
dependent weights the recurrence formulas previously obtained by Cools et al. [2006]
and Nuyens and Cools [2006a] for the simpler cases of order-dependent and product
weights, respectively. In these cases, Equation (17) still holds, but the definitions of q̄j
and of the state vectors are different from Equations (18) and (19). For order-dependent
weights and j = 1, . . . , s, we have that

q̄j =
j−1∑
�=0

�
q
�+1 qj−1,� (20)

qj,� = qj−1,� + ω(j) � qj−1,�−1 (� = 1, . . . , j), (21)

with qj,0 = 1 for all j and qj,� = 0, where � > j. In practice, we overwrite qj−1,� with
qj,� when j is increased. However, qj−1,�−1 must still be available when computing qj,�;

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

A General Software Tool for Constructing Rank-1 Lattice Rules 15:15

thus, for fixed j, we proceed by decreasing order of �. Assuming that qj−1,� is already
available for � = 1, . . . , j − 1, computing q̄j with order-dependent weights requires
O(jn) operations and storage only for the states qj−1,� for � = 1, . . . , j − 1.

For product weights and j = 1, . . . , s, we have that

q̄j = γ
q
j qj−1 (22)

qj = (
1 + γ

q
j ω(j)) � qj−1, (23)

with q0 = 1. Assuming that qj−1 is already available, computing q̄j with product
weights requires O(jn) operations and O(n) storage only for the state qj−1.

The approach for POD weights was proposed by Kuo et al. [2012], and turns out to
be a slight modification of the case of order-dependent weights. We have that

q̄j = γ
q
j

j−1∑
�=0

�
q
�+1 qj−1,� (24)

qj,� = qj−1,� + γ
q
j ω(j) � qj−1,�−1 (� = 1, . . . , j), (25)

with qj,0 = 1 for all j and qj,� = 0, where � > j. The storage and algorithmic complexi-
ties are unchanged.

When the user specifies a sum of weights of different types, Lattice Builder first
evaluates the coordinate-uniform figure of merit for each type of weights using the
appropriate specialized algorithm, then adds up the computed merit values.

Regardless of the type of weights, if a1, . . . , aj−1 are kept untouched, the same
weighted state q̄j and prior merit value Dq, j−1(Pn) can be used to compute Dq, j(Pn)
for different values of aj , which makes the CBC algorithms described in Section 4 very
efficient.

Specialized evaluation algorithms for custom types of weights can be implemented
in Lattice Builder simply by redefining Equations (18) and (19) through the API.

3.4. Transformations and Filters

In Lattice Builder, it is possible to configure a chain of transformations and filters that
will be applied to the computed values of a figure of merit. To every original merit
value Dq(Pn) in Equation (4), the transformation associates a transformed merit value
Eq(Pn). For example, the transformed value may have the form

Eq(Pn) = Dq(Pn)
D∗

q(n)
,

where D∗
q(n) is some normalization factor, for example, a bound on (or an estimate of)

the best possible value of Dq(Pn), or a bound on the average of Dq(Pn) over all values of
a1, . . . , as under consideration for the given n and s. Such transformations can be useful,
for example, to define comparable measures of uniformity for lattices of different sizes
n and combining them to measure the global quality of a set of embedded lattices
(see Section 3.5) or, when constructing lattices by some random search procedure, to
eliminate lattices whose normalized figure of merit (e.g., for the projections over the j
coordinates selected so far, in the case of a CBC construction) is deemed too poor. In
the latter case, a filter can be applied after the transformation to exclude the candidate
vectors afor which Eq(Pn) exceeds a given threshold. Such acceptance-rejection schemes

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

15:16 P. L’Ecuyer and D. Munger

were proposed and used by L’Ecuyer and Couture [1997], Wang and Sloan [2006], and
Dick et al. [2008], among others.

For Pα with projection-dependent weights and q = 2, Lattice Builder implements the
bound derived by Sinescu and L’Ecuyer [2012], valid for any λ ∈ [1/α, 1):

[
D2(Pn)

]2 ≤ [
D∗

2(n; λ)
]2 =

⎡
⎣ 1

ϕ(n)

∑
∅ 	=u⊆{1,...,s}

γ 2λ
u

(
2ζ (λα)

)|u|
⎤
⎦

1/λ

, (26)

where ϕ is Euler’s totient function and ζ is the Riemann zeta function. For ordinary
lattice rules, Lattice Builder selects D∗

2(n) = D∗
2(n; λ∗), where λ∗ minimizes D∗

2(n; λ)
over the interval [1/α, 1). We also have specialized its expression for more efficient
computation with order-dependent weights:

[
D∗

2(n; λ)
]2 =

[
1

ϕ(n)

s∑
�=1

�2λ
� ys,�(λ)

]1/λ

, (27)

where

ys,�(λ) = s − � + 1
�

2ζ (αλ) ys,�−1(λ)

for � = 1, . . . , s, with ys,0(λ) = 1. For product weights, we have that

[
D∗

2(n; λ)
]2 = 1

ϕ(n)1/λ

⎡
⎣ s∏

j=1

(
1 + 2γ 2λ

j ζ (αλ)
) − 1

⎤
⎦

1/λ

. (28)

For POD weights, it is easily seen that Equation (27) still holds, but with

yj,�(λ) = yj−1,�(λ) + 2γ 2λ
j ζ (αλ) yj−1,�−1(λ)

for � = 1, . . . , j, with yj,0(λ) = 1 for all j and yj,�(λ) = 0 when � > j. As was the case
with Equation (21), the yj−1,� here can be overwritten with yj,�, as long as we proceed
by decreasing order of �. Lattice Builder deals with sums of weights of different types
by decomposing the sum in Equation (26) into multiple sums, one corresponding to
each type of weight. This allows for using the efficient implementations specialized for
each type of weight.

As an alternative to Equation (28), Lattice Builder also implements the bound de-
rived by Dick et al. [2008] for product weights, also valid only for q = 2 and λ ∈ [1/α, 1):

[
D∗

2(n; λ)
]2 = 1

n1/λ

⎡
⎣ s∏

j=1

(
1 + 2κ+1γ 2λ

j ζ (λα)
) − 1

⎤
⎦

1/λ

, (29)

where κ is the number of distinct prime factors of n.
Arbitrary transformations and filters can also be defined by the user through the

API. By default, Lattice Builder applies no transformation, that is, Eq(Pn) = Dq(Pn).

3.5. Weighted Multilevel Figures of Merit

For embedded lattices, a distinct normalized merit value Eq(Pnk) must be associated to
each embedded level k = 1, . . . , m. To produce a global scalar merit value Ēq(Pn1 , . . . , Pnm)
for the set of embedded lattices, a first available approach is to normalize the merit
values at each level k as explained in Section 3.4, then combine these normalized values

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

A General Software Tool for Constructing Rank-1 Lattice Rules 15:17

by taking the worst (largest) weighted value [Hickernell et al. 2001; Cools et al. 2006]:

[
Ēq(Pn1 , . . . , Pnm)

]q = max
k=1,...,m

wk
[
Eq(Pnk)

]q
, (30)

where wk is the nonnegative per-level weight for k = 1, . . . , m. A second available
approach is to compute the weighted average [Dick et al. 2008] instead of taking the
maximum:

[
Ēq(Pn1 , . . . , Pnm)

]q =
m∑

k=1

wk
[
Eq(Pnk)

]q
. (31)

As a special case, one may put wm = 1 and wk = 0 for k < m, which amounts to using the
algorithms for embedded lattices to construct an ordinary lattice of size nm. The fast
CBC construction algorithm [Cools et al. 2006], discussed in Section 4.4, is actually
implemented in this way in Lattice Builder. The implementation requires that the
number of points has the form n = bm with b prime (although fast CBC could also be
implemented for arbitrary composite n); the algorithm must compute merit values for
embedded levels anyway. Custom methods of combining multilevel merit values can
also be defined by the user through the API.

For embedded lattices constructed usingPα for the projections and with q = 2, Lattice
Builder selects D∗

2(nk) = D∗
2(nk; λ∗) at level k, where λ∗ minimizes c−1/λ

k [D∗
2(nk; λ)]2, with

D∗
2(nk; λ) selected among the bounds Equations (26) to (29), and where each constant

ck ≥ 0, which must be specified by the user, defines a weight wk = c1/λ∗
k at level k. Dick

et al. [2008] proved that, with the CBC construction algorithm (see Section 4), if we
normalize with the bound Equation (29) and filter out all candidate lattices for which
E2(Pnk) > 1 at any level k, the algorithm is guaranteed to return an embedded lattice
rule for which Var[μ̂nk,RQMC] converges at a rate arbitrarily close to O(n−α

k) for all levels
k for which ck > 0.

4. CONSTRUCTION METHODS

Recall that our search for lattice rules is restricted to the space of fully projection-
regular rank-1 integration lattices. This means that, for any given n, we want to con-
sider only the generating vectors a = (a1, . . . , as) whose coordinates are all relatively
prime with n. We may want to enumerate all those vectors to perform an exhaustive
search, or enumerate only those having a given form (e.g., to search among Korobov
lattices), or just sample a few at random. In this section, we discuss the techniques that
we have designed and implemented to perform this type of enumeration or sampling.
Then, we review different construction methods supported by Lattice Builder. For all
these methods, filters are applied as part of the construction process for early rejection
of candidate lattices as soon as their normalized merit value exceeds a given threshold.

4.1. Enumerating the Integers Coprime With n

For any n > 1, let

Un = {
i ∈ Z

∗
n : gcd(i, n) = 1

}
,

which can be identified with (Z/nZ)×, the multiplicative group of integers modulo n. Its
cardinality is given by Euler’s totient function ϕ(n). For all construction methods, we
only consider values aj ∈ Un. Without loss of generality, we also assume that a1 = 1,
for simplicity.

A naı̈ve enumeration of the ϕ(n) elements in Un could be done by going through
each of the n − 1 elements of Z

∗
n and filtering out those that are not coprime with n by

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

15:18 P. L’Ecuyer and D. Munger

computing their greatest common divisors. In practice, the elements of Un often need
to be enumerated repeatedly, depending on the search space for aand the construction
method. An alternative approach would be to enumerate them definitively and store
them in an array. But this is not efficient if n is large and we only want to pick a few
of them at random. The algorithm in Lattice Builder that enumerates the elements of
Un assigns them indices based on their rank, using the Chinese remainder theorem,
as explained later. It permits one to pick random elements efficiently by randomly
selecting indices from 1 to ϕ(n).

Suppose that n is a composite integer that can be factored as n = ν1ν2 . . . ν�, where
ν j = β

μ j
j for j = 1, . . . , �, and where β1 < · · · < β� are � distinct prime factors with

respective integer powers μ1, . . . , μ�. The Chinese remainder theorem states that there
is an isomorphism between Z

∗
n and Z∗

n = Z
∗
ν1

× · · · × Z
∗
ν�

that maps k ∈ Z
∗
n to κ =

(κ1, . . . , κ�) ∈ Z∗
n. Here, we set κ j = k mod ν j for j = 1, . . . , �. Note that k is coprime with

n if and only if κ j mod β j 	= 0 for all j. The converse mapping can be verified to be

k =
⎡
⎣ �∑

j=1

(n/ν j)κ jξ j

⎤
⎦ mod n, (32)

where ξ j is the multiplicative inverse of n/ν j modulo ν j [Knuth 1998, Section 4.3.2].
These ξ j can be obtained with the extended Euclidean algorithm. In Lattice Builder,
given n, all the constants n/ν j and ξ j for j = 1, . . . , � are computed in advance and stored
for subsequent use. To enumerate the elements of Un, all values of κ ∈ Z∗

n composed
exclusively of nonzero components are enumerated (this is a straightforward process),
then mapped through Equation (32). The resulting ordering of Un is increasing if n is
prime, but not necessarily otherwise.

When n is a power of a prime, the multiplicative group (Z/nZ)× is cyclic. The fast
CBC algorithm described in Section 4.4 requires a special ordering of Un in which the
ith element is gi mod n, where g is the smallest generator of this group (see Cools et al.
[2006]). If n ≥ 4 is a power of 2, we use g = 5 to generate the first half of the group,
then the second half can be obtained by multiplying the first by −1, modulo n.

4.2. Arbitrary Traversal Method

The enumeration methods described in Section 4.1 define an implicit ordering of the
elements of Un. In some cases, we just want to enumerate the elements of Un in
this order. This is called forward traversal in Lattice Builder. In other situations,
we may wish to draw a certain number of values at random from Un. Then, Lattice
Builder randomly picks indices for the elements of Un, from the set {1, . . . , ϕ(n)}. This is
called random traversal. This means that Lattice Builder never misses when randomly
picking an integer coprime with n. Other arbitrary traversal methods could be defined
through the API.

To illustrate the idea, suppose that we want to search for lattice rules with n =
1024, so the coordinates of a must belong to U1024. The following chunk of C++ code
instantiates a list (or sequence) called myGenSeq of all integers in U1024, in the order
given by the earlier enumeration method:

The first line defines the type alias MyTraversal for the forward traversal method.
The second line defines the type alias MyGenSeq as a type of sequence of all integers
in Un, to be enumerated by the forward traversal method. The Compress::NONE token
means that the compression discussed in the next section is not applied. The last line

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

A General Software Tool for Constructing Rank-1 Lattice Rules 15:19

instantiates such a sequence with n = 1024 and an instance of the forward traversal
method. The following C++11 code outputs all the values contained in myGenSeq, that
is, the list of all odd numbers from 1 to 1023.

Recall that Lattice Builder does not actually store these values; they are generated
on-the-fly using the methods from Section 4.1. To randomly draw 10 values from Un
instead of listing them all, we can use

The only changes from the previous piece of code are that the type alias MyTraversal
now corresponds to the random traversal method, using the pseudo-random generator
LFSR113 of L’Ecuyer [1999b], and the number of values to draw Equation (10) is given
in the instantiation on the last line.

4.3. Symmetric Compression

If the projection-dependent figure of merit under consideration is symmetric, that is,
invariant under the transformation aj �→ n − aj for any j = 1, . . . , s, then the search
space for each component can be reduced by half. This happens, for instance, in the
case of coordinate-uniform figures of merit such that ω(x) = ω(1 − x) for x ∈ [0, 1).
For an exhaustive search, this can reduce the search space by a factor of 2s−1. This
idea was used by Cools et al. [2006] in their fast CBC algorithm. It is called symmetric
compression in Lattice Builder: it reduces to half the number of output values from Un,
and maps each value k ∈ Un to min(k, n − k).

4.4. Construction Methods Currently Supported

The following construction methods are currently implemented. For all these methods,
we try to find a generating vector a with the smallest possible value of Eq(Pn) for
ordinary lattices, or of Ēq(Pn1 , . . . , Pnm) for embedded lattices.

Exhaustive search. An exhaustive search examines all generating vectors a ∈ U s
n

and retains the best.
Random search over all possibilities. In this variant, we draw r random values of a

uniformly distributed in U s
n and retain the best.

Korobov construction. This is a variant of the exhaustive search that considers only
the vectors aof the form a= (1, a, a2 mod n, . . . , as mod n) for a ∈ Un.

Random Korobov construction. This is a variant of the Korobov construction that
considers only r random values of a uniformly distributed in Un.

CBC construction. The CBC algorithm [Kuo and Joe 2002; Dick et al. 2006] con-
structs the vector aone coordinate at a time, as follows. It starts with a1 = 1. Then,
for j = 2, . . . , s, assuming that a1, . . . , aj−1 have been selected and are now kept
fixed, the algorithm selects the value of aj ∈ Un that minimizes Eq(Pn({1, . . . , j}))
for ordinary lattices or Ēq(Pn1 ({1, . . . , j}), . . . , Pnm({1, . . . , j})) for embedded lattices.
That is, at Step j, we minimize the figure of merit for the points truncated to their
first j coordinates.

Random CBC construction. This is a variant of the CBC algorithm in which, for
j = 2, . . . , s, instead of considering for aj all a ∈ Un, only r random values of a
uniformly distributed in Un are considered [Wang and Sloan 2006; Sinescu and
L’Ecuyer 2009].

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

15:20 P. L’Ecuyer and D. Munger

Fast CBC construction. This method applies for the figures of merit of the form
described in Section 3.3. It is implemented only for n equal to a power of a prime
number (including 1). It uses a variant of the CBC algorithm that computes the
merit values for all values of aj simultaneously, for each fixed j, through the use
of FFTs [Cools et al. 2006; Nuyens and Cools 2006a, 2006c, 2006b]. If Kn, j de-
notes the cost for evaluating the figure of merit for a single value of aj , as given
in Section 3.3, then the ordinary CBC algorithm requires O(Kn, jn) operations to
evaluate the merit values for all φ(n) values of aj , while the fast CBC variant
requires only O(Kn, j log n) operations. The details are explained in the references
cited here. Typical values of Kn, j are O(nj) for product or order-dependent weights
and O(n2 j) for general projection-dependent weights. We use the FFT implemen-
tation from the FFTW library [Frigo and Johnson 2005].

Extending the number of points. Consider embedded lattice rules in base b with
maximum level m and generating vector a = (a1, . . . , as). The maximum number
of points nm = bm can be augmented to nm+1 = bm+1 by keeping the rightmost m
digits in base b of each a1, . . . , as unchanged, while adding an (m+ 1)th digit in
base b to each a1, . . . , as, selected to minimize the figure of merit of the resulting
extended nm+1-point lattice. This means that there are bs candidate lattices to
consider when we increase m by 1. Note that there is (currently) no theoretical
proof that the discrepancy will keep improving by doing this. The intuition is that
it may work a limited number of times. A more robust approach is to construct a
set of embedded lattices while making sure that m is selected large enough in the
first place.

4.5. Construction Layers

Constructing lattice rules in Lattice Builder consists of traversing a sequence of can-
didate lattices and of picking the best one(s). In fact, the search process is organized
as multiple layers of sequences of different types, all connected, starting at the lowest
level with sequences of integers coprime with n (as in Section 4.1) followed by sequences
of candidate lattice rules, then sequences of merit values and of filtered merit values
(as explained in Sections 3.4 and 3.5) at the upper level.

For example, to perform a Korobov search in dimension 3, we define at the bottom
a sequence (1, . . . , n − 1) of integers coprime with n, each element of which is mapped
to an element from a sequence of candidate lattice rules with respective generating
vectors (1, 1, 1), . . . , (1, n− 1, (n− 1)2 mod n). Then, on top of it is created a sequence of
merit values, which maps, in the same order, each candidate lattice rule to its merit
value. Finally, transformations (normalizations) and filters are applied elementwise,
and the resulting values are made accessible through a sequence of transformed merit
values.

In practice, the elements of a sequence are accessed through iterators. When an
iterator on the top sequence (transformed merit values) is requested to return the
value it points to, the request travels down to the bottom layer: the current element
of the generator sequence is used to generate the current element of the sequence
of generating vectors, which, in turn, is used to compute the current element of the
sequence of merit values before going through the chain of transformations and filters.
Thus, merit values are computed on-the-fly, just as the iterator on the sequence at
the top is advanced. There are exceptions in which the merit values are computed in
advance and stored in an array; in that case, the iterator returns the values in the array
instead of dynamically computed values. One such exception occurs when the fast CBC
construction is used. This multilayer design allows for transparent implementations of
sequences at any level as dynamically computed values, or as cached or precomputed

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

A General Software Tool for Constructing Rank-1 Lattice Rules 15:21

values. In some cases, the sequence-based evaluation process of figures of merit allows
for efficient reuse of values that were computed for previous elements. Continuous
feedback from the construction algorithm is provided through C++ signals provided by
the Boost library [Boost.org 2012].

4.6. CBC-Based Non-CBC Constructions

In order to avoid repetitions, the code for the non-CBC constructions, such as exhaus-
tive or random, makes use of the CBC algorithm. For each generating vector a visited
by these constructions, the code for the CBC algorithm (for either the generic im-
plementation or the specialized coordinate-uniform implementations) is applied to a
singleton search space containing only a, thus enabling the efficient specializations of
the projection-dependent figures of merit in the coordinate-uniform case at the cost,
in some cases, of a larger memory usage to store the CBC state vectors from Equa-
tions (19), (21), or (23).

4.7. Decoupling and Extensibility

The construction process is defined by several components: type of lattice (Section 2.2),
enumeration method for Un (Section 4.1), traversal type (Section 4.2), type of projection-
dependent figure of merit and of accumulator (Section 3.1), type of weights (Sec-
tion 3.2), construction method (Section 4.4), transformations and filters (Section 3.4),
and combining methods for embedded lattices (Section 3.5). Lattice Builder was de-
signed to keep these components decoupled, using modern software design methods
[Alexanderscu 2001; Lischner 2009]. This facilitates code reuse while providing the
necessary flexibility in combining pieces. In addition to the set of components already
implemented, the API encourages the user to extend Lattice Builder by implementing
custom types of figures of merit, weights, filters, and so on.

Traditionally, such decoupling would be achieved through polymorphism. In many
cases, this translates into significant overhead, because concrete object types must be
resolved at runtime. For example, if the traversal methods from Section 4.1 were de-
fined through polymorphism, i.e., by accessing concrete traversal methods only through
an abstract superclass, enumerating the elements of a sequence would require runtime
resolution of the traversal type each time an element is visited. By using the C++ tem-
plate techniques named static polymorphism [Coplien 1995; Alexanderscu 2001], such
overhead is completely avoided. These techniques displace a significant part of the
computing effort from runtime to compile time, and allow function inlining, which can
notably improve performance. This is similar to the approach used in the design of the
containers from the C++ STL.

In addition, template techniques allow for more flexibility than polymorphism. For
example, there are situations in which the same operations must be carried out on
scalar merit values Dq(Pn) (for ordinary lattices) and on vectors of merit values Dq(Pnk)
for k = 1, . . . , m (for embedded lattices): for example, multiplication by a scalar value.
This operation is supported with the same syntax for both types of merit values (scalar
and vector). It follows that the same code that requires multiplying a (scalar or vector)
merit value by a scalar can be used in both cases, despite the different types of result
of the operation (scalar or vector, respectively). This avoids large amounts of code
duplication.

5. USAGE

Lattice Builder can be used as a C++ software library from other programs, through its
API, or as an executable program callable from its CLI. For detailed descriptions of the
API and of the CLI options, the reader is referred to the user’s guide included with the
software package (see cmdtut.html for a tutorial on using the CLI). The CLI provides

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

15:22 P. L’Ecuyer and D. Munger

a simple means of invoking the most popular variants of the lattice construction algo-
rithms covered in the previous sections. Lattice Builder has two software dependencies:
the Boost [Boost.org 2012] and FFTW [Frigo and Johnson 2005] software libraries. Its
code also uses some features of the C++11 standard.

On top of the CLI, there is also a graphical interface accessible through a web
browser, which is more user friendly. It permits one to specify the various options and
parameters available in the CLI, such as the dimension, number of points, figure of
merit, weights, and search method, via menus. This interface is built with Python;
thus, its use requires the availability of Python.

The set of tasks that Lattice Builder can accomplish is a Cartesian product in six
dimensions: the lattice type, construction type, accumulator type, weight type, figure
of merit, and filter. The CLI reflects that.

It often happens that multiple generating vectors have approximately or exactly the
same merit value. Since the precision of the computed merit values may depend on
the platform on which the software is executed, Lattice Builder may return different
generating vectors on different platforms when making a search.

6. EXAMPLES OF APPLICATIONS

In this section, we give a few examples of what can be done with Lattice Builder.
L’Ecuyer and Munger [2012] provide other examples of applications for which lattice
rules built with (a preliminary version of) Lattice Builder and carefully selected weights
produced RQMC estimators with smaller variance than rules with “general-purpose”
parameters.

6.1. Importance of the Weights

Our purpose here is to show that Lattice Builder can be used to obtain good lattice rules
adapted to specific problems, and that this can yield a significant gain in simulation
efficiency.

To see how the weights chosen to construct a lattice rule can have a direct impact on
the RQMC variance, we consider as our integrand the worst-case function f ∗

α from the
space of functions f : [0, 1)s → R with square variation V2

u(f) ≤ v2
u for each subset u of

coordinates for given constants v2
u ≥ 0. We obtain this worst-case function by replacing

γu by vu in Equation (13):

f ∗
α (x1, . . . , xs) =

∑
u⊆{1,...,s}

vu

∏
j∈u

(2π)α/2

(α/2)!
Bα/2(xj). (33)

Since the RQMC variance of f ∗
α is the value of Pα with γu = vu, there is no need to

estimate the RQMC variance by simulation; it suffices to evaluate Pα for any given
lattice rule. In our experiments here, we fix the constants vu in Equation (33) and
measure the increase of RQMC variance when we integrate Equation (33) using lattice
rules constructed via fast CBC with different weights γu 	= vu instead of with the ideal
weights γu = vu.

We start by considering a simple integrand f ∗
α in dimension s = 10, such that all

projections of the same order are equally important: we set vu = �|u| for |u| ≤ k, and
vu = 0 otherwise, for a given integer k > 0 and a given positive constant � ≤ 1. Then,
we select the weights in our criterion as γu =�̃|u| for |u| ≤ k̃, where the constants �̃ and
k̃ may differ from � and k, respectively.

Table I shows the ratio between the RQMC variance with the lattice rule constructed
with the (wrong) weights γu as specified earlier, and the RQMC variance obtained with
the ideal weights vu, rounded to three significant digits, for different values of n. Six

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

A General Software Tool for Constructing Rank-1 Lattice Rules 15:23

Table I. Ratio of RQMC Variances for the Estimator with Modified
Weights to that with Ideal Weights. The Largest Ratio

in each Column is in Boldface

n A1 A2 B1 B2 C1 C2
28 1.11 1.21 1.13 4.08 3.82 6.80
29 1.21 1.10 1.42 10.5 2.93 7.25
210 1.36 1.38 2.04 4.64 2.86 5.94
211 1.24 1.43 2.40 6.18 2.15 5.14
212 1.42 1.66 3.79 13.2 2.47 5.94
213 1.30 2.38 5.51 9.09 2.66 5.97
214 1.51 2.54 30.5 8.66 9.11 29.1
215 1.46 1.93 25.6 13.3 3.52 9.71
216 1.80 2.55 3.13 12.9 2.73 10.2

different cases are presented, labeled A1, A2, B1, B2, C1, and C2, and are explained
here.

In A1, we take k = k̃ = s = 10, �2 = 0.1, and �̃2 = 0.001, so that the weights of
high-order projections are much too small, but still nonzero. There is an impact on the
variance, but it is not so bad.

In A2, we take k = k̃ = s = 10, �2 = 0.001, and �̃2 = 0.1, so that the weights of high-
order projections are much too large. We see that this has more impact on the RQMC
variance. What happens is that the search algorithm gives too much importance to the
(several) higher-order projections, which results in a deterioration of the lower-order
projections and has more impact on the variance.

In B1, we take �2 = �̃2 = 0.1, k = 4, and k̃ = 2, so that the search criterion is
blind (gives no weight at all) to projections of order 3 and 4. This is A1 carried to the
extreme. Whereas all important projections had nonzero in A1, here, some important
projections have no weight at all. As a result, the figure of merit cannot discriminate
between lattices with good or bad projections of orders 3 or 4, and it is unpredictable
whether the construction process will yield lattices with good or bad projections for
these orders. Thus, the impact on the RQMC variance is unpredictable, significantly
larger than in A1, and sometimes dramatic, as we can see for n = 214.

In B2, we take �2 = �̃2 = 0.5, k = 2, and k̃ = 4. This gives weight to irrelevant
projections of order 3 and 4. Here, the degradation is even stronger for most values of
n. The behavior is similar to A2, but the observed degradation is much stronger here.

In C1, we keep �2 = �̃2 = 0.1 and k = k̃ = 4, but we increase the varia-
tion of f for a few projections by replacing v2

u with v2
u + ṽ2

u, where ṽ2
u = 1.0 for

u = {1, 3}, {3, 5}, {5, 7}, {7, 9}, ṽ2
u = 0.5 for u = {2, 3, 4}, {4, 5, 6}, {6, 7, 8}, {8, 9, 10},

ṽ2
u = 0.25 for u = {1, 2, 3, 4}, {4, 5, 6, 7}, {7, 8, 9, 10}, and ṽu = 0 for all other projec-

tions u. This means that some important projections are not given enough weight in
the criterion relative to other projections. The impact on the variance is quite sig-
nificant. Lattice Builder permits one to add (easily) extra weight to a few arbitrary
projections that are more important. This example shows that it can really make a
difference.

C2 is similar to C1, except that v2
u is replaced with only ṽ2

u, as defined earlier, instead of
with v2

u+ṽ2
u, so that projections with ṽu = 0 do not contribute at all to Equation (33). That

is, a lot of projections having nonzero weights are actually irrelevant. The degradation
turns out to be much stronger than for C1. The explanation is similar to that in A2
and B2.

On our hardware configuration, it took Lattice Builder less than half a second to
execute a fast CBC search for n = 216 with the ideal weights of C1, that is, a sum
of order-dependent and projection-dependent weights. This is likely to be a negligible
effort for many practical applications in simulation.

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

15:24 P. L’Ecuyer and D. Munger

Fig. 2. Order-2 versus order-3 spectral criterion (left) and P2 criterion (right), for 1000 random lattices with
n = 220, and with s = 3 (top) and 10 (bottom). Note the different vertical and horizontal scales across the
plots.

Note that, in all these cases, the variance ratio tends to increase (nonmonotonically)
with n.

6.2. Competing Projections

The results from Section 6.1 indicate that projections of different orders compete
against each other in the sense that lattice rules with highly uniform projections of
order k tend to have poor projections of order k̃ 	= k compared to other lattice rules with
very good projections of order k̃. We examine this question from a different angle by
considering the values of the spectral and P2 criteria across 1000 randomly selected
lattice rules. For each lattice rule, we compare the merit value obtained by consider-
ing only projections of order 2 (the order-2 case) to that obtained by considering only
projections of order 3 (the order-3 case). For the order-k case, with k = 2 or 3, we take
1/�2

k equal to the number of projections of order k, and we set �k̃ = 0 for k̃ 	= k. We
consider lattice rules with n = 220, in s = 3 dimensions with �2

2 = 1/3 and �2
3 = 1, and

in s = 10 dimensions with �2
2 = 1/45 and �2

3 = 1/120. The results are in Figure 2. In
all cases, we see that a large portion of the selected lattices have both good order-2 and
order-3 merit values. For the spectral criterion, the absence of data in the lower-right
corner of the plot suggests that having good projections of order 3 excludes having very
bad projections of order 2. However, for the P2 criterion, low order-3 values are often
associated with high order-2 values, and conversely. In particular, the lattice with the

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

A General Software Tool for Constructing Rank-1 Lattice Rules 15:25

Fig. 3. rz as a function of n for z = 5 (), z = 10 () and z = 20 ().

smallest order-3 P2 value (of 2.2 × 10−8) with s = 3 has the third-worst order-2 value
(of 1.8 × 10−4), several orders of magnitude above the best order-2 values (which are
around 10−9). We tried other values of n and of s, and observed similar results.

6.3. Comparing Construction Methods

In this section, we compare the quality of lattice rules obtained with random CBC
and standard CBC constructions. We select the weighted P2 figure of merit for product
weights with γ 2

j = 0.1 for all j, in s = 10 dimensions, and consider for n all powers of
2 from 25 = 32 to 214 = 16, 384. Let us define rz as the smallest value of r for which
the expectation of the merit value reached by random CBC is larger than that obtained
with CBC by at most z %. We estimate the expected merit value with the average of
300 independent realizations. We do estimate rz with a bisection method even though
the merit value of a lattice rule constructed by random CBC might not always be
monotone in r. To compute the merit value obtained with CBC, we use the fast CBC
implementation. Figure 3 shows the estimated value of rz obtained for each value of n,
for z = 5, 10, and 20, in dimension s = 10. We see that rz tends to become larger as n
grows. This suggests that, when n is increased, r should also be increased for random
CBC to yield lattice rules of consistent quality relative to CBC, but not as fast as n
itself, at least for z = 10 and 20. Although not illustrated here, we also note that r can
be kept smaller in larger dimensions.

6.4. Convergence of the Quantiles

In this example, we use Lattice Builder to investigate the distribution of the values
of the weighted Pα figure of merit for α = 2, with product weights with γ 2

j = 0.3
for all j, for all generating vectors a ∈ {1} × U s−1

n . We considered for n all powers of
2 from 26 = 64 to 219 = 524288 for s = 2, and up to n = 215 = 32768 for s = 3.
There are ϕ(n)s−1 = (n/2)s−1 different lattices to examine in each case. To do that, we
wrote a program that uses the API of Lattice Builder (the source code is available with
the software package). The program builds, for each value of n considered, the cumula-
tive distribution function (cdf) of the merit values, from which we extract the quantiles
of the empirical distribution. Figure 4 displays a few quantiles as a function of n, as
well as the average merit value. For s = 2, a linear regression on the logarithm of the
merit value as a function of log n for 212 ≤ n ≤ 219 reveals that the best merit value
decreases approximately as n−1.92, the 10% and 90% quantiles decrease as n−1.87 and
n−1.77, respectively (empirically), whereas the mean decreases as n−1. For s = 3, by
performing again a regression on the values of n such that 210 ≤ n ≤ 215, we found that

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

15:26 P. L’Ecuyer and D. Munger

Fig. 4. Convergence of the quantiles for all lattices in {1} × U s−1
n for s = 2 and s = 3.

the mean decreases at the same rate as for s = 2, while the best value and the 10%
and 90% quantiles decrease (empirically) as n−1.76, n−1.64, and n−1.39, respectively. The
worst merit value stabilizes at around 0.1948 for s = 2 and around 0.6393 for s = 3.
Interestingly, for s = 2 (and perhaps also for s = 3, but this is less obvious) the 90%
quantile appears to decrease at a slower rate to the left of n = 210 = 1024 than to the
right. These results indicate that the fraction of lattice rules with bad merit values
decreases with n.

How well do CBC and random CBC perform in terms of the quantiles? This is what
Figure 5 shows by comparing the merit values obtained with CBC and with random
CBC with r = 10 and r ≈ log n to those of the best merit value and of the 10% quantile.
In every case, the CBC curve remains very close to the best-value curve. On the other
hand, both random-CBC curves are very similar and close to the 10% quantile.

Finally, we note that, for larger values of s, the results could be significantly different.

6.5. Comparing Pα and Rα

Here, we examine empirically the distribution of the relative difference between Pα

and Rα for random lattices, for a given α. Using Lattice Builder, we evaluated P2 and
R2 for 1000 lattice point sets with n = 212, with randomly chosen generating vectors
a, in dimensions s = 5 and 10. We used geometric order-dependent weights γu = γ |u|
with γ 2 = 0.7. We see from Figure 6 that the relative distance between P2 and R2
remains below 1% for good lattices in both cases. For bad lattices (those with higher
values of P2 and R2), the relative distance is even shorter. We tried with other values
of s and observed a continuous deformation of the curve consistent with the two cases
illustrated in Figure 6.

In Figure 7, we plot, as a function of the number of points, the relative distance from
R2 to P2, for the lattice obtained using CBC search with the P2 criterion and product

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

A General Software Tool for Constructing Rank-1 Lattice Rules 15:27

Fig. 5. Convergence of CBC and random CBC for s = 2 and s = 3, compared to the quantiles for all lattices
in {1} × U s−1

n .

Fig. 6. Distance from R2 to P2 in units of P2, in dimension s = 5 (left) and 10 (right), for 1000 random
lattices with n = 212. Note the different vertical and horizontal scales.

weights such that γ 2
j = j−1 for j = 1, . . . , s, in dimensions s = 2, 5 and 10. The distance

falls below 1% for n ≈ 220 for s = 2, and for n ≈ 26 for s = 5 and 10. We also show (with
gray dashed curves) the value of

B =
∑

∅ 	=u⊆{1,...,s}
γ 2α

u B(u),

with B(u) as in the bound derived by Hickernell and Niederreiter [2003, Lemma 4],
under the form Pα(Pn(u)) < Rα(Pn(u)) + B(u). (These authors consider possible weights

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

15:28 P. L’Ecuyer and D. Munger

Fig. 7. Distance from R2 to P2, in units of P2, for the lattice obtained using CBC search with the P2 criterion
and product weights such that γ 2

j = j−1 for j = 1, . . . , s, in dimensions s = 2, 5, and 10. The gray dashed
lines correspond to the value of B as defined in the text.

Fig. 8. Values of Rα against those of P2 of 1000 random lattices in dimension s = 5 with n = 212, for α = 1
(left) and 1.8 (right). Note the different vertical scales.

inside of B(u), but in their Equation (13), they set all these weights to 1, as we do
here). In all cases, the curves for B land orders of magnitude above those for the actual
distance, but exhibit comparable decrease rates. We repeated the experiments with
α = 4 (not shown here) and observed that the relative distance from R4 to P4 decreased
much more rapidly with n than with α = 2.

For s = 5, we also computed the values of Rα for α = 1 and 1.8, and compared these
against those of P2 in Figure 8. For α = 1.8, the values of Rα remain well correlated
with those of P2, with comparable orders of magnitude. For α = 1, the values of Rα

are relatively much larger than those of P2 and not much correlated, although for good
lattices, they seem more correlated. We also tried with other values of 1 ≤ α ≤ 2; the
results looked like an interpolation between the two panels in Figure 8.

ACKNOWLEDGMENTS

We are very grateful to Dirk Nuyens for testing the software and for his several comments and corrections
on both the software and the article. Mohamed Hanini also helped in testing the software and improving
its user’s guide. We thank the Associate Editor Ronald Cools and the anonymous referees for their help in
improving the article.

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

A General Software Tool for Constructing Rank-1 Lattice Rules 15:29

REFERENCES

A. Alexandrescu. 2001. Modern C++ Design: Generic Programming and Design Patterns Applied. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA.

Boost.org. 2012. Boost C++ libraries. Retrieved April 8, 2016 from http://www.boost.org.
J. Burkardt. 2012. LATTICE_RULE. Retrieved April 8, 2016 from http://people.sc.fsu.edu/∼jburkardt/

m_src/lattice_rule/lattice_rule.html.
J. H. Conway and N. J. A. Sloane. 1999. Sphere Packings, Lattices and Groups (3rd ed.). Grundlehren der

Mathematischen Wissenschaften 290. Springer-Verlag, New York, NY.
R. Cools, F. Y. Kuo, and D. Nuyens. 2006. Constructing embedded lattice rules for multivariate integration.

SIAM Journal on Scientific Computing 28, 16, 2162–2188.
J. Coplien. 1995. Curiously recurring template pattern. C++ Report 24–27.
R. Cranley and T. N. L. Patterson. 1976. Randomization of number theoretic methods for multiple integration.

SIAM Journal on Numerical Analysis 13, 6, 904–914.
J. Dick and F. Pillichshammer. 2010. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo

Integration. Cambridge University Press, Cambridge, U.K.
J. Dick, F. Pillichshammer, and B. J. Waterhouse. 2008. The construction of good extensible rank-1 lattices.

Mathematics of Computation 77, 264, 2345–2373.
J. Dick, I. H. Sloan, X. Wang, and H. Woźniakowski. 2004. Liberating the weights. Journal of Complexity20,

5, 593–623.
J. Dick, I. H. Sloan, X. Wang, and H. Woźniakowski. 2006. Good lattice rules in weighted Korobov spaces

with general weights. Numerische Mathematik 103, 63–97.
B. Efron and C. Stein. 1981. The jackknife estimator of variance. Annals of Statistics 9, 586–596.
M. Frigo and S. G. Johnson. 2005. The design and implementation of FFTW3. Proceedings of the IEEE 93,

2, 216–231. Special issue on “Program Generation, Optimization, and Platform Adaptation.”
F. J. Hickernell. 1998a. A generalized discrepancy and quadrature error bound. Mathematics of Computation

67, 221, 299–322.
F. J. Hickernell. 1998b. Lattice rules: How well do they measure up? In Random and Quasi-Random Point

Sets, P. Hellekalek and G. Larcher, (Eds.). Lecture Notes in Statistics Series, Vol. 138. Springer-Verlag,
New York, 109–166.

F. J. Hickernell, H. S. Hong, P. L’Ecuyer, and C. Lemieux. 2001. Extensible lattice sequences for quasi-Monte
Carlo quadrature. SIAM Journal on Scientific Computing 22, 3, 1117–1138.

F. J. Hickernell and H. Niederreiter. 2003. The existence of good extensible rank-1 lattices. Journal of
Complexity 19, 3, 286–300.

D. E. Knuth. 1998. The Art of Computer Programming, Volume 2: Seminumerical Algorithms (3rd ed.).
Addison-Wesley, Reading, MA.

F. Kuo. 2012. Lattice rule generating vectors. Retrieved April 8, 2016 from http://web.maths.unsw.edu.au/
fkuo/lattice/index.html.

F. Y. Kuo and S. Joe. 2002. Component-by-component construction of good lattice rules with a composite
number of points. Journal of Complexity 18, 4, 943–976.

F. Y. Kuo, C. Schwab, and I. H. Sloan. 2011. Quasi-Monte Carlo methods for high dimensional integration:
The standard (weighted Hilbert space) setting and beyond. The ANZIAM Journal 53, 1–37.

F. Y. Kuo, C. Schwab, and I. H. Sloan. 2012. Quasi-Monte Carlo finite element methods for a class of elliptic
partial differential equations with random coefficients. SIAM Journal on Numerical Analysis 50, 3351–
3374.

F. Y. Kuo, I. H. Sloan, and H. Woźniakowski. 2008. Lattice rule algorithms for multivariate approximation
in the average case setting. Journal of Complexity 24, 283–323.

F. Y. Kuo, G. W. Wasilkowski, and B. J. Waterhouse. 2006. Randomly shifted lattice rules for unbounded
integrands. Journal of Complexity 22, 5, 630–651.

P. L’Ecuyer. 1999a. Tables of linear congruential generators of different sizes and good lattice structure.
Mathematics of Computation 68, 225, 249–260.

P. L’Ecuyer. 1999b. Tables of maximally equidistributed combined LFSR generators. Mathematics of Com-
putation 68, 225, 261–269.

P. L’Ecuyer. 2008. SSJ: A Java Library for Stochastic Simulation. Software user’s guide. Retrieved April 8,
2016 from http://www.iro.umontreal.ca/∼lecuyer.

P. L’Ecuyer. 2009. Quasi-Monte Carlo methods with applications in finance. Finance and Stochastics 13, 3,
307–349.

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

http://www.boost.org
http://people.sc.fsu.edu/sim;jburkardt/msrc/latticerule/latticerule.html
http://people.sc.fsu.edu/sim;jburkardt/msrc/latticerule/latticerule.html
http://web.maths.unsw.edu.au/ ignorespaces fkuo/lattice/index.html
http://web.maths.unsw.edu.au/ ignorespaces fkuo/lattice/index.html
http://www.iro.umontreal.ca/protect $elax sim $lecuyer

15:30 P. L’Ecuyer and D. Munger

P. L’Ecuyer and R. Couture. 1997. An implementation of the lattice and spectral tests for multiple recursive
linear random number generators. INFORMS Journal on Computing 9, 2, 206–217.

P. L’Ecuyer and C. Lemieux. 2000. Variance reduction via lattice rules. Management Science 46, 9, 1214–1235.
P. L’Ecuyer and D. Munger. 2012. On figures of merit for randomly-shifted lattice rules. In Monte Carlo and

Quasi-Monte Carlo Methods 2010, H. Woźniakowski and L. Plaskota, (Eds.). Springer-Verlag, Berlin,
133–159.

P. L’Ecuyer and D. Munger. 2016. Lattice Builder Manual and Source Code. Retrieved May 9, 2016 from
http://www.iro.umontreal.ca/∼lecuyer/ and https://github.com/umontreal-simul/.

P. L’Ecuyer, D. Munger, and B. Tuffin. 2010. On the distribution of integration error by randomly-shifted
lattice rules. Electronic Journal of Statistics 4, 950–993.

P. L’Ecuyer and A. B. Owen, (Eds.). 2009. Monte Carlo and Quasi-Monte Carlo Methods 2008. Springer-Verlag,
Berlin.

C. Lemieux. 2009. Monte Carlo and Quasi-Monte Carlo Sampling. Springer-Verlag, New York, NY.
C. Lemieux. 2012. RandQMC library. Retrieved April 8, 2016 from http://www.math.uwaterloo.ca/∼

clemieux/randqmc.html.
R. Lischner. 2009. Exploring C++: The Programmer’s Introduction to C++. Apress, Springer.
R. Liu and A. B. Owen. 2006. Estimating mean dimensionality of analysis of variance decompositions.

Journal of the American Statistical Association 101, 474, 712–721.
D. Maisonneuve. 1972. Recherche et utilisation des “bons treillis”, programmation et résultats numériques.

In Applications of Number Theory to Numerical Analysis, S. K. Zaremba, (Ed.). Academic Press, New
York, NY, 121–201.

H. Niederreiter. 1992a. New methods for pseudorandom number and pseudorandom vector generation. In
Proceedings of the 1992 Winter Simulation Conference. IEEE Press, 264–269.

H. Niederreiter. 1992b. Random Number Generation and Quasi-Monte Carlo Methods. SIAM CBMS-NSF
Regional Conference Series in Applied Mathematics Series, Vol. 63. SIAM, Philadelphia, PA.

D. Nuyens. 2012. Fast component-by-component constructions. Retrieved April 8, 2016 from http://people.
cs.kuleuven.be/∼dirk.nuyens/fast-cbc/.

D. Nuyens. 2014. The construction of good lattice rules and polynomial lattice rules. In Uniform Distribution
and Quasi-Monte Carlo Methods: Discrepancy, Integration and Applications, P. Kritzer, H. Niederreiter,
F. Pillichshammer, and A. Winterhof (Eds.). De Gruyter, 223–255.

D. Nuyens and R. Cools. 2006a. Fast algorithms for component-by-component construction of rank-1 lattice
rules in shift-invariant reproducing kernel Hilbert spaces. Mathematics of Computation 75, 903–920.

D. Nuyens and R. Cools. 2006b. Fast component-by-component construction, a reprise for different kernels.
In Monte Carlo and Quasi-Monte Carlo Methods 2004, H. Niederreiter and D. Talay, (Eds.). 373–387.

D. Nuyens and R. Cools. 2006c. Fast component-by-component construction of rank-1 lattice rules with a
non-prime number of points. Journal of Complexity 22, 4–28.

A. B. Owen. 1998. Latin supercube sampling for very high-dimensional simulations. ACM Transactions on
Modeling and Computer Simulation 8, 1, 71–102.

V. Sinescu and P. L’Ecuyer. 2009. On the behavior of weighted star discrepancy bounds for shifted lattice rules.
In Monte Carlo and Quasi-Monte Carlo Methods 2008, P. L’Ecuyer and A. B. Owen, (Eds.). Springer-
Verlag, Berlin, 603–616.

V. Sinescu and P. L’Ecuyer. 2012. Variance bounds and existence results for randomly shifted lattice rules.
Journal of Computational and Applied Mathematics 236, 3296–3307.

I. H. Sloan and S. Joe. 1994. Lattice Methods for Multiple Integration. Clarendon Press, Oxford. UK.
I. H. Sloan and H. Woźniakowski. 1998. When are quasi-Monte Carlo algorithms efficient for high-

dimensional integrals. Journal of Complexity 14, 1–33.
I. M. Sobol’. 2001. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo

estimates. Mathematics and Computers in Simulation 55, 271–280.
X. Wang. 2007. Constructing robust good lattice rules for computational finance. SIAM Journal on Scientific

Computing 29, 2, 598–621.
X. Wang and I. H. Sloan. 2006. Efficient weighted lattice rules with applications to finance. SIAM Journal

on Scientific Computing 28, 2, 728–750.
H. Woźniakowski and L. Plaskota, (Eds.). 2012. Monte Carlo and Quasi-Monte Carlo Methods 2010. Springer-

Verlag, Berlin.

Received September 2012; revised October 2014; accepted March 2015

ACM Transactions on Mathematical Software, Vol. 42, No. 2, Article 15, Publication date: May 2016.

http://www.math.uwaterloo.ca/sim;clemieux/randqmc.html
http://www.math.uwaterloo.ca/sim;clemieux/randqmc.html
http://people.cs.kuleuven.be/sim;dirk.nuyens/fast-cbc/
http://people.cs.kuleuven.be/sim;dirk.nuyens/fast-cbc/

