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This is a review article on lattice methods for multiple integration over the unit hyper-
cube, with a variance-reduction viewpoint. It also contains some new results and ideas.

The aim is to examine the basic principles supporting these methods and how they can be
used effectively for the simulation models that are typically encountered in the area of man-
agement science. These models can usually be reformulated as integration problems over the
unit hypercube with a large (sometimes infinite) number of dimensions. We examine selec-
tion criteria for the lattice rules and suggest criteria which take into account the quality of the
projections of the lattices over selected low-dimensional subspaces. The criteria are strongly
related to those used for selecting linear congruential and multiple recursive random number
generators. Numerical examples illustrate the effectiveness of the approach.
(Simulation; Variance Reduction; Quasi-Monte Carlo; Low Discrepancy; Lattice Rules)

1. Introduction
The purpose of most stochastic simulations is to es-
timate the mathematical expectation of some cost
function, in a wide sense. Sometimes the ultimate aim
is optimization, but the mean estimation problem nev-
ertheless appears at an intermediate stage. Because
randomness in simulations is almost always generated
from a sequence of i.i.d.U(0, 1) (independent and iden-
tically distributed uniforms over the interval [0, 1]) ran-
dom variables, i.e., by generating a (pseudo)random
point in the t-dimensional unit hypercube [0, 1)t if
t uniforms are needed, the mathematical expecta-
tion that we want to estimate can be expressed as
the integral of a real-valued function f over [0, 1)t,
namely

�=
∫
[0,1)t

f(u)du: (1)

If the required number of uniforms is random, one
can view t as infinite, with only a finite subset of the
random numbers being used. The reader who wants
concrete illustrations of this general formulation can
look right away at the examples in §10.
For small t, numerical integration methods such as

the product-form Simpson rule, Gauss rule, etc. (Davis

and Rabinowitz 1984), are available to approximate the
integral (1). These methods quickly become impracti-
cal, however, as t increases beyond 4 or 5. For larger t,
the usual estimator of � is the average value of f over
some point set Pn = {u0, : : : , un−1}⊂ [0, 1)t,

Qn =
1
n

n−1∑
i=0

f(ui): (2)

The integration error is En =Qn − �. In the standard
Monte Carlo (MC) simulation method, Pn is a set of
n i.i.d. uniform random points over [0, 1)t. Then, Qn

is an unbiased estimator of � with variance 
2=n, i.e.,
E[Qn] = � and Var[Qn] = 
2=n, provided that


2 =
∫
[0,1)t

f 2(u)du− �2¡∞, (3)

i.e., if f is square-integrable over the unit hypercube.
When the variance is finite, we also have the central
limit theorem:

√
n(Qn − �)=
→N(0, 1) in distribution

as n→∞, so the error converges in the probabilistic
sense as |En|=Op(
=

√
n), regardless of t. This error

can be estimated via either the central limit theorem,
or large deviations theory, or some other probabilistic
method (e.g., Fishman 1996, Law and Kelton 2000).
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But is it really the best idea to choose Pn at random?
The Quasi-Monte Carlo (QMC) method constructs the
point set Pn more evenly distributed over [0, 1)t than
typical random points, in order to try reducing the
estimation error |En| and perhaps improve over the
Op(1=

√
n) convergence rate. The precise meaning of

’’more evenly’’ depends on how we measure unifor-
mity, and this is usually done by defining a measure
of discrepancy between the discrete distribution deter-
mined by the points of Pn and the uniform distribu-
tion over [0, 1)t. A low-discrepancy point set Pn is a point
set for which the discrepancy measure is significantly
smaller than that of a typical random point set. Dis-
crepancymeasures are often defined in a way that they
can be used, together with an appropriate measure of
variability of the function f , to provide a worst-case
error bound of the general form:

|En| ≤V(f)D(Pn) for all f ∈F, (4)

whereF is some class of functions f ,V(f)measures the
variability of f , and D(Pn) measures the discrepancy
of Pn. A special case of (4) is the well-known Koksma-
Hlawka inequality, for which D(Pn) is the rectangu-
lar star discrepancy and V(f) is the total variation of
f in the sense of Hardy and Krause (see Kuipers and
Niederreiter 1974 for details). Other discrepancy mea-
sures, as well as thorough discussions of the concepts
involved, can be found in the papers of Hellekalek
(1998) and Hickernell (1998a, 1998b).
The bad news is that the bounds provided by (4)

rarely turn out to be practical, because even though
they are tight for the worst-case function, they are very
loose for ’’typical’’ functions and are usually too hard
to compute anyway. The good news is that for many
simulation problems, QMC nevertheless reduces the
actual error |En|, sometimes by large amounts, com-
pared with standard MC.
The two main families of construction methods for

low-discrepancy point sets in practice are the digital
nets and the integration lattices (Larcher 1998, Nieder-
reiter 1992, Sloan and Joe 1994). The former usually
aim at constructing so-called (t, m, s)-nets. A low-
discrepancy sequence is an infinite sequence of points
P∞ = {u0, u1, : : :} such that for all n (or for an infinite
increasing sequence of values of n; e.g., each power of

2), the point set Pn = {u0, : : : , un−1} has low discrep-
ancy. In the case of the rectangular star discrepancy,
this name is usually reserved for sequences in which
D(Pn)=O(n−1(ln n)t). Explicit sequences that satisfy
the latter condition have been constructed by Halton,
Sobol’, Faure, and Niederreiter. For the details, see
Drmota and Tichy (1997), Niederreiter (1992), Nieder-
reiter and Xing (1998), Sobol’ (1998), Larcher (1998)
and the references cited there. A convergence rate
of O(n−1(ln n)t) is certainly better than the MC rate
Op(n−1=2) asymptotically, but this superiority is practi-
cal only for small t. For example, for t=10 already,
to have n−1(ln n)t¡n−1=2 for all n≥n0, one needs
n0 ≈ 1:2× 1039.
A lattice rule is an integration method that estimates

� by (2) and for which Pn is the intersection of an
integration latticewith the unit hypercube. We illustrate
the idea with the following special case. Consider the
simple linear recurrence

xi =(axi−1) modn, ui = xi=n, (5)

where 0¡a¡n and gcd(a, n)= 1. This kind of recur-
rence, with a very large n, has been used for a long time
for constructing linear congruential random number
generators (LCGs) (e.g., Knuth 1998, L’Ecuyer 1998).
In that context, common wisdom says that n should
be several orders of magnitude larger than the total
number of random numbers ui that could be used
in a single experiment. Here, we take a small n and
let Pn be the set of all vectors of t successive val-
ues produced by (5), from all initial states x0, that is,
Pn = {(u0, : : : , ut−1): x0 ∈Zn}, whereZn = {0, : : : , n−1}.
We know (e.g., Knuth 1998) that this Pn has a very
regular structure: It is the intersection of a lattice with
the unit hypercube [0, 1)t. A lattice rule Qn using this
Pn was first proposed by Korobov (1959) and is called
a Korobov lattice rule. Niederreiter (1986) discusses the
general idea of using the set of all overlapping vec-
tors of successive output values of a pseudorandom
number generator for QMC integration, with Korobov
lattice rules as a special case, and points out the low
discrepancy of such point sets.
Figure 1 (left) illustrates the lattice structure of the

point set Pn for n=101; a=12, and t=2. The points are
clearly more regular than typical random points. For
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Figure 1 All pairs (u i, u i+1) for the LCGs with (n, a) = (101, 12) (left side) and (n, a)= (101, 51) (right side)

a simulation problem that requires only two random
numbers (a baby example, of course), one can evalu-
ate the function f at the 101 points of Pn and take the
average as an estimate of �. This is a simplified exam-
ple of QMC by a lattice rule. Using a lattice does not
guarantee that the points are well-distributed in the
unit hypercube. For instance, Figure 1 shows Pn again
for t=2 and n=101, but a changed to 51. This new
lattice structure is certainly less attractive because of
the large gaps between the lines. In this case, the lat-
tice rule Qn would sample the function only on these 2
lines, whereas the one with a=12 would sample more
evenly in the unit square.
Some questions that arise regarding QMC via lattice

rules: What are proper selection criteria for the lattice
parameters? How do we bound or estimate the error
En? Because error bounds of the form (4) are not very
practical, one can consider randomizations of Pn that
preserve its uniformity, while making En random with
mean 0 and providing an unbiased estimator for its
variance. Selection criteria for lattice parameters can
then be defined by attempting to minimize the vari-
ance of En for ’’typical’’ functions f .
In the next section of this paper, we recall basic def-

initions and properties of lattices, define lattice rules

and their node sets Pn, and examine certain regularity
and stationarity properties that the projections of Pn

over lower-dimensional subspaces may have. In §3
we give error expressions and error bounds for lattice
rules. In §4 we provide a randomization scheme for
a lattice rule by a uniform rotation modulo 1, and de-
rive explicit expressions for the mean and the variance
of the randomized estimator, which we compare to
the corresponding expressions for the MC estimator.
We also discuss other randomization approaches. In
§5 we describe an ANOVA decomposition of f into a
sum of lower-dimensional functions. The correspond-
ing decomposition of the variance 
2 serves to define
the concept of effective dimension of f . Selection cri-
teria for lattice rules are discussed in §6, where we
recall some popular measures of discrepancy and
propose a new figure of merit that takes into account
the quality of certain low-dimensional projections.
This new criterion could also be used for selecting ran-
dom number generators, as in L’Ecuyer (1999a). In §7
we discuss copy rules and explain why we do not rec-
ommend them. A polynomial version of lattice rules is
introduced in §8. Techniques for smoothing the func-
tion f and for lowering the effective dimension are out-
lined in §9. In §10, we use randomized lattice rules as
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a variance reduction technique for 3 simulation mod-
els for which t is small, medium, and infinite, respec-
tively. The method improves efficiency in all cases.

2. Integration Lattices
We start with a short review on lattices. The reader can
findmore in, e.g., Conway and Sloane (1988) and Sloan
and Joe (1994). The (integration) lattices discussed in
this paper are discrete subsets of the real space Rt, that
contain Zt (the integer vectors), and can be expressed
as

Lt =

{
v=

t∑
j=1

zjvj : each zj ∈Z
}
, (6)

where v1, : : : , vt are linearly independent vectors in Rt

which form a basis of the lattice. The matrix V whose
ith row is vi is the corresponding generator matrix of
Lt. A lattice Lt shifted by a constant vector v0 =∈Lt, i.e.,
a point set of the form L′

t = {v+ v0: v∈Lt}, is called a
grid, or a shifted lattice.
The dual lattice of Lt is L∗

t = {h∈Rt: h ·v∈Z for all
v∈Lt}. The dual of a given basis v1, : : : , vt is the set of
vectors w1, : : : , wt in Rt such that vi ·wj = �ij (�ij =1 if
i= j; �ij =0 otherwise). It is a basis of the dual lattice.
These wj’s are the columns of the matrix V−1, so they
can be computed by inverting V.
The determinant of the matrix V is equal to

the volume of the fundamental parallelepiped
�= {v= �1v1 + · · ·+ �tvt: 0≤ �i ≤ 1 for 1≤ i≤ t}, and
is always equal to the inverse of the density of
points, independently of the choice of basis. It is
called the determinant of Lt. In other words, the
average number of points per unit of volume is
1=det(Lt)= 1=det(V)=det(V−1). This number, called
the density, is always an integer and is equal to the
number of points in every half-open cubic box of
Volume 1 aligned with the axes (i.e., an arbitrary
shift of [0, 1)t). The node set Pn =Lt ∩ [0, 1)t contains
exactly n=1=det(Lt) points. A lattice rule (of integra-
tion) of order n for � is a rule of the form (2) with
{u0, : : : , un−1}=Pn =Lt ∩ [0, 1)t. One can always write

Pn = {(( j1=n1)v1+ · · ·+( jr=nr)vr) mod 1 : 0≤ ji¡ni

for i=1, : : : , r}; (7)

where the reduction modulo 1 is performed coordi-
natewise, the vi’s are linearly independent generat-
ing vectors, and n=n1 · · ·nr. The smallest r for which
this holds is called the rank of the lattice rule. Rules of
Rank r¿1 are recommended by Sloan and Joe (1994)
based on certain theoretical properties. In §7 we ex-
plain why we disagree with this recommendation.
Elsewhere, we restrict our attention to r=1. For a rule
of Rank 1, we have

Pn = {( j=n)vmod 1: 0≤ j¡n} (8)

for some vector v. As an important special case, for
any LCG defined by (5), with gcd(a, n)= 1, the set
Pn = {(u0, : : : , ut−1): x0 ∈Zn} corresponds to a lattice
rule of Rank 1 with v=(1, a, : : : , at−1), which is a
Korobov rule, or a rule in Korobov form.
For a rule of Rank 1, Pn can be enumerated in a

straightforward way by starting with u=0 and per-
forming n− 1 iterations of the form u=(u+v)mod 1.
This requiresO(tn) additions modulo 1. If the rule is in
Korobov form and if the corresponding LCG has pe-
riod length n−1 (i.e., n is a prime number and "=n−1
is the smallest positive " for which a"modn=1), then
Pn can be enumerated as follows: Start with x1 = 1 and
generate the sequence u1; u2; : : : ; un+t−2 via (5). Along
the way, enumerate u1, : : : , un−1, the overlapping vec-
tors of successive values. Then add the vector u0 = 0.
This requires O(n + t) multiplications by a, modulo
n, plus some overhead to shift the vector components
at each iteration, instead of O(tn) additions. The enu-
meration approach based on the LCG recurrence still
works when the LCG has several cycles, but one must
run the LCG over each of its cycles, and this becomes
more cumbersome as the number of cycles increases.
For a given lattice Lt and a subset of coordinates

I = {i1, : : : , id}⊆{1, : : : , t}, denote by Lt(I) the projec-
tion of Lt over the d-dimensional subspace determined
by the coordinates in I. This projection is also a lat-
tice, whose density divides that of Lt (there are exactly
det(Lt(I))=det(Lt) points of Lt that are projected onto
each point of Lt(I); in group theory language, Lt(I) cor-
responds to a coset of Lt). Denote Pn(I)=Lt(I)∩ [0, 1)d,
the corresponding projection of Pn. For reasons to be
explained later, we would like to have not only Pn

evenly distributed over [0, 1)t, but also Pn(I) evenly
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distributed over its subspace, at least for certain sub-
sets I deemed important.
Sloan and Joe (1994) call a rank-1 lattice Lt projection-

regular if all its principal projections, Lt({1, : : : , d}) for
1≤ d¡t, have the same density as Lt. This property
holds if and only if det(Lt({1}))=det(Lt), and im-
plies that the projection Pn(I) contains as many dis-
tinct points as Pn whenever I contains 1. We call Lt

fully projection-regular if det(Lt(I))=det(Lt) for any
nonempty I ⊆{1, : : : , t}, i.e., if each Pn(I) contains
as many distinct points as Pn. Projection-regularity
is easily verified by computing the greatest common
divisors (gcd) between n and the coordinates of the
generating vector v:

PROPOSITION 1. A rank-1 lattice Lt with generating
vector v=(v1, : : : , vt) is projection-regular if and only if
gcd(n, v1)= 1. It is fully projection-regular if and only if
gcd(n, vd)= 1 for 1≤ d≤ t:

PROOF. The lattice is projection-regular if and only
if the 1-dimensional projection Pn({1}) contains n dis-
tinct points. If gcd(v1, n)= 1 and jv1modn= iv1modn,
then j−imust be amultiple of n, which implies that the
points of Pn({1}) are all distinct. On the other hand,
if gcd(v1, n)= % �=1, then for j − i=n=%, ( j − i)v1 is a
multiple of n, so iv1 = jv1modn and therefore Pn({1})
contains no more than n=% points. This completes the
proof of the first part. For the second part, take a 1-
dimensional projection over the dth coordinate and
use the same argument as in the first part to see that
the points of Pn({d}) are all distinct if and only if
gcd(n, vd)= 1. This implies that the points of Pn(I) are
all distinct for any nonempty I.
In particular, a Korobov rule is always projection-

regular, since v1 = 1. It is fully projection-regular if
gcd(a, n)= 1, e.g., if n is prime and 1≤ a¡n, or if n is a
power of 2 and a is odd. A general rank-1 rule is fully
projection-regular, e.g., if n is prime and 1≤ vd¡n for
each d, or if n is a power of 2 and each vd is odd.
Korobov point sets, among others, have the

property that several of their projections Pn(I)
are identical, so one can assess the quality of a
large family of projections by examining only a
subset of these projections. More specifically, we
say that a point set Pn is dimension-stationary if

Pn({i1, : : : , id})=Pn({i1 + j, : : : , id + j}) for all i1, : : : , id
and j such that 1≤ i1¡· · ·¡id ≤ id + j≤ t. In other
words, the projections Pn(I) of a dimension-stationary
point set depend only on the spacings between the in-
dices in I. Every Korobov rule for which gcd(a, n)= 1
is dimension-stationary. More generally, given a re-
currence of the form &i = '(&i−1) when ' :(→( and
( is a finite set, if ' is invertible and g :(→ [0, 1),
then Pn = {u=(g(&0), : : : , g(&t−1)): &0 ∈(}, the set
of all (overlapping) output vectors over all the cy-
cles of the recurrence, is a dimension-stationary point
set (Lemieux and L’Ecuyer 2000b). Recurrences of
this form (with a very large () are widely used for
constructing pseudorandom number generators (e.g.,
L’Ecuyer 1994, Niederreiter 1992). Their dimension-
stationary property is an important advantage when
using them in a QMC context. This property does not
hold in general for popular QMC point sets such as
(typical) (t, m, s)-nets with t¿0.

3. Integration Error for Lattice Rules
The Fourier expansion of f , where f : [0, 1)t →R, is

f(u)=
∑
h∈Zt

f̂(h) exp(2*
√−1 h ·u),

with Fourier coefficients

f̂(h)=
∫
[0,1)t

f(u) exp(−2*
√−1 h ·u)du:

Since f̂ (0)= �, the integration error for a general point
set Pn can be written in terms of this expansion as

En =
1
n

n−1∑
i=0

(f(ui)− �)

=
1
n

n−1∑
i=0

∑
0�=h∈Zt

f̂(h) exp(2*
√−1 h ·ui)

=
1
n

∑
0 �=h∈Zt

f̂(h)
n−1∑
i=0

exp(2*
√−1 h ·ui), (9)

assuming that we can interchange the summations.
In particular, if the Fourier expansion of f is abso-
lutely convergent, i.e.,

∑
h∈Zt |f̂(h)|¡∞, then Fubini’s

theorem (e.g., Rudin 1974) guarantees that the
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interchange is valid. Sloan and Osborn (1987)
have shown that if Pn is a lattice node set, i.e.,
Pn =Lt ∩ [0, 1)t, (9) simplifies to the sum of the Fourier
coefficients over the nonzero vectors of the dual lattice:

En =
∑

0 �=h∈L∗
t

f̂(h): (10)

The proof consists of showing that

n−1∑
i=0

exp(2*
√−1 h ·ui)=

{
n if h∈L∗

t

0 otherwise
(11)

(Sloan and Joe 1994, Theorem 2.8). If we knew how to
efficiently compute (estimate) the Fourier coefficients
of f for all h∈L∗

t , we could compute (estimate) the inte-
gration error, but this is usually much too complicated
in real-life applications.
The error expression (10) immediately suggests a

discrepancy measure (or quality criterion) of the form

D(Pn)=
∑

0 �=h∈L∗
t

w(h) (12)

or

D′(Pn)= sup
0 �=h∈L∗

t

w(h) (13)

for lattice rules, where the w(h) are arbitrary nonneg-
ative weights that decrease with the ’’size’’ of h, in a
way to be specified. Indeed, for well-behaved (smooth)
functions f , |f̂(h)| should tend to decrease with the size
of h. (Later on in this section, wewill arrive again at the
general form of Criterion (12--13) by a different route,
via a variance minimization argument.) For example,
w(h) can be a decreasing function of the norm of h,
for some choice of norm. The faster it decreases, the
smoother the function (crudely speaking). The specific
form of w(·) should reflect our a priori assumptions
about the class of functions that we want to consider.
An obvious worst-case error bound is then given by:

PROPOSITION 2. LetF be the class of functions f such that
|f̂(h)| ≤Kw(h) for all h∈L∗

t , h �= 0, where K is a constant.
Then for all f ∈F, |En| ≤KD(Pn).

This proposition may look trivial. It can perhaps
demystify some worst-case error bounds given in the
literature (e.g., Lyness and Sloan 1989, Sloan and Joe

1994). These bounds are often special cases or variants
of Proposition 2, with specific choices of w(·).
Hickernell (1998b) provides several error bounds of

the form (4) based on variants of (12). For instance, it is
easily shown, using (10) and H �older’s inequality, that
(4) holds with

(D(Pn))p =
∑

0 �=h∈L∗
t

w(h)p (14)

and

(V(f))q =
∑

0 �=h∈Zt
(|f̂(h)|=w(h))q, (15)

for arbitrary p, q¿0 such that 1=p + 1=q=1. If we take
p=2, w(h)=

∏
j∈I(h) (.j=|hj|)0 for some positive integer

0¿0 and arbitrary positive weights .1, : : : , .t, where
I(h) denotes the set of nonzero coordinates of h, and
we consider the class of functions f whose periodic
continuation �f (defined by �f(u)= f(umod 1) for u∈Rt)
is continuous over the entire space Rt and has mixed
partial derivatives of order 0 or less that are square-
integrable over [0, 1)t, then V(f) is finite over that class
and can be written in terms of the integrals of these
mixed partial derivatives. Bounding the partial deriva-
tives can then provide a bound on the integration er-
ror, via (4). See Hickernell (1998b) for the details. This
upper bound motivates the criterion P̃0,p(Pn) to be dis-
cussed in §6.
From a practical viewpoint, these bounds and those

given by Proposition 2 do not resolve the problem
of estimating the error, because they require explicit
bounds Kw(h) on the Fourier coefficients which must
decay quickly enough so that D(Pn)¡∞, or we need
bounds on the mixed partial derivatives. Such bounds
are almost never available. To be on the safer side
regarding the assumptions of Proposition 2, we may
want to take aw(·) that decreasesmore slowly, but then
the error bounds tend to become too wide. The situa-
tion is actually darker: It is well-known that the Fourier
expansion of f can be absolutely convergent only if the
periodic continuation of f is continuous over the entire
space Rt (see, e.g., Folland 1992 or Sloan and Joe 1994,
p. 17). For typical simulation problems encountered in
management science, the function �f is discontinuous
at the boundary of the unit hypercube, and often in
the interior of the hypercube as well. For example, if
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a uniform uj is used to generate a random variable Xj

(e.g., the service time of a customer) by inversion of
the distribution function Fj, i.e., Xj =F−1

j (uj), then con-
tinuity of the periodic continuation of Xj as a function
of uj requires that limuj→1− F−1

j (uj)=F−1
j (0), which can

be true only if Xj is a constant. Moreover, discontinu-
ity in the interior of the hypercube occurs whenever
Xj is a discrete random variable.
What we need is a different way of estimating the

error. An attractive solution is to obtain a probabilis-
tic error estimator via independent randomizations of
the point set Pn, as described in the next section. Nu-
merical analysts sometimes argue against probabilistic
error estimates because they are not 100% guaranteed,
in contrast to the deterministic bounds.We believe that
estimates that we can compute are more useful than
bounds that are several orders of magnitude too wide,
or that we cannot compute.
Another (highly heuristic) way of assessing the error

is to repeat the integration with a sequence of lattice
rules that contain an increasing number of points (e.g.,
doubling n each time), and stop when the approxima-
tion Qn seems to have stabilized. These lattices can be
embedded (i.e, Pn′ ⊂Pn if n′¡n and if these are the node
sets of two of these lattice rules) or not. The problem
with this approach is that the error often decreases in
a nonmonotone fashion, and may still be very large
even if the value of Qn did not change after we have
doubled n. This would occur, for example, if important
terms in the error expression (10) correspond to val-
ues of h that belong to none of the dual lattices of the
node sets considered so far. For every fixed sequence
of rules, it is easy to construct examples for which this
happens.

4. Random Shifts and Variance
Expressions

A simple way of randomizing Pn without de-
stroying its regular structure is to shift it ran-
domly, modulo 1, with respect to all of the co-
ordinates, as proposed by Cranley and Patterson
(1976). Generate one point u uniformly over [0, 1)t

and replace each ui in Pn by ũi =(ui + u)mod 1
(where the ’’modulo 1’’ reduction is coordinate-

wise). Let P̃n = {ũ0, : : : , ũn−1}, Q̃n =(1=n)
∑n−1

i=0 f(ũi),
and Ẽn = Q̃n − �. This can be repeated m times, in-
dependently, with the same Pn, thus obtaining m
i.i.d. copies of the random variable Q̃n, which we
denote X1, : : : ,Xm. Let �X =(X1 + · · ·+Xm)=m and
S2

x =
∑m

j=1 (Xj − �X)2=(m− 1). We now have:

PROPOSITION 3. E[ �X] =E[Xj] = � and E[S2
x] =Var[Xj]

=mVar[ �X].

PROOF. The first part is quite obvious: Because each
ũi is a random variable uniformly distributed over
[0, 1)t, each f(ũi) is an unbiased estimator of �, and
so is their average. Sloan and Joe (1994) give a differ-
ent proof in their Theorem 4.11. For the second part,
which seems new, it suffices to show that the Xj’s are
pairwise uncorrelated. Without loss of generality, it
suffices to show that Cov(X1, X2)= 0. Let u and u′ be
the two independent uniforms used to randomly shift
the points to compute X1 and X2, respectively. Then,
for any i, ‘∈{0, : : : , n − 1}, ũi =(ui + u)mod 1 and
ũ′‘ =(u‘ + u′)mod 1 are independent and uniformly
distributed over [0, 1)t, so that Cov[ f(ũi), f(ũ′‘)]= 0.
Therefore,

Cov[X1, X2] =
1
n2 Cov

[
n−1∑
i=0

f(ũi),
n−1∑
‘=0

f(ũ′‘)
]

=
1
n2

n−1∑
i=0

n−1∑
‘=0
Cov[ f(ũi), f(ũ′‘)]= 0:

It should be underlined that Proposition 3 holds for
any point set Pn; it does not have to come from a
lattice. This variance estimation method, by random
shifts modulo 1, therefore applies to any kind of low-
discrepancy point set. We also mention that Qn itself is
not an unbiased estimator of � (it is not a random vari-
able). Observe that Proposition 3 holds under weaker
conditions than (10); the Fourier expansion of f need
not be absolutely convergent.
We now know how to estimate the variance, but this

variance estimator says nothing about how to deter-
mine our lattice selection criteria. Since �X is a statistical
estimator of �, the natural goal is to minimize its vari-
ance, i.e., minimize Var[Q̃n]. The next proposition ex-
presses this variance in terms of the (squared) Fourier
coefficients, both for a lattice rule and for plain MC

1220 MANAGEMENT SCIENCE/Vol. 46, No. 9, September 2000



L’ECUYER AND LEMIEUX
Variance Reduction via Lattice Rules

(for comparison). Tuffin (1998) gives a different proof
of (17) (in the proof of Theorem 2) under the condi-
tion that the Fourier expansion of f is absolutely con-
vergent. This is a much stronger condition than the
square integrability of f (i.e., finite variance), and it
rarely holds for real-life simulation models.

PROPOSITION 4. If f is square-integrable, with the MC
method (i.e., if Pn contains n i.i.d. random points) we have

Var[Q̃n] =Var[Qn] =
1
n

∑
0 �=h∈Zt

|f̂(h)|2: (16)

For a randomly shifted lattice rule, we have

Var[Q̃n] =
∑

0 �=h∈L∗
t

|f̂(h)|2: (17)

PROOF. With MC, (16) follows from Parseval’s
equality (Rudin 1974) and the fact that f̂(0)= �. For the
randomly shifted lattice rule, if we define the function
g: [0, 1)t →R by g(u)=

∑n−1
i=0 f((ui + u)mod 1)=n, we

get

Var[Q̃n] =Var(g(u))=
∑

0 �=h∈Zt
|ĝ(h)|2, (18)

by using the Parseval equality on g. The Fourier coef-
ficients ĝ(h) are

ĝ(h) =
∫
[0,1) t

g(u)e−2*
√−1h·udu

=
∫
[0,1) t

(
1
n

n−1∑
i=0

f((ui + u)mod 1)
)
e−2*

√−1 h·udu

=
1
n

n−1∑
i=0

∫
[0,1) t

f((ui + u)mod 1)e−2*
√−1 h·udu

=
1
n

n−1∑
i=0

∫
[0,1) t

f(vi)e−2*
√−1 h·(vi−ui)dvi

=
1
n

n−1∑
i=0

e2*
√−1h·ui

∫
[0,1) t

f(vi)e−2*
√−1h·vi dvi

=
1
n

n−1∑
i=0

e2*
√−1h·ui f̂(h)

=

{
f̂(h) if h∈L∗

t
0 otherwise:

(19)

In the last display, the third equality follows from
Fubini’s theorem (Rudin 1974) because f is square-
integrable over the unit hypercube, the fourth one is
obtained by making the change of variable vi =(ui +
u)mod 1, and the last one follows from (11). We can
now replace ĝ(h) by (19) in (18) and this yields the re-
quired result.
The variance is smaller for the randomly shifted lat-

tice rule than for MC if and only if the squared Fourier
coefficients are smaller ’’in the average’’ over L∗

t than
over Zt. The worst case is when all the nonzero Fourier
coefficients of f belongs to L∗

t . The variance of Q̃n is
then n times larger with the randomly shifted lattice
rule than with standard MC. Fortunately, for typical
real-life problems, the variance is smaller with the lat-
tice rule than with MC.
Heuristic arguments now enter the scene. A rea-

sonable assumption, similar to the one discussed just
after (12--13), is that for well-behaved problems the
squared Fourier coefficients should tend to decrease
quickly with the size of h, where the size can again be
measured in different ways. Small h’s correspond to
low-frequency waves in the function f , and are typi-
cally more important than the high-frequency waves,
which are eventually (for very large h) undetected
even by standard MC because of the finite precision
in the representation of the real numbers on the com-
puter. The small coordinates in h also correspond to
the most significant bits of the ui’s, which are usually
the most important. This argument leads us to the
same general discrepancy measure as in the previous
section, namely (12--13). So we are back to the same
question: How do we choose w?
Proposition 2 can be rephrased in terms of the vari-

ance. This is of course a trivial result, but an important
point to underline is that for a given function w such
that the sum in (12) converges, the classF′ in the next
proposition is generally much larger thanF in Propo-
sition 2.

PROPOSITION 5. Let F′ be the class of functions f such
that |f̂(h)|2 ≤Kw(h) for all h∈L∗

t , h �= 0; where K is a
constant. Then for all f ∈F′, Var[Q̃n]≤KD(Pn).

There are other ways of randomizing Pn than the
random shift. Some of them guarantee a variance
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reduction, but destroy the lattice structure, and do
not perform as well as the random shift of Pn for most
typical problems, according to our experience. Two of
thesemethods are stratification and Latin hypercube sam-
pling (LHS). One can stratify by partitioning the unit
hypercube as follows. For a given basis of Lt, let � be
the fundamental parallelepiped defined in §2, and let
�i =(�+ ui)mod 1 for each ui ∈Pn. These �i, 0≤ i¡n,
form a partition of [0, 1)t. For each i, generate a ran-
dom point ũi uniformly in �i and adopt the estimator
Q̃n defined as before, but with these new ũi’s. Since
this is stratified sampling (Cochran 1977), it follows
immediately that Var[Q̃n] is smaller with this scheme
than with standard MC (or equal, if f is constant over
each �i). Implementing this requires more work than
MC and than the random shift of Pn. LHS, on the
other hand, constructs the points ũi =(ũi,1, : : : , ũi, t)
as follows. Let ui,1 = i=n for i=0, : : : , n − 1, and let
(u0, s, : : : , un−1, s) be independent random permuta-
tions of (0, 1=n, : : : , (n − 1)=n), for s=2, : : : , t. (This is
equivalent to taking the node set of a lattice rule and,
for each s, randomly permuting the sth coordinate val-
ues of the n points. Such a randomization completely
destroys the lattice structure, except for the unidimen-
sional projections.) Then, let ũi, s =ui, s + �i, s=n for each
(i, s), where the �i, s are i.i.d. U(0, 1). The estimator is
again Q̃n. Its variance never exceeds n=(n − 1) times
that of MC (Owen 1998), and does not exceed the MC
variance under the sufficient condition that f is mono-
tone with respect to each of its coordinates (Avramidis
andWilson 1996). In the one-dimensional case (and for
each one-dimensional projection), LHS is equivalent
to the stratification scheme described a few sentences
ago. For s¿1, however, the s-dimensional projections
are not necessarily well distributed under LHS.
Observe that we did not assume t≤n anywhere so

far. Taking t�n means that the LCG (5) will cycle
several times over the same sequence of values of ui.
However, with the randomly shifted lattice rule this
is not a problem because the randomization takes care
of shifting the different coordinates differently, which
means that the ũi do not cycle. Section 10.3 gives an
example where we took t�n.
Rather than analyzing the variance of a randomized

lattice for a fixed function, some authors have ana-
lyzed the mean square error (MSE) over a space of ran-

dom functions f . This MSE is equal to the mean square
discrepancy for an appropriate definition of the dis-
crepancy. See, e.g., Wo �zniakowski (1991), Hickernell
(1998b), Hickernell and Hong (1999).

5. Functional ANOVA
Decomposition

The functional ANOVA decomposition of Hoeffding
(Hoeffding 1948, Efron and Stein 1981, Owen 1998)
writes f as a sum of orthogonal functions, where each
function depends on a distinct subset I of the coordi-
nates:

f(u)=
∑

I⊆{1, :::, t}
f I(u),

where f I(u)= f I(u1, : : : , ut) depends only on {ui, i∈ I},
f8(u)≡ � (8 is the empty set),

∫
[0,1)t fI(u)du=0 for

I �=8, and
∫
[0,1)2t f I(u)fJ(v)dudv=0 for all I �= J. For

any positive integer d,
∑

|I|≤d f I(·) is the best approx-
imation (in the mean square sense) of f(·) by a sum
of d-dimensional (or less) functions. The variance
decomposes as


2 =
∑

I⊆{1, :::, t}

2

I =
∑

I⊆{1, :::, t}

∑
0 �=h∈ZZt

|f̂ I(h)|2,

and for a randomly shifted lattice rule, one has

Var[Q̃n] =
∑

I⊆{1, :::, t}

∑
0�=h∈L∗

t

|f̂ I(h)|2, (20)

where for I �=8, 
2
I =
∫
[0,1)t f

2
I (u)du is the variance of

f I , the f̂ I(h) are the coefficients of the Fourier expan-
sion of f I , and f̂ I(h)= 0 whenever the components of
h do not satisfy: hj �=0 if and only if j∈ I. In this sense,
the ANOVA decomposition partitions the vectors h
according to the ’’minimal’’ subspaces to which they
belong, i.e., according to their sets of nonzero coordi-
nates.
We say that f has effective dimension at most d in

the truncation sense (Caflisch et al. 1997, Owen
1998) if

∑
I⊆{1, :::,d} 
2

I is near 
2, in the superposition
sense (Caflisch et al. 1997, Owen 1998) if

∑
|I|≤d 
2

I

is near 
2, and in the successive-dimensions sense
if
∑

I⊆{i, :::, i+d−1}, 1≤ i≤ t−d+1 
2
I is near 
2. The first

definition means that f is almost d-dimensional (or
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less), while the others mean, in a different sense,
that f is almost a sum of d-dimensional functions.
High-dimensional functions that have low effective
dimension are frequent in simulation applications.
In many cases, the most important sets I are those
that contain either successive indices, or a small
number of indices that are not too far apart. This
fact, combined with the expression (20) for Var[Q̃n],
suggests discrepancy measures of the Form (12) or
(13), but where the sum (or the sup) is restricted
to those h that belong to the subspaces determined
by the sets I that are considered important. We
propose selection criteria along these lines. In §9,
we mention ways of changing f in order to re-
duce its effective dimension without changing its
expectation.
EXAMPLE 1. For a concrete illustration, consider the

3-dimensional function f(u1, u2, u3)= 2u1u2 +3u2
3 +u2.

The Fourier coefficients of the ANOVA components
are f̂{1}(h1, 0, 0)=

√−1=(2*h1) if h1 �=0, f̂{2}(0, h2, 0)=√−1=(*h2) if h2 �=0, f̂{3}(0, 0, h3)= 3[
√−1=(2*h3)

+ 1=(2*2h2
3)] if h3 �=0, f̂{1,2}(h1, h2, 0)=−1=(2*2h1h2)

if h1h2 �=0, and f̂ I(h)= 0 for every other case. The to-
tal variance is 
2 = 56=45 and it can be decomposed
as the sum of 
2

{1} =1=12, 
2
{2} =1=3, 
2

{3} =4=5, and

2
{1,2} =1=36 (the other 
2

I ’s being 0). Here, the unidi-
mensional ANOVA components f{3}(u3)= 3u2

3 − 1 and
f{2}(u2)=u2 − 1=2 account for about 64% and 27% of
the total variance, respectively.

6. Selection Criteria for Lattice Rules
We came up with the general selection criteria (12) and
(13). It now remains to choose w, and to choose be-
tween sum and sup. Two important factors to be con-
sidered are: (1) the choice should reflect our idea of
the typical behavior of Fourier coefficients in the class
of functions that we want to consider, and (2) the cor-
responding figure of merit D(Pn) or D′(Pn) should be
relatively easy and fast to compute, so that we can
make computer searches for the best lattice parame-
ters. Several choices ofw and the relationships between
them are discussed, e.g., by Hellekalek (1998), Hicker-
nell (1998b), Niederreiter (1992) and in the references
given there.

Historically, a standard choice forw has beenw(h)=
‖h‖−0

* , a negative power of the product norm
‖h‖* =

∏t
j=1 max(1, |hj|). With this w, D(Pn) in (12)

becomes

P0(Pn)=
∑

0�=h∈L∗
t

‖h‖−0
* ,

a special case of (14). Hickernell (1998b) suggests gen-
eralizations of P0(Pn), incorporating weights and re-
placing the simple sum in (12) by an Lp-norm. This
gives, for instance, the quantity P̃0,p(Pn) defined by

(P̃0,p(Pn))p =
∑

0 �=h∈L∗
t

(.I(h)=‖h‖*)0 p,

where p≥ 1 and the constants .I are positive weights
that assess the relative importance of the projections
Pn(I), i.e., the relative sizes of the 
2

I ’s in the ANOVA
decomposition.
In the special case of product-type weights, of the form

.I = .0
∏
j∈I

.j,

if 0 is even and p=2, one can write

(P̃0,2(Pn))2 =

− .20
0 +

.20
0

n
∑
u∈ Pn

t∏
j=1

[
1−

(−4*2.2
j )

0

20!
B20(uj)

]

where B0(·) is the Bernoulli polynomial of degree 0
(e.g., Sloan and Joe 1994). This gives an algorithm for
computing P̃0,2(Pn) in time O(nt) when 0 is an even
integer and Pn is the point set of a lattice rule. This also
means that (P̃0,2(Pn))2 can be interpreted in this case
as a worst-case variance bound for a class of polyno-
mial functions with certain bounds on the coefficients
(Lemieux 2000 provides further details). Note that the
DF,0,p(P) of Hickernell (2000) corresponds to P̃0,p(Pn),
and to (P20(Pn))1=2 if p=2 and .j =1 for all j, and is
a particular case of the discrepancy D(Pn) in (4) and
(14).
If the .j’s are less than 1, then .I tends to decrease

with |I|, which gives more importance to the lower-
dimensional projections of f . In particular, if .j = .¡1
for all j, .I decreases geometrically with |I|. This means
that all the projections f I over the same number of di-
mensions |I| are assumed to have the same importance,
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and the importance decreases with |I|. By taking .j =1
for each j, we obtain the classical P0(Pn), for which
all the projections are given the same weight. With
equal weights, the low-dimensional projections are
given no more importance than the high-dimensional
ones, and (unless t is small) their contribution is di-
luted by the massive number of higher-dimensional
projections. Sloan and Joe (1994) provide tables of
parameters for lattices rules with good values of
P2(Pn) in t dimensions, for t up to 12.
If we take (13) instead of (12), with the same w and

with 0=1, we get the inverse of the Babenko-Zaremba
index, defined as

%t = min
0 �=h∈L∗

t

‖h‖*, (21)

which has also been suggested as a selection criterion
for lattice rules, but appears harder to compute than
P2(Pn). This %t is the limit of P̃−1

1,p (Pn) as p→∞. It has
been used by Maisonneuve (1972) to compute tables
for up to t=10.
Another (natural) choice for w(h) is of course theLp-

norm to some negative power, w(h)= ‖h‖−0
p , where

‖h‖p =(|h1|p+ · · ·+|ht|p)1=p. With 0=1 and the criterion
(13),D(Pn) becomes the inverse of theLp-length of the
shortest vector h in the dual lattice, which is equal to
the Lp-distance between the successive hyperplanes
for the family of parallel equidistant hyperplanes that
are farthest apart among those that cover all the points
of Lt. For p=1, ‖h‖1 (or ‖h‖1 − 1 in some cases, see
Knuth 1998) is the minimal number of hyperplanes
that cover all the points of Pn. For p=2 (the Euclidean
norm), this is the so-called spectral test commonly used
for ranking LCGs (Hellekalek 1998, L’Ecuyer 1999b,
L’Ecuyer and Couture 1997, Knuth 1998), and we use
‘t to denote the length of the shortest vector in this
case. Because the density of the vectors h in L∗

t is fixed,
and since wewant to avoid the small vectors h because
they are considered the most damaging, maximizing
‘t makes sense.
The Euclidean length ‘t of the shortest nonzero vec-

tor h is independent of its direction, whereas for the
product norm (for %t) the length of h tends to remain
small when h is aligned with several of the axes, and
increases quickly when h is diagonal with respect to
the axes. Entacher et al. (2000) have proved a relation-

ship between ‘t and %t which seems to support the use
of ‘t. It says (roughly) that a large ‘t implies a large
%t, but not vice versa (they provide an example where
%t
√

t= ‘tbt−1 for an arbitrary b):

PROPOSITION 6. One has %2
t ≥ ‘2

t − (t − 1). The reverse
inequality is %1=t

t

√
t≤ ‘t.

Another important argument favoring ‘t is that it can
be computed much more quickly than %t orP0(Pn), for
moderate and large n. Finally, tight upper bounds are
available on ‘t, of the form ‘t ≤ ‘∗t (n)= ctn1=t, where the
constants ct can be found in Conway and Sloane (1988)
and L’Ecuyer (1999b). One can then define a normal-
ized figure of merit ‘t=‘∗t (n), which lies between 0 and
1 (the larger the better). A similar normalization can be
defined for the Lp-distance in general, using a lower
bound on the distance provided by Minkowski’s gen-
eral convex body theorem (Minkowski 1911). Hicker-
nell et al. (2000), for example, use this lower bound to
normalize theL1-distance between the successive hy-
perplanes.
These quantities ‘t, %t, P0(Pn), etc., measure the

structure of the points in the t-dimensional space. In
view of the fact that the low-dimensional projections
often account for a large fraction of the variance in
the ANOVA decomposition in real-life applications,
it seems appropriate to examine more closely the
structure of the low-dimensional projections Lt(I). Let
L∗

t (I) be the dual lattice of Lt(I), let ‘I be the Euclidean
length of the shortest nonzero vector h in L∗

t (I), and
‘s = ‘{1, :::, s} for s≤ t. This length is normalized by the
upper bound ‘∗|I|(n). Because ‘∗s (n) decreases with s,
the effect of the normalization is to be more demand-
ing regarding the distance between the hyperplanes
when the cardinality of I decreases. Assume that Lt

is fully projection-regular and dimension-stationary.
Then we have ‘{i1, :::, is} = ‘{1, i2−i1+1, :::, is−i1+1}, and it
suffices to compute ‘I only for the sets I whose first
coordinate is 1.
For arbitrary positive integers t1 ≥ · · ·≥ td ≥ d, con-

sider the worst-case figure of merit

Mt1, :::, td =min
[

min
2≤s≤t1

‘s=‘∗s (n), min
2≤s≤d

min
I∈S(s, ts)

‘I=‘∗|I|(n)
]
, (22)

where S(s, ts)= {I = {i1, : : : , is}: 1= i1¡· · ·¡is ≤ ts}.
This figure of merit takes into account the
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low-dimensional projections and makes sure that the
lattice is good not only in t dimensions, but also in
projections over s successive dimensions for all s≤ t1,
and over nonsuccessive dimensions that are not too
far apart. This means, to a certain extent, that we can
use the same rule independently of the dimension of
the problem at hand. In contrast, lattice rules provided
in previous tables are typically chosen for a fixed t (i.e.,
different rules are suggested for different values of t,
e.g., Sloan and Joe 1994) and these rules are not nec-
essarily good with respect to the lower-dimensional
projections.
The figure of meritMt1 =min2≤s≤t1 ‘s=‘

∗
s (n), obtained

by taking d=1, has been widely used for ranking and
selecting LCGs aswell asmultiple recursive generators
(Fishman 1996, L’Ecuyer 1999a). Tables of good LCGs
with respect to this figure of merit, and which can be
used as Korobov lattice rules, have been computed by
L’Ecuyer (1999b) for t1 = 8, 16, 32, and for values of n
that are either powers of 2 or primes close to powers of
2. These rules are good uniformly for a range of values
of s. In Lemieux and L’Ecuyer (2000b), we suggested
using d=2 or 3 instead of d=1, with t1 = · · ·= td, and
gave examples where it makes an important differ-
ence in the variance of the estimator Q̃n. The quan-
tity Mt1, :::, td is a worst case over (t1 − d) +

∑d
s=2

(ts−1
s−1

)
projections, and this number increases quickly with d
unless the ts are very small. For example, if d=4 and
ts = t for each s, there are 587 projections for t=16 and
5,019 projections for t=32. When too many projec-
tions are considered, there are inevitably some that are
bad, so the worst-case figure of merit is (practically)
always small. As a consequence, the figure of merit
can no longer distinguish between good and mediocre
behavior in the most important projections. Moreover,
the time to compute Mt1, :::, td increases with the num-
ber of projections. There is therefore a compromise to
be made: We should consider the projections that we
think have more chance of being important, but not
too many of them. We suggest using the Criterion (22)
with d equal to 4 or 5, and ts decreasing with s, both for
QMC and for selecting random number generators.
Table 1 gives the results of an exhaustive search

for the best multipliers a that are primitive element
modulo n, in terms of the criteria M32, M32,24,12,8, and
M32,24,16,12, where n is the largest prime less than 2e,

Table 1 Best as with Respect to Mt1, :::, td for Certain Values of
(d, t1, : : : , td) and n

n a M32 M32, 24, 12, 8 M32, 24, 16, 12

1021 331 0.61872∗ 0.09210 0.09210
76 0.53757 0.29344∗ 0.21672

306 0.30406 0.26542 0.26542∗

2039 393 0.65283∗ 0.15695 0.15695
1487 0.49679 0.32196∗ 0.17209

280 0.29807 0.25156 0.25156∗

4093 219 0.66150∗ 0.13642 0.13642
1516 0.39382 0.28399∗ 0.20839
1397 0.40722 0.27815 0.27815∗

8191 1716 0.64854∗ 0.05243 0.05243
5130 0.50777 0.30676∗ 0.10826
7151 0.47395 0.28809 0.28299∗

16381 665 0.65508∗ 0.15291 0.14463
4026 0.50348 0.29139∗ 0.23532
5693 0.52539 0.26800 0.25748∗

32749 9515 0.67356∗ 0.29319 0.13061
14251 0.50086 0.32234∗ 0.12502

8363 0.41099 0.29205 0.28645∗

65521 2469 0.63900∗ 0.17455 0.06630
8950 0.55678 0.34307∗ 0.20965

944 0.39593 0.28813 0.26280∗

131071 29803 0.66230∗ 0.03137 0.03137
28823 0.44439 0.33946∗ 0.15934
26771 0.54482 0.29403 0.29403∗

Nb. of projections 31 141 321

for e=10, 11, : : : , 17. The last line of the table gives the
total number of projections considered by each crite-
rion. A star (*) adjacent to the criterion value means
that this value is optimal (the best we found) with re-
spect to this criterion. For each of the three criteria,
we give an optimal multiplier a, its optimal criterion
value, and the value of the criterion for the multipliers
that are the best with respect to the two other criteria.
Some of the best rules with respect toM32 are bad with
respect to the criteria that look at projections over non-
successive dimensions (e.g., for n= 8,191 and 131,071).
The best ones with respect to M32,24,12,8 have a rel-
atively good value of M32 and are usually good also
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with respect toM32,24,16,12. Of course, sinceM32,24,16,12
looks at the largest number of projections among the
three criteria, the best LCGs with respect to this crite-
rion are never very bad with respect to the two other
criteria. In summary, for general-purpose lattice rules,
we recommend the LCGs defined by the second and
third values of a for each n in the table. For our numer-
ical examples in §10, we will use the best rules with
respect to M32,24,12,8 (the second value of a).

7. Rules of Higher Rank
Rules of rank r¿1 have been studied and recom-
mended by Sloan and Joe (1994) and the references
given there. A special case is the copy rule, constructed
as follows. Divide each of the first r axes of [0, 1)t in
= equal parts, partitioning thus the unit hypercube
into =r rectangles of equal volume. Take a Rank-1
integration lattice whose node set has cardinality ",
rescale its first r axes so that [0, 1)t is mapped to
[0, 1==)r × [0, 1)t−r, and make one copy of the rescaled
version into each rectangle of the partition. The node
set thus obtained has cardinality n= "=r, and corre-
sponds to a lattice rule called an =r-copy rule. It is given
by

Pn=
=−1∪
m1=0

· · ·=−1∪
mr=0

"∪
i=1
{((m1==, : : : ,mr==, 0, : : : , 0︸ ︷︷ ︸

t−r times

)+xi)mod1},

where P" = {xi, i=1, : : : , "} is the rank-1 integration lat-
tice. The interest for these rules stems from the fact that
for a fixed value of n, the average value of P0(Pn) over
=r-copy rules is minimized by taking r= t and ==2.
Sloan and Joe (1994) made computer searches for good
rules in terms of P0(Pn) and the best rank-t rules that
they found were generally better than their best rank-1
rules, for the same n. Our experiments confirmed this
(see our forthcoming Table 2). These results no longer
hold, however, if P0(Pn) is replaced by another crite-
rion, such as P̃0,p(Pn) with unequal weights. This is
especially true if the weights are chosen to make the
low-dimensional projections more important. For ex-
ample, if .1 = · · ·= .t = . and . is small enough, the
optimal = is 1 (Hickernell 1998b).
The limitations of copy rules over low-dimensional

projections are easily understood by observing that

the node sets of these rules have projections contain-
ing less than n distinct points. For an =r-copy rule, if
I = {i1, : : : , is}⊆{1, : : : , r}, the projection Pn(I) con-
tains only n==r−s distinct points. There are ex-
actly =r−s points of Pn projected onto each point
of Pn(I). For example, if n=218 and r= t=16,
any unidimensional projection of Pn contains only
8 distinct points repeated 215 times each, any 2-
dimensional projection contains 16 distinct points
repeated 214 times each, and so on. Such rules
are certainly bad sampling schemes in general if the
low-dimensional projections of f account for most of
the variance in its ANOVA decomposition (e.g., if f is
nearly quadratic). As another special case, if we take
r= t and "=1, so n= =t, we obtain a rectangular rule,
where Lt is the set of all t-dimensional points whose
coordinates are multiples of 1==.
In Table 2, for t=12, we compare the best 2t-copy

rules found by Sloan and Joe (1994) based on cri-
terion P2(Pn) (these are the rules of Rank 12 given
in the table, with the corresponding "=n=212), and
the best rank-1 rules of corresponding orders that
we found with criteria P2(Pn), S12 = ‘12=‘∗12, M12,
and M12,8,6. For each rule, we give the total num-
ber of points n, the value of a, and the value of
each criterion. For copy rules, a formula for com-
puting P2(Pn) is given by Sloan and Joe (1994,
p. 107) and Hickernell (1998b, p. 150). To compute
‘s=‘∗s , we use the fact that for a copy rule of Rank
t, ‘s = =‘s(") and ‘∗s = cs("=t)1=s = =t=s‘∗s (") where ‘∗s (")
and ‘s(") are the values of ‘∗s and ‘s for the rank-1
rule of order " that has been copied. This gives ‘s=‘∗s =
=1−t=s‘s=‘∗s (").
Our results agree with the theory of Sloan and Joe

(1994): The copy rules of Rank 12 have much better
values of P2(Pn) than the best rank-1 rules. In addi-
tional experiments, we found that by going from the
best rank-1 rules to the best rank-t rules, the value of
P2(Pn) improves by a factor that increases with the di-
mension t. This factor is approximately 1.5 for t=4, 3:2
for t=8, and 6:5 for t=12. The best copy rules of Rank
t=12 in the table also happen to have a very good
value for S12 (sometimes as good as the best rank-1
rule with respect to S12). However, the copy rules per-
form very poorly with respect to M12 and M12,8,6, as
expected, because their lower-dimensional projections
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Table 2 Copy Rules Versus Rank-1 Rules for t= 12

rank criterion " n a P2(Pn) S12 M12 M12, 8, 6

12 P2(P n) 3 12288 1 447∗ 0.8097∗ 0.0237 0.0237
1 P2(P n) 12281 12281 3636 2930 0.6401 0.0863 0.0187
1 S12 12281 12281 1221 3180 0.8097∗ 0.4924 0.2896
1 M12 12281 12281 9948 3160 0.7012 0.6683∗ 0.1202
1 M12, 8, 6 12281 12281 657 3160 0.6402 0.6031 0.5804∗

12 P2(P n) 5 20480 2 268∗ 0.7759 0.0291 0.0184
1 P2(P n) 20479 20479 11077 1730 0.6134 0.0728 0.0145
1 S12 20479 20479 18860 1890 0.8230 0.4928 0.1426
1 M12 20479 20479 14700 1900 0.7258 0.6915∗ 0.2085
1 M12, 8, 6 20479 20479 10741 1880 0.7258 0.5398 0.5398∗

12 P2(P n) 11 45056 3 121∗ 0.7266 0.0277 0.0124
1 P2(P n) 45053 45053 4928 806 0.6293 0.2334 0.0613
1 S12 45053 45053 39426 866 0.8124∗ 0.3541 0.1798
1 M12 45053 45053 26149 853 0.7266 0.6874∗ 0.1053
1 M12, 8, 6 45053 45053 5845 857 0.6293 0.5558 0.5542∗

are bad. It may be interesting to note that if we com-
pare the best rules of Rank 1 with respect to P2(Pn)
with the best rules with respect to S12 in the table, the
latter perform much better with respect to the two cri-
teria M12 and M12,8,6.

8. Polynomial Lattice Rules
The lattice rules discussed so far are based on inte-
gration lattices in Rt. This is not the only possibil-
ity; one can define lattice rules based on lattices in
other spaces. Consider for example the space F2[z]
of polynomials with coefficients in F2, the finite field
with 2 elements (that is, each coefficient is either 0 or
1 and the arithmetic between the coefficients is per-
formed modulo 2; e.g., Lidl and Niederreiter 1986). Let
P(z)=

∑k
j=0 ajzk−j ∈F2[z] be a polynomial of degree k,

with ak = a0 = 1, and consider the linear recurrence

pi(z)= z pi−1(z)mod(P(z), 2), (23)

where

pi(z)=
k∑

j=1
ci, jz k−j (24)

is a polynomial in F2[z], and ’’mod(P(z), 2)’’ means
the remainder of the polynomial division by P(z), with
the operations on the coefficients performed in F2. We
now have an LCG in F2[z], with modulus P(z) and
multiplier z, which has a lattice structure similar to
that of usual LCGs (Couture et al. 1993, Couture and
L’Ecuyer 2000). To the polynomial pi(z), we associate
the output value

ui =
L∑

j=1
yi, j2−j (25)

where L is a positive integer,

yi, j =
k∑

l=1
bj, lci, lmod 2, (26)

and each bj, l is in F2. The corresponding node set Pn, of
cardinality 2k, is the set of all vectors u=(u0, : : : , ut−1)
obtained by taking each of the n=2k possibilities for
p0(z) in (24). The ’’bits’’ bj, l should be chosen so that
Pn has good uniformity properties and is easy to enu-
merate. These polynomial lattice rules are strongly re-
lated with the digital net constructions of Niederreiter
(1992), §4.4, also discussed by Larcher (1998).
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The node set Pn can be randomly shifted by adding
a (uniform) random point u modulo 1, as in §4. How-
ever, as pointed out to us by R. Couture, the counter-
part of the Cranley-Patterson rotation here is to per-
form a bitwise exclusive-or between the binary expan-
sions of u and each point of Pn. This yields a randomly
scrambled version of Pn, say P̃ n. This randomization
of Pn is much simpler than the scrambling proposed
by Owen (1997) for nets, and permits one to obtain a
simple variance expression similar to (17), but in terms
of the coefficients of a Walsh expansion of f in base
2 instead of a Fourier expansion. See Lemieux (2000),
Lemieux et al. (2000) for details.
The polynomial lattice rules can be evaluated in

terms of the following equidistribution properties.
By partitioning the interval [0, 1) into 2‘ segments
of equal length, we determine a partition of the box
[0, 1)t into 2t‘ cubic boxes of equal volume. For a given
set of indices I = {i1, : : : , is}, we say that the projection
Pn(I) is s-distributed to ‘ bits of accuracy if each box
of the partition contains exactly 2k−s‘ points of Pn(I).
This means that if we look at the first ‘ bits of each
coordinate of the points of Pn(I), each of the 2s‘ pos-
sible s‘-bit strings appears exactly the same number
of times. (Of course, this requires s‘≤ k.) To verify
this property, it suffices to write a system of linear
equations that express these 2s‘ bits as a function of
(c0,1, : : : , c0, k), and to check that these equations are
independent, i.e., that the corresponding matrix has
full rank, s‘. Equidistribution can also be assessed
via the lengths of shortest vectors in the dual lattice
(Couture et al. 1993).
We can define a selection criterion similar to

(22). For positive integers d and t1 ≥ · · ·≥ td, let
J(t1, : : : , td) be the class of subsets I such that either
I = {1, : : : , s} for s≤ t1, or I = {i1, : : : , is}where 2≤ s≤ d
and 1= i1¡· · ·¡is ≤ ts. Define

A(t1, : : : ,td)= max
I∈J(t1, :::, td)

max[0, min(L,�k=|I|�)− ‘∗(I)];

(27)

where ‘∗(I) is the largest value of ‘ for which Pn(I)
is |I|-distributed to ‘ bits of accuracy. We want
A(t1, : : : , td) to be as small as possible, ideally equal
to 0. L’Ecuyer (1996, 1999c) has constructed combined
Tausworthe random number generators (these gen-

erators turn out to be a special case of (23)--(26)) for
which A(k)= 0, for large values of k.
A related criterion is to compute the smallest value

of q for which Pn is a ’’(t, m, s)-net’’ (a (q, k, t)-net, in
our notation). One considers all the partitions of [0, 1)t

into rectangular boxes of dimensions 2−‘1 , : : : , 2−‘t (not
only cubic boxes), such that ‘1 + · · ·+ ‘t = k − q for a
given integer q. The set Pn is a (q, k, t)-net in base
2 if each box of each of these partitions contains ex-
actly 2q points (Niederreiter 1992 provides the details).
Checking the (q, k, t)-net property is usually harder to
check than computing A(t1, : : : , td), especially when k
is large, and q and d are small, because it involves a
large number of partitions. Based on our experience,
the polynomial lattice rules selected via (27), with a
bitwise exclusive-or with a random u, seem to perform
quite well in practice, sometimes better than the ordi-
nary lattice rules (Lemieux 2000).

9. Massaging the Problem
When the function f is fixed, the goal is to find an
integration lattice such that themost important Fourier
coefficients are not in its dual. Another way of gaining
precision is to change f so that its integral remains
the same but its most important Fourier coefficients
correspond to vectors h that are smaller and=or belong
to lower-dimensional projections.
A first way of achieving this is to improve the

smoothness of �f , the periodic continuation of f , by
making nonlinear changes of variables of the form
vs =8−1

s (us), where 8s : [0, 1)→ [0, 1) is smooth and
increasing for each s. The integral becomes

�=
∫
[0,1)t

g(v)dv

where g(v)= g(v1, : : : , vt)= f(81(v1), : : : , 8t(vt))8′
1(v1)

· · ·8′
t(vt). By choosing each 8s so that 8′

s(0)=8′
s(1)= 0,

the periodic continuation of g becomes continuous on
the hypercube boundary even if that of f is not. More
generally, if the (d + 1)th derivative of 8 vanishes on
the hypercube boundary, the periodic continuation of
g is guaranteed to have a continuous dth derivative on
the boundary. For example, if 8(v)= v3(10−15v+6v2),
then both 8′ and 8′′ vanish at 0 and 1. These trans-
formation techniques are further discussed in §2.12 of
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Sloan and Joe (1994). These methods should not be ap-
plied blindly. A transformation that improves smooth-
ness at the boundary may substantially increase 
2, the
variance of f , e.g., by introducing oscillations inside
the hypercube. Finding appropriate 8s’s can be hard
in practice.
Other types of transformations work by reducing

the effective dimension of the problem, by concentrat-
ing the variance in the ANOVA decomposition on the

2

I ’s for which I contains only a few small coordinates,
or for which I contains only a few coordinates that are
close to each other, or something of that kind. That is,
concentrating the variance on the subspaces for which
the projections Pn(I) are known to have very good uni-
formity. These methods include the Brownian bridge
technique for generating a Brownian motion, special
techniques for generating Poisson processes, methods
based on principal components analysis, and so on.We
refer the reader to Fox (1999). Here we just briefly out-
line the idea of the Brownian bridge method (Caflisch
and Moskowitz 1995), which will be used in §10.2.
Suppose one has to generate the path of a stan-

dard Brownian motion {B(B), 0≤ B≤T} (with zero
trend and variance constant of 1). The standard
way is to discretize the time by putting, say, Bi = i�
for i=0, : : : , t, where �=T=t, and then generate
Zi =(B(Bi) − B(Bi−1))=

√
�, i=1, : : : , t, which are i.i.d.

N(0, 1) random variables. If the standard normals are
generated by inversion, this requires t uniforms. If the
function f is some sort of average over the entire tra-
jectory of B, for instance, then the uniforms used for
the early part of the trajectory are slightly more im-
portant than those used near the end, because their
effect lasts longer. However, the first few uniforms
can be made much more important, as follows. Gen-
erate first B(T), a normal with mean 0 and variance
T. Then generate B(T=2), whose distribution condi-
tional on B(0) and B(T) is normal with mean (B(0) +
B(T))=2 and variance T=4, according to the Brownian
bridge formula (Karatzas and Shreve 1988). By applying
the technique recursively, one generates successively
B(T=4), B(3T=4), B(T=8), B(3T=8), and so on. The first
few values are now very important because they draw
a rough sketch of the entire trajectory of B, whereas the
values generated later onlymakeminor adjustments to
the trajectory. Extensions of this method lead to prin-

Figure 2 Example of a SAN, taken from Avramidis and Wilson (1996)

Reprinted by permission, Avramidis and Wilson, Integrated Variance Reduction
Strategies for Simulation, Operations Research, Vol. 44, No. 2, March--April 1996.
Copyright 1996, The Institute for Operations Research and the Management
Sciences (INFORMS), 901 Elkridge Landing Road, Suite 400, Linthicum, Maryland
21090 USA.

cipal components analysis and other variants, which
have been applied successfully in the area of finance
(e.g., Acworth et al. 1997, Morokoff 1998).

10. Examples
In the following examples, the random variables are
always generated by inversion, so that the dimension
t for each problem is equal to the number of random
variables thatmust be generated in one simulation run.
For all the examples, we use the lattice rules that max-
imize the criterion M32,24,12,8 in Table 1 (that is, the
second a in the table, for each n).

10.1. A Stochastic Activity Network
This example is taken from Avramidis and Wilson
(1996). We consider a stochastic activity network (SAN),
represented by a directed acyclic graph (N,A), where
N is a set of nodes which contains one source and one
sink, and A is a set of arcs corresponding to activi-
ties. Figure 2 gives an illustration. Each activity k ∈A

has a random duration Vk with distribution function
Fk(·). Certain dummy activities represent precedence
relationships and have a duration of 0. We denote by
N(A) the number of activities with nonzero duration,
N(P) the number of directed paths from the source to
the sink, and Cj ⊆A the set of activities forming the
path j, for 1≤ j≤N(P). The network completion time T
is the length of the longest path from the source to the
sink.
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Wewant to estimate �=FT(x) = P[T ≤ x] for a given
threshold x. With the standard MC or QMC method,
this problem has t=N(A) dimensions, since one uni-
form uk is needed to generate each activity duration,
via Vk =F−1

k (uk). One can write � as the integral

�=FT(x)=
∫
[0,1)N(A)

N(P)∏
j=1

1

[∑
k∈Cj

F−1
k (uk)≤ x

]
du1 : : : duN(A)

where 1 is the indicator function. Both the dimension
of the problem and the variance of the MC estima-
tor can be reduced by applying conditional Monte Carlo
(CMC), as follows (Avramidis and Wilson 1996). Se-
lect a set of activities L⊆A such that each directed
path j from the source to the sink contains exactly one
activity lj fromL. This set is called a uniformly directed
cutset. The idea of CMC is to generate (by simulation)
only the durations of the activities in B=A\L, and
to estimate � by the conditional probability that T ≤ x
given those durations. The dimension of the problem
is now reduced to t=N(B), where N(B) is the num-
ber of nondummy activities inB. The CMC (unbiased)
estimator is

Y = P[T ≤ x | {Vj, j∈B}]

=
∏
l∈L

Fl

[
min

{ j=1, :::,N(P):lj=l}

(
x− ∑

k∈Cj\{lj}
Vk

)]
:

The t required uniforms for each replication can now
be generated either by standard MC or by (random-
ized) QMC, e.g., via a lattice rule. Avramidis and
Wilson (1996) proposed to generate them via Latin
hybercube sampling (LHS). Note that this setup and
methodology applies to estimate the expectation of a
function of the length of the longest path in a network
in general; it does not have to be a SAN.
We performed experiments with the network shown

in Figure 2, with the same set L and the same prob-
ability laws of the activity durations as in Avramidis
and Wilson (1998), to compare MC, LHS, and a ran-
domly shifted lattice rule (LR), with andwithout CMC.
The set L contains the 5 arcs that separate the nodes
{1, 2, 3, 4, 5} from the nodes {6, 7, 8, 9}. The dimension
of the problem is thus t=13 without CMC and t=8
with CMC. We took x=90, which implies FT(x)≈ 0:89.
For LR, we used different number of points n, with

Table 3 Estimated Variance Reduction Factors w.r.t. MC for the SAN
Example

n

Method t 4093 16381 65521

LHS 13 3.2 4.3 3.4
LR 13 6.2 4.2 24.5
MC+CMC 8 4.1 4.1 4.1
LHS+CMC 8 58 56 63
LR+CMC 8 268 839 3,086

the second a in Table 1 for each n, and m=100 ran-
dom shifts. We made mn i.i.d. replications for MC, for
a fair comparison. Table 3 gives the estimated vari-
ance reduction factors with respect to the crude MC
estimator.
The combination of LR with CMC (last line) is a

clear winner here. Moreover, the corresponding vari-
ance reduction factor increases almost linearly with n.
Its computing time also turned out to be less than MC
for an equivalent total sample size, in our experiments.
This can be explained by the fact that both CMC and
LR reduce the amount of random numbers that are
required in comparison with crude MC. For LR, we
must perform n− 1 steps of the recurrence (5), gener-
ate t pseudorandom numbers, and apply the same ran-
dom shift to all the points, whereas for crude MC we
must generate nt pseudorandom numbers. The com-
bination of LHS with CMC reduces the variance by a
nonnegligible factor, but this factor is practically inde-
pendent of n. We performed other experiments with
different values of x and with the other network pre-
sented in Avramidis and Wilson (1996), and the con-
clusions were similar.

10.2. Pricing Asian Options
Consider the problem of pricing an Asian option
on the arithmetic average, for a single asset whose
value at time u is denoted by S(u). We assume the
Black--Scholes model for the evolution of S(·), with
risk-free appreciation rate r, volatility 
, strike price
K, and expiration time T. Under the so-called risk-
neutral measure, S(·) obeys the Itô stochastic differen-
tial equation

dS(B)=S(B)= rdB + 
dB(B)
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where B(·) is a standard Brownian motion. (Details
about this model can be found, e.g., in Duffie 1996.)
The solution of this equation is

S(B)=S(0) exp[(r − 
2=2)B + 
B(B)]:

The final value of the option is given by max(0, (1=t)∑t
i=1 S(ti)−K), where ti = iT=t and t is a fixed constant.

The trajectory of B(·) can be generated as described
in §9, by generating t i.i.d. standard normals. The ex-
pected final value, discounted to time 0, which is the
fair price that we want to estimate, can in fact be writ-
ten as the t-dimensional integral:

� =
∫
[0,1)t

e−*T max

(
0,
1
t

t∑
i=1

S(0) exp

[
(r − 
2=2)ti

+ 

√

T=t
i∑

j=1
G−1(uj)

]
− K

)
du1 : : : dut,

where G(·) is the standard normal distribution.
To reduce the variance, one can use the selling price

of the option on the geometric average as a control vari-
able (Kemna and Vorst 1990) as well as antithetic vari-
ates. Numerical results combining these methods with
shifted lattice rules are given by Lemieux and L’Ecuyer
(1998, 2000a). Glasserman et al. (1999) also use impor-
tance sampling (IS) and stratification (STR) to reduce
the variance for this problem. STR is used to generate
the product Y= a · (Z1, : : : , Zt), where a is some ’’op-
timal’’ vector and Z1, : : : , Zt are t i.i.d. standard nor-
mals. Then the vector (Z1, : : : , Zt) is generated by con-
ditioning on Y.
We performed experiments to compare different

combinations of the above methods, and their cou-
pling with shifted lattice rules. We denote by COND
the method that generates the Zis by conditioning
on Y, with a equal to the optimal drift vector for
IS as suggested by Glasserman et al. (1999), and we
apply IS and STR in exactly the same way as these
authors (this STR is always combined with COND).
When we combine COND with LR, we take a rule
in t dimensions and use the first coordinate of each
shifted point to generate the product a · (Z1, : : : , Zt).
The remaining t − 1 coordinates are sufficient to gen-
erate the vector (Z1, : : : , Zt) conditioned on Y. The
Brownian bridge technique is denoted by BB. When

Table 4 Estimated Variance Reduction Factors w.r.t. MC for the
Asian-Option Example

n

Method 4093 16381 65521

MC+IS+COND+STR 1,502 1,596 1,598
CV+LR 703 620 597
BB+CV+LR 2,488 4,876 4,958
BB+CV+IS+LR 3,129 4,790 5,407
CV+IS+COND+LR 6,092 6,167 6,858

we combine CV with IS and COND, we first generate
the vector (Z1, : : : , Zt) using COND, then apply IS to
generate the price of both options (on the arithmetic
and geometric average), and finally use CV.
Table 4 reports the estimated variance reduc-

tion factors with respect to MC for certain com-
binations of the methods. The parameters of the
option are 
=0:3, r=0:05, K =55, S(0)= 50, T =1
year and t=64. Among the combinations given in
the table (and all others that we tried), the win-
ner is CV + IS + COND + LR. It improves over the
MC + IS + COND + STR combination of Glasserman
et al. (1999) by a factor of approximately 4. One can
also observe that CV + LR, which is very simple and
easy to implement, already does a decent job. Com-
bining it with BB brings a significant improvement,
and adding IS brings another small gain. Our addi-
tional experiments with the pricing of Asian options
indicated that the effectiveness of CV generally de-
creases with K and with t, whereas the effectiveness of
IS increases with K (as explained by Glasserman et al.
1999). Otherwise, the results were similar to those of
Table 4. L’Ecuyer and Lemieux (1999) report prelim-
inary numerical experiments with polynomial lattice
rules for the present example.

10.3. A Single Queue
Consider anM=M=1 queue with arrival rate � and ser-
vice rate �. We want to estimate the steady-state prob-
ability p(k) that a customer has its sojourn time in the
queue larger than k, for some constant k. Simulation
is unnecessary for this problem, because it is known
that p(k)= e−k�(1−�=�). However, this simple example
allows us to illustrate how lattice rules can be used
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for infinite-horizon models and how it can be coupled
with regenerative simulation. Lindley’s equation tells
us that

Ti+1 =Si+1 + max(0,Ti − Ai)

where Ti and Si are respectively the sojourn time and
service time of customer i and Ai is the interarrival
time between customers i and i + 1. We assume that
T0 =A0, so T1 =S1. The discrete-time process {Ti, i≥ 0}
is a regenerative process with a regeneration epoch at
each index i for which Ti − Ai ≤ 0.
A first approach to estimate p(k) uses a large trun-

cated horizon: Simulate a fixed number of customers
(say, N, where N is large) and take the average

1
N

N∑
i=1
1(Ti¿k):

This can be replicated a certain number of times, in-
dependently, to estimate the variance and compute a
confidence interval. It we use two uniforms for each
customer, one to generate its arrival time and one for
its service time, we have a 2N-dimensional integration
problem, for which we can use a 2N-dimensional lat-
tice rule. (We run a truncated-horizon simulation with
each of the n points of the rule). If we perform m inde-
pendent random shifts of the rule, we thus simulate a
grand total of mnN customers. A second approach is
to simulate a fixed number n of regenerative cycles, us-
ing one point from the lattice node set to simulate each
regenerative cycle. The simulation is implemented ex-
actly as for the standard regenerative method, except
that the successive random numbers used for a regen-
erative cycle are replaced by the successive coordinates
of a point in the shifted lattice rule P̃ n. The dimension
t of the problem, which is now twice the number of
customers in a cycle, is a random variable with mean
2=(1− �=�). One can also view the problem as infinite
dimensional, with all but a finite (random) number of
the uniforms being unused. Both the truncated hori-
zon and the regenerative method provide biased esti-
mators of p(k). Here, we are not interested in this bias,
but only in the variance reduction obtained by apply-
ing randomly shifted lattice rules.
We tried the truncated-horizon estimator on an

example with parameter values �=�=0:6, k=10 and
20, and N =5,000 (so the number of dimensions is

t=10,000). By using the lattice rule of n=1,021 points
with a=76, the variance was reduced by a factor
ranging between 5 and 10 compared with MC. Note
that in this example we use nearly 10 times the period
length of the LCG (5) to generate each lattice point
ui (i.e., t≈ 10n). However, as explained earlier, the
coordinates ũi, j of ũi are not periodic, thanks to the
random shift, and the fact that t�n poses no diffi-
culty. Moreover, for this model, customers that are far
apart in time are almost independent, which means
that the important 
2

I ’s in the ANOVA decomposition
are those for which id − i1 is small, assuming that
I = {i1, : : : , id} where i1¡· · ·¡id. In other words, this
problem has an effective dimension much less than 2N
in the successive-dimensions sense. This is especially
true if the traffic intensity �=� is small. The effective
dimension increases with the traffic intensity, as does
the average length of the regenerative cycles. We also
tried the regenerative method on this example, with
n=1,021 and obtained a variance reduction of approx-
imately 3 compared with MC when k=10 and 2 when
k=20. With n=65,521 points, these factors increased
to 3.5 and 2.2, respectively. The variance reduction is
less important here than with the truncated-horizon
estimator: In the latter case, each simulation gives us
a mean-value over many cycles (instead of only one
for the regenerative method), and this averaging in-
troduces a smoothness favorable to LR in the function
f that corresponds to the integral of the form (1) that
we try to estimate.

11. Conclusion
QMC is most often associated with low-discrepancy
point sets and sequences such as the so-called (t, m, s)-
nets and the sequences of Halton, Sobol’, Faure, and
Niederreiter, where the concept of discrepancy is in the
sense of the rectangular star discrepancy, and where
the justification for QMC is based on the worst-case
error bound provided by the Koksma--Hlawka in-
equality (4). Lattice rules, which are an alternative to
this framework, have also been traditionally justified
by worst-case error bounds. Viewing them as a vari-
ance reduction tool seems more practical, however, as
we have argued in this paper. Our coverage of lattice
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rules is of course incomplete. For other viewpoints
and results, we refer the reader to the book of Sloan
and Joe (1994) and the recent papers of Hickernell.
The criterion Mt1, :::, td that we have proposed is not

perfect, but it is convenient and it provides rules that
seem to workwell in practice. We admit that the choice
of d and of the ts’s is arbitrary and that the correspond-
ing function w in (13) cuts abruptly to zero once we hit
the subspaces (or projections) that are not considered
by the criterion. An alternative would be to consider
all subsets I for the minimization in (22), but to multi-
ply the constants ‘∗|I|(n) by some weights that decrease
smoothly towards 0 with the size and span of I (i.e.,
|I| and id − i1) so that the projections over coordinate
sets with large size or span will not be taken into ac-
count unless they are really very bad. This smoother
scheme could be more complicated to implement than
the criterion (22), however, because a larger number
of subsets I would have to be examined, and the choice
of the weights is still arbitrary.
Among the interesting topics currently under in-

vestigation, we mention the concept of embedded lat-
tice sequences, where a sequence of lattices with node
sets {Pni , i≥ 1} is defined so that ni divides ni+1 (e.g.,
ni+1 =2ni) and Pni ⊂Pni+1 for each i. The idea is that if
the empirical variance (or the other error estimate in
use) is still larger than desired after applying the lattice
rule with ni points, one can switch to the lattice rule
with ni+1 points (e.g., double the number of points)
without discarding the work performed so far. One
only need to evaluate the function at the new points.
With this kind of lattice sequence, the number of points
in the lattice need not be fixed in advance. To imple-
ment this concept, one needs to find a practical way
of constructing such a sequence of embedded lattices
so that each intermediate node set Pni is of good qual-
ity. Hickernell et al. (2000) have recently proposed one
way of doing this. They provide concrete parameters
and numerical illustrations.
For a given problem, a good lattice rule is one

that kicks out of the dual lattice the most important
squared Fourier coefficients in (16). The choice of the
rule should therefore (ideally) depend on the prob-
lem. This suggests adaptive lattice sequences, where
the choice of the next lattice in the sequence is based
on estimates of certain squared Fourier coefficients,

or on sums of certain bundles of squared coefficients.
This deserves further investigation.1
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sity of Salzburg, Austria, and at the North Carolina State Uni-
versity, United States. The authors thank Raymond Couture,
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