

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [University of Southampton]
On: 29 March 2009
Access details: Access Details: [subscription number 908420906]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

IIE Transactions
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713772245

Staffing multi-skill call centers via search methods and a performance
approximation
Athanassios N. Avramidis a; Wyean Chan a; Pierre L'Ecuyer a

a Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, Canada

Online Publication Date: 01 June 2009

To cite this Article Avramidis, Athanassios N., Chan, Wyean and L'Ecuyer, Pierre(2009)'Staffing multi-skill call centers via search
methods and a performance approximation',IIE Transactions,41:6,483 — 497

To link to this Article: DOI: 10.1080/07408170802322986

URL: http://dx.doi.org/10.1080/07408170802322986

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713772245
http://dx.doi.org/10.1080/07408170802322986
http://www.informaworld.com/terms-and-conditions-of-access.pdf

IIE Transactions (2009) 41, 483–497
Copyright C© “IIE”
ISSN: 0740-817X print / 1545-8830 online
DOI: 10.1080/07408170802322986

Staffing multi-skill call centers via search methods
and a performance approximation

ATHANASSIOS N. AVRAMIDIS,∗ WYEAN CHAN and PIERRE L’ECUYER

Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal,
Canada, H3C 3J7
E-mail:avramidi@iro.umontreal.ca

Received June 2006 and accepted September 2007

A multi-skill staffing problem in a call center where the agent skill sets are exogenous and the call routing policy has well-specified
features of overflow between different agent types is addressed. Constraints are imposed on the service level for each call class,
defined here as the steady-state fraction of calls served within a given time threshold, where calls that abandon after having waited for
service less than the threshold are excluded. An approximation of these service levels is developed that allows an arbitrary overflow
mechanism and customer abandonment. A two-stage heuristic that finds good solutions to mathematical programs with such
constraints is developed. The first stage uses search methods supported by the approximation. Because service level approximation
errors may be substantial, the solution is adjusted in a second stage in which performance is estimated by simulation. Realistic
problems of varying size and routing policy are solved. The proposed approach is shown to be competitive with (and often better
than) previously available methods.

[Supplementary materials are available for this article. Go to the publisher’s online edition of IIE Transactions for the following free
supplemental resource: Appendix]

Keywords: Multi-skill call center, staffing, overflow routing, service-level approximation, birth-and-death process, neighborhood
search, simulation, heuristic

1. Introduction

Call centers usually handle several types of calls distin-
guished, for example, by the desired language of commu-
nication or the level of skill necessary to deliver technical
support. It is usually not possible or cost-effective to train
every agent to be able to handle every call class. Thus,
frequently, one encounters a multi-skill call center, with
various call classes and also various agent types, usually
defined according to their skill set, i.e., the subset of call
classes they can handle. Skill-Based Routing (SBR), or sim-
ply routing, refers to the rules that control the call-to-agent
and agent-to-call assignments. Most modern call centers
perform SBR (Koole and Mandelbaum, 2002).

Call center managers routinely impose constraints on
the center’s performance. A commonly encountered per-
formance measure is the Service Level (SL), usually defined
as the long-term fraction of calls whose waiting time is
no larger than a given constant. Call center planners face
the problems of determining appropriate staffing levels and

∗Corresponding author

agent work schedules. In a staffing problem, the day is di-
vided into periods and one simply decides the number of
agents of each type for each period. In a scheduling prob-
lem, a set of admissible work schedules is first specified, and
the decision variables are the number of agents of each skill
type in each work schedule. This determines the staffing in-
directly, while making sure that it corresponds to a feasible
set of work schedules.

Insights on the coordination of skill set design, staffing,
and routing decisions for multi-skill centers are offered by
Wallace and White (2005). First, endowing agents with
two skills and employing a routing that balances agents’
priorities over different call classes, they obtain SLs that
are essentially as good as for a system where all agents
have all skills. That is, if such a routing policy is practical,
then training agents to have more than two skills adds lit-
tle to performance. Second, assuming control over agent
skill sets, staffing counts and routing, they meet nearly
exactly (i.e., do not exceed) target SLs set for each call
class.

We consider a single-period staffing problem where the
agent skill sets and routing rules are given. The routing poli-
cies we consider are of the (static) overflow routing family.

0740-817X C© 2009 “IIE”

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
a
m
p
t
o
n
]

A
t
:

2
0
:
2
0

2
9

M
a
r
c
h

2
0
0
9

484 Avramidis et al.

In this case each call class has an ordered list of agent
types that can handle it; upon arrival, a call of that class
is assigned to the first agent type in this list that has an
available agent, or else is placed in queue (one queue per
call class). Likewise, each agent type has an ordered list
of call classes (queues) from which to pick up calls when
it becomes available. The problem is to minimize staffing
costs subject to a set of constraints on SLs (globally and
per call class), assuming the center is in steady-state oper-
ation. This problem was proposed to us by Bell Canada, a
Canadian company whose call centers serving Quebec and
Ontario employ nearly 13 000 agents in total. The SL con-
straints are quite important to them because governmental
regulations impose huge fines on the company when some
of these constraints are not met on average over the month.
The static routing rules may be seen as restrictive, but they
were also a request from the company; they wanted to have
a tool telling them what happens when they optimize un-
der such constraints, with fixed routings and skill sets. In
general, lower costs can obviously be achieved by relaxing
the routing rules and optimizing the skill sets, so we do
not necessarily recommend fixing these in practice. On the
other hand, it is not always possible to have agents with
any (arbitrary) combination of skills. Single-period staffing
appears as a subproblem in several scheduling algorithms
(Gans et al., 2003; Bhulai et al., 2008).

After formulating this problem as an integer program
with linear objective function and nonlinear constraints,
Cez̧ik and L’Ecuyer (2008) developed and studied a
general-purpose solution approach, based on ideas adapted
from Atlason et al. (2004). They use integer programming
with cutting planes; the cuts are obtained by estimating
subgradients of the SL constraints with respect to the de-
cision variables (the number of agents of each type) via
simulation. This method can handle arbitrarily complex
call center operating conditions (e.g., call-routing policy,
non-stationarity, etc.). On the other hand, subgradient es-
timation by simulation is very time-consuming. Accepting
noisier estimates obtained from shorter simulations can
save time, but is more likely to return highly suboptimal or
infeasible solutions (Cez̧ik and L’Ecuyer, 2008).

Our approach aims to be a quicker alternative by exploit-
ing approximations of the SL. However, in the multi-skill
setting, good approximations are not generally available. If
we assume that the call center is a loss system, i.e., there are
no waiting queues and all calls that cannot be served imme-
diately are lost, then there are many approximations of the
loss (or blocking) probability per call class. Koole and Talim
(2000) assume overflow routing and develop an approxima-
tion via decomposition into subsystems whose state space
is smaller and which are easier to analyze. Koole et al. (2003)
allow queueing and approximate the delay probability (i.e.,
that the delay is positive), based on this loss approxima-
tion and the relation between the loss probability in the
Erlang B system and the delay probability of the Erlang C
system. This relation involves the staffing, so their formula

applies globally, but not per class. Better estimates of loss
probabilities can be obtained via two-moment approxima-
tions of the overflow process (the equivalent random method,
or Hayward’s approximation) (Cooper, 1981; Wolff, 1989;
Chevalier et al., 2003, 2004); and the method of Franx et al.
(2006). These better methods restrict the overflow pattern
(it cannot be cyclical, as defined in Section 3.1). One could
choose to approximate the (class-specific) service level in a
real system (i.e., with queueing) by the approximated loss
probability in a relevant loss model. This would make sense
in a system where most calls do not wait. However, this ap-
proach is unnatural for most modern call centers, which
normally operate so that the fraction of calls that experi-
ence a positive delay in queue is considerable (Gans et al.,
2003).

Our first contribution is an approximation of the SL
per class in a multi-skill center with a special type of over-
flow routing. This Loss-Delay (LD) approximation exploits
ideas from Koole and Talim (2000) and goes beyond a loss
system by incorporating queueing. Essentially, it assumes
that whenever a call is delayed, it waits in a queue for the
last agent type (skill set) in its list. The approximation has
an accuracy that varies across problems; despite this, we
show that it is useful as a support tool in a staffing-cost
minimization algorithm. We do this via examples where
the routing policy has the overflow element but does not
satisfy the latter assumption (waiting at the last agent type).
The routing policy was specified by our industrial partner.

Our second contribution is a heuristic approach to the
staffing problem. Key components are appropriate initial-
ization and neighborhood search methods supported by
the LD approximation in deciding neighbor feasibility and
in selecting to which feasible neighbor to move. The first
stage of the search terminates with a solution that is locally
optimal (relative to a certain neighborhood) after a finite
amount of work. The second stage uses local-search proce-
dures supported by estimates of SLs that are more accurate
than the LD approximation and are obtained by simula-
tion. These procedures adjust the solution for feasibility or
further cost reduction, evaluating only few additional so-
lutions. We solve realistic problems of varying size and find
that our approach often yields better solutions than that
of Cez̧ik and L’Ecuyer (2008) when the computing budget
is limited. Although neither of the two methods is always
dominant, the new heuristic is definitely a useful addition
to the toolbox for this class of problems.

We mention other related work. Bassamboo et al. (2006)
and Harrison and Zeevi (2005) consider a call center with a
doubly stochastic time-varying arrival process in an asymp-
totic regime and find a staffing and routing policy that
asymptotically minimizes the cost of staffing and abandon-
ment. It is unclear how their fluid approximation could pro-
vide good estimates of the SLs (to solve our problem). Wal-
lace and Whitt (2005) assume no constraints on the choice
of skill sets, except that each agent has exactly two skills,
one primary skill and one secondary skill. They optimize

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
a
m
p
t
o
n
]

A
t
:

2
0
:
2
0

2
9

M
a
r
c
h

2
0
0
9

Staffing multi-skill call centers 485

both the staffing and the choice of skill sets, simultaneously.
They allow a different (and more flexible) routing rule than
ours and assume that all agent types cost the same. For
staffing under a single SL constraint, Pot et al. (2008) have
a heuristic that uses a line search to optimize the Lagrange
multiplier for the constraint. It is unclear how this can be
generalized to an efficient algorithm when there are multi-
ple constraints.

The remainder of this paper is organized as follows. In
Section 2 we formulate mathematical programs of multi-
skill staffing and scheduling and review related literature.
Section 3.1 defines overflow routing and a related policy.
Sections 3.2 to 3.4 develop the LD approximation. Section
4 describes our approach to the staffing problem and Sec-
tion 5 details the solution of several problem instances. In
Section 6 we compare to alternative approaches, includ-
ing adapting the method of Wallace and Whitt (2005) and
replacing our approximation by that of Koole and Talim
(2000). Additional details of our approach are contained
in the online Appendix; this includes detailed algorithms
and an assessment of sensitivity to algorithm parameters.

2. Formulation of staffing and scheduling problems

The sets of call classes and agent types are N = {1, . . . , n}
and M = {1, . . . , m}, respectively. There are b time periods
and s types of shifts; a shift is defined by specifying the
time periods in which the agent is available to handle calls.
The cost vector is c = (c1,1, . . . , c1,s, . . . , cm,1, . . . , cm,s)T,
where ci,q is the cost of an agent of type i having
shift q, and “T” denotes vector transposition. Write zi,q
for the number of agents of type i having shift q and
set z = (z1,1, . . . , z1,s, . . . , zm,1, . . . , zm,s)T. Write xi,p for
the number of agents of type i that are available to
handle calls in period p. Then the staffing vector x =
(x1,1, . . . , x1,b, . . . , xm,1, . . . , xm,b)T satisfies x = Az where
A is a block-diagonal matrix with m identical blocks Ã,
where the element (p, q) of Ã has a value of one if shift q
covers period p, and is zero otherwise. Our definition of
the SL of call class j during period p is

g j,p(x) = E[number of type-j call arrivals in p that are served and wait at most τ]
E[number of type-j call arrivals in p, except those that wait less than τ and abandon]

, (1)

where “abandon” implies the call joined the queue—it was
not lost immediately upon arrival; and τ is a constant called
the Acceptable Waiting Time (AWT). In online Appendix
A.1, we consider an alternative SL definition in which calls
that are delayed by less than τ and abandon are not ex-
cluded; and we provide formulas for its approximation. In
our examples, the two measures of SL differed by at most
2% in moderate-abandonment cases and negligibly in low-
abandonment cases. Given acceptable waiting times τp, τ j
and τ , aggregate SLs are defined analogously and denoted

gp(x), g j (x) and g(x) for period p, call class j and overall,
respectively.

A formulation of the scheduling problem is

(P1) : min cTz =
m∑

i=1

s∑
q=1

ci,q zi,q

subject to

Az = x,

g j,p(x) ≥ l j,p for all j, p,

gp(x) ≥ l p for all p,

g j (x) ≥ l j for all j,
g(x) ≥ l,
z ≥ 0, and integer,

where l j,p, l p, l j and l are given constants. The staffing
problem is a relaxation of the scheduling problem where we
assume that any staffing x is admissible. In a single-period
staffing problem, we have b = 1, c = (c1, . . . , cm)T, where
ci is the cost of an agent of type i , and x = (x1, . . . , xm)T,
where xi is the number of agents of type i . The optimization
problem then reduces to

(P2) : min cTx =
m∑

i=1

ci xi ,

subject to

g j (x) ≥ l j for all j,
g(x) ≥ l,
x ≥ 0, and integer.

In the presence of abandonments, the SL functions g•
are typically S-shaped in each coordinate, i.e., convex in-
creasing below a certain threshold, and concave increasing
above the threshold (Henderson and Mason, 1998; Cez̧ik
and L’Ecuyer, 2008). Adapting the method of Atlason et al.
(2004), Cez̧ik and L’Ecuyer (2008) approximate optimal
solutions of (P2) by (exact or approximate) solutions to
some analog of (P2), called the sample problem, defined by

replacing each g• by a noisy estimate that is computed by
simulation and is called the sample SL function. Their al-
gorithm involves iterative solution of integer programs and
addition of cuts (linear inequalities), each one being derived
from an estimate of a subgradient of some g•, where the
subgradient estimate is computed via finite differences of
the corresponding sample SL. The approach is heuristic:
the cuts sometimes eliminate subsets of the feasible set
that include the optimal solution, because of the noise

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
a
m
p
t
o
n
]

A
t
:

2
0
:
2
0

2
9

M
a
r
c
h

2
0
0
9

486 Avramidis et al.

in the estimates and also because these subgradient esti-
mates would not necessarily be true subgradients even if
the simulation-estimation error were to vanish. Cez̧ik and
L’Ecuyer (2008) suggest practical heuristics around this and
other problems.

This paper address the solution of (P2) only. Solving (P2)
is a possible first step in solving (P1). This is the approach
taken in Pot et al. (2008).

3. Performance approximation under overflow routing

In this section we develop the LD approximation of the
SLs. We analyze an overflow-type policy in which whenever
a call is delayed, it waits in a queue served only by the last
agent type on the list. Under this policy, the approximation
arises naturally. We do not claim that this policy is efficient
or that it is found in practice. We emphasize that the models
we optimize do not need to have the wait-at-the-last-agent-
type feature.

3.1. Overflow routing and approximation overview

We refer to station i as the ensemble of type-i agents. Agents
within a station are indistinguishable. For each call class j
we have a list (an ordered set) of stations. Overflow routing
means that upon arrival, a class-j call is assigned to the first
station in the list that has an available agent or else is placed
in a queue. Whenever the assigned station is not the first
one on the list, we say that an overflow has occurred from
station ranking l − 1 on the list to station ranking l on the
list, for each relevant l. The overflow-or-wait-at-last-station
policy specifies additionally that each delayed call is served
only at the last station in its list.

As background for the computational issues in Section
3.4, we characterize the routing by a directed flow graph.
The flow graph has a vertex for each station. All possible
overflows from one station to another are represented by
directed arcs. A routing is called crossed whenever the flow
graph has a directed cycle. Such a situation might arise as
follows. Call class 1 has high revenue-generation potential;
call class 2 has a service nature and low revenue-generation
potential. Type-A agents are stronger in selling services,
and type-B agents are stronger in servicing. A goal of max-
imizing the flow of class-1 calls to type-A agents would
motivate the list {A, B} for class 1 and the reverse list for
class 2. Thus, the flow graph has a directed cycle between
vertices A and B.

Here is an outline of the approximation. For each station
i , the set of call classes that can be served there is parti-
tioned into two sets: Li contains classes that can overflow
into another station; and Di contains classes for which no
overflow is possible (i.e., i is the last station on the call’s list).
Whenever both these sets are non-empty, i is a loss-delay
station. Otherwise, i is a loss station when all classes can
overflow and a delay station when no class can overflow.

Our basic building block is the analysis of a LD station.
The sets Li and Di define respective arrival streams; when
no server is available, calls in the first stream can overflow,
but the ones in the second must queue for service in this
station. We approximate these streams as independent Pois-
son processes and analyze the station as a one-dimensional
birth-and-death process. This is detailed in Sections 3.2 and
3.3, where we allow and exclude customer abandonment,
respectively. We obtain two related approximations: LDA
(abandonment) and LDN (no abandonment). The absence
of abandonment makes the second one less realistic but
considerably faster to compute.

3.2. Analysis of a loss-delay station with abandonment

The station has s servers and a queue with capacity c.
Calls of types delay and loss arrive according to indepen-
dent Poisson processes with rates λD and λL, respectively.
Service times of delay and loss calls are independent and
identically distributed (i.i.d.) exponential random variables
with mean 1/µD and 1/µL, respectively, and independent
of everything else. Server pre-emptions are not allowed.
Loss calls that cannot be immediately served upon arrival
are lost. Delay calls abandon as soon as their time in the
queue equals their patience time. Patience times are i.i.d
exponential random variables with mean 1/η, independent
of everything else. Delay calls that find c calls in the queue
upon arrival are lost.

Consider first the case µL = µD = µ. Let X(t) denote
the number of calls in the station at time t; this is the
sum of loss calls in service and delay calls in the system,
i.e., either in service or in queue. The process X = {X(t) :
t ≥ 0} is a birth-and-death process with finite state space,
{0, 1, 2, . . . , s + c}; the birth rates λk and death rates µk
are

λk =
{

λD + λL, k = 0, 1, . . . , s − 1,

λD, k = s, s + 1, . . . , s + c − 1,

µk =
{

kµ, k = 1, 2, .., s,
sµ + (k − s)η, k = s + 1, s + 2, . . . , s + c.

The stationary probabilities, πk = limt→∞ Pr{X(t) = k},
are πk(µ) = π0

∏k
i=1(λi−1/µi), k = 1, 2, . . . , s + c, where

π0(µ) = (1 + ∑s+c
k=1

∏k
i=1 λi−1/µi)−1 (Ross, 1983, p. 154).

Our approximation for the general case (µL �= µD) is
based on an “effective” service rate found by equating
the input average service time to the output average ser-
vice time determined by the mix of service completions
of the two types. To this end, note that delay-call service
completions occur at the rate λ̃D(µ) = λD[1 − πs+c(µ)] −
η

∑c−1
k=1 kπs+k(µ), by counting arrivals minus losses due

to a full queue, minus losses via abandonment, and us-
ing PASTA (Poisson Arrivals See Time Averages) (Wolff,
1989). Thus, the effective service rate µ∗ must be a root of

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
a
m
p
t
o
n
]

A
t
:

2
0
:
2
0

2
9

M
a
r
c
h

2
0
0
9

Staffing multi-skill call centers 487

the function:

h1(µ) = w1(µ)
µD

+ 1 − w1(µ)
µL

− 1
µ

, (2)

where w1(µ) = λ̃D(µ)/[λ̃D(µ) + λL(1 − BA(µ))] is the sta-
tionary fraction of service completions that are of delay
type and BA(µ) = ∑s+c

k=s πk(µ) is the blocking probability.
The existence of a root and a simple algorithmic solution
follow from the following proposition.

Proposition 1. The function h1 has at least one root in J =
[min(µL, µD), max(µL, µD)].

Proof. It is easy to check that the function h1 is continuous
with h1(min(µL, µD)) < 0 and h1(max(µL, µD)) > 0. �

We use a result on the virtual waiting time, defined as the
waiting time in queue that would be spent by an infinitely
patient customer. Write W for the stationary virtual waiting
time.

Lemma 1. (Riordan, 1962, pp. 110–111). Given that the
system state upon arrival is X, we have:

pk(µ, τ) = Pr{W > τ |X = s + k}

= ξφ

k∑
j=0

(φ) j (1 − ξ) j

j !
, τ > 0, k ≥ 0, (3)

where φ = sµ/η, (φ)0 = 1, (φ) j = (φ)(φ + 1) · · · (φ + j −
1) for j ≥ 1, and ξ = e−ητ .

The probability that a delay call is lost upon arrival or
its virtual waiting time exceeds τ is

DA(τ) = πs+c(µ∗) +
c−1∑
k=0

πs+k(µ∗)pk(µ∗, τ). (4)

Later, we combine this measure of service (at the last sta-
tion) with the probability of overflow to this station (when
applicable). This measure is not entirely consistent with the
SL in Equation (1). In online Appendix A.1 we provide an
approximation that is conceptually consistent with Equa-
tion (1). In our examples, the difference between the two
approximation values was small and did not appear to af-
fect any of our conclusions. We prefer the one presented
here because it is much faster to compute. The long-run
fraction of delay calls that abandon is 1 − λ̃D(µ∗)/λD. Pure-
loss and pure-delay stations are the special cases λD = 0 and
λL = 0, respectively.

3.3. Analysis of a LD station without abandonment

We modify the setup of Section 3.2, now specifying no
abandonment and an infinite queue capacity. The anal-
ysis is similar, so we only state the main formulas. If
µL = µD = µ and λD < sµ, then X is a birth-and-death
process with infinite state space, {0,1, 2, ...}. Here, the work

needed to compute the stationary distribution is O(s) be-
cause the stationary probabilities of states above s decay
geometrically. This contrasts with the model with aban-
donment, where there is no geometric structure, the same
task takes O(s + c) work, and a finite queue capacity is a
necessity. The blocking probability is B(µ) = πssµ/(sµ −
λD), where πs = π0ρ

s/s! with ρ = (λL + λD)/µ and π0 =
{∑s−1

k=0 ρk/k! + (ρs/s!)sµ/(sµ − λD)}−1.
For the general case µD �= µL, we again find an ef-

fective service rate. If λD ≥ sµD, then X is not pos-
itive recurrent and the station is unstable. In the
following discussions we assume λD < sµD. Define
h(µ) = w(µ)/µD + (1 − w(µ))/µL − 1/µ for µ > λD/s,
where w(µ) = λD/[λD + λL(1 − B(µ))], and define I =
(µ1, µ2], with µ1 = max (λD/s, min(µL, µD)) and µ2 =
max(µL, µD). We have the following proposition.

Proposition 2. Assume λD < sµD. For any µ in I, the process
X is positive recurrent. The function h has at least one root
in I. If µD > µL, then the root is unique.

The proof of Proposition 2 is in online Appendix A.4.
The counterparts of functions BA and DA (of Section 3.2)
are B(µ∗) and D(τ ; s, λL, λD, µL, µD) =B(µ∗)e−τ (sµ∗−λD),
respectively, where µ∗ is a root of h. The function D
above shows all the inputs and is referred to in online
Appendix A.1.

3.4. The LD approximation

For each call class j , we have arrival rate λ j , abandonment
rate η j and the routing list (ordered set) R j . The service
rate of type j at station i is µi, j . We also have a staffing
x = (xi)m

i=1. The term arrival to a station encompasses both
exogenous arrivals and overflows. We approximate: the pro-
cess of type-j arrivals to station i as being Poisson with rate
γi, j ; and the blocking probability, Bi , whenever i is a pure-
loss or LD station. Write p(i, j) for the station immediately
preceding i in the list of call class j . The LDA approxima-
tion requires:

γi, j =
{
λ j whenever i is first in R j
γp(i, j), j Bp(i, j) whenever p(i, j) exists, (5)

γi,L =
∑
j∈Li

γi, j ,

1
µi,L

=
∑
j∈Li

γi, j

γi,L

1
µi, j

whenever Li is non-empty, (6)

γi,D =
∑
j∈Di

γi, j ,
1

µi,D
=

∑
j∈Di

γi, j

γi,D

1
µi, j

,

η̃i =
∑
j∈Di

γi, j

γi,D
η j whenever Di is non-empty, (7)

Bi = BA(xi , γi,L, γi,D, µi,L, µi,D, η̃i , ci)
whenever Li is non-empty, (8)

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
a
m
p
t
o
n
]

A
t
:

2
0
:
2
0

2
9

M
a
r
c
h

2
0
0
9

488 Avramidis et al.

where: BA is the blocking probability from Section 3.2
(the notation here shows all the function inputs); and
ci = max(�ψ√

xi
, 10), where ψ is a queue-size control
parameter (this formula is motivated later). The symbol c
and its subscripted version ci have dual use: in Section 3.2
and in the present section they denote the queue capacity of
a station; everywhere else, they denote the cost of an agent.
The overflow equations in Equation (5) state that the class-j
overflow rate to station i equals the class-j arrival rate to
the station immediately preceding i in the routing times the
blocking probability at that station. In Equation (7), pa-
rameters γi,D, µi,D and η̃i of the aggregate delay stream are
based on the analogous parameters of the constituent call
classes; and similarly in Equation (6) for the loss stream.
The LDA approximation of class- j SL, with AWT τ j , is

ĝ j (x, τ j) = 1 − γ
(j), j

λ j
D
(j)(τ j), τ j > 0, (9)

where
(j) is the last station inR j and D
(j)(·) is the function
(4) applied to this station. The global SL approximation
is ĝ(x, τ) = ∑

j∈N λ j ĝ j (x; τ)/(
∑

j∈N λ j). LDA approxima-
tions of other common performance measures are given
in online Appendix A.0. The approximated arrival (over-
flow) rate of each call type to its last station parallels that
of Koole and Talim (2000); the overflow equations (5) are
the same, except that the blocking probabilities differ in
upstream stations having a delay stream.

The LDN approximation makes obvious modifications:
we replace the functions BA and DA by their counterparts
B and D in Section 3.3, respectively.

Several steps are heuristic. The two aggregate arrival
streams at each station are treated as being Poisson and
independent, which typically fails to hold when overflows
are involved. Taking weighted averages of service-time
means and patience-time rates in Equations (6) and (7)
is a heuristic (to keep the birth and death state space one-
dimensional). To motivate our choice to average means
in one case and rates in the other case, suppose first that
we have two classes with abandonment rates η j , j = 1, 2
and weight 1/2 each, where η1 = 1. Let ε be a number
small compared to unity, and consider first the case η2 = ε.
The average patience is (1/ε + 1)/2 ≈ 1/(2ε), implying the
small rate 2ε, whereas the average rate is (ε + 1)/2 ≈ 1/2;
as ε → 0, averaging rates seems preferable. The situation is
reversed if η2 = 1/ε (i.e., large compared to unity): the aver-
age patience, (ε + 1)/2 ≈ 1/2, implies the rate two, whereas
the average rate, (1/ε + 1)/2 ≈ 1/(2ε), is large; here, as
ε → 0, averaging means seems preferable. However, this
second situation is expected to be less common in call cen-
ters, since the fraction of calls who abandon is usually very
small. Also note that (

∑
i wiµ

−1
i)−1 <

∑
i wiµi whenever

0 < wi < ∞, 0 < µi < ∞, and the µi values are not all
equal (by Jensen’s inequality). Thus, averaging the service-
time means is conservative relative to averaging rates. The
formula ci = max(ψ

√
xi , 10) following Equation (8) aims

for economy of computation relative to setting a large ci

for all stations. A rough justification is that the stationary
number of customers in an infinite-server Markovian queue
is Poisson distributed (so the standard deviation equals the
square root of the mean) and the anticipation that in solu-
tions of interest, each xi is of the order of this mean. The
idea, then, is that we hope to make ci a state of small prob-
ability for each i whenever xi is moderately large (say, 25
or more) by appropriate selection of ψ (in our examples,
we set ψ = 2). For the xi that fail this rough criterion, the
infinite-server argument is less reliable, so we imposed a
lower bound of ten at the outset.

Figure 1 specifies an iterative algorithm that converges,
under certain conditions, to a solution to Equations (5) to
(8). In summary, the algorithm initializes the overflow rates
to zero and computes iteratively Equations (5) to (8) un-
til the change in the blocking probabilities is deemed small
enough. Koole and Talim (2000) employ a similar technique
in a two-station loss system. In the LDN approximation, if
for some k and i we have γ

(k)
i,D ≥ xiµ

(k)
i,D, then station i and

the system are declared indeterminate; if the flow graph is
acyclic, this means that station i is unstable in the model of
Section 3.3. When running this algorithm, we may have to
settle for an approximate solution by relaxing the conver-
gence criterion. We do this as follows: if Equation (10) fails
at k = kU, then we double kU and reiterate (go to Step 2); if
Equation (10) fails again at the doubled kU, then we reiter-
ate for at most ten iterations, doubling ε in each iteration.
In our experiments, this happened only on rare occasions.

In Proposition 3, we prove that the algorithm of Fig. 1
converges to a solution of Equations (5) to (8), under cer-
tain conditions on the service rates and abandonment rates.
These conditions imply that the rates γ

(k)
i, j and the block-

ing probability B(k)
i are monotone increasing in k, and the

convergence proof then follows by exploiting this mono-
tonicity in an induction argument. Without these condi-
tions (and the monotonicity), a convergence proof appears
more complicated, but we think that convergence to a solu-
tion should occur in most practical cases (where there are
abandonments).

Proposition 3. Suppose that for each station, the classes in
the loss and delay streams have common service rates.

1. (LDA approximation.) Suppose that for each station, the
classes in the delay stream have common abandonment
rates. Then there exist limits γi, j = limk→∞ γ

(k)
i, j , and like-

wise for all other quantities with superscripts in Fig. 1. The
limits satisfy Equations (5) to (8).

2. (LDN approximation.) Replace the function BA in Fig. 1
by its counterpart B. Unless the system is declared indeter-
minate, the analogous limits exist and solve the analogous
equations.

Proof. For part 2, we assume the system is not declared
indeterminate (otherwise, there is nothing to prove). Define
�γ

(k)
i, j = γ

(k)
i, j − γ

(k−1)
i, j and �B(k)

 = B(k)

 − B(k−1)

 .

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
a
m
p
t
o
n
]

A
t
:

2
0
:
2
0

2
9

M
a
r
c
h

2
0
0
9

Staffing multi-skill call centers 489

Fig. 1. Algorithm to compute an exact or approximate solution for staffing (xi)m
i=1.

First, we prove by induction on k that:

�γ
(k)
i, j ≥ 0 and �B(k)

 ≥ 0 for all i, j,
 and for all k ≥ 1.

(11)

This is obviously true for k = 1. Assume that Equation
(11) holds for a given k. Observe that whenever i is first in
R j , we have: �γ

(k)
i, j = 0 for all k. Otherwise (i.e., if p(i, j)

exists), for all k ≥ 1, we have:

�γ
(k+1)
i, j = γ

(k)
p(i, j), j B(k)

p(i, j) − γ
(k−1)
p(i, j), j B(k−1)

p(i, j)

= γ
(k)
p(i, j), j�B(k)

p(i, j) + B(k−1)
p(i, j)�γ

(k)
p(i, j), j ≥ 0.

The non-negativity of �γ
(k+1)
i, j implies γ

(k+1)
i,L − γ

(k)
i,L ≥ 0 and

γ
(k+1)
i,D − γ

(k)
i,D ≥ 0 for all i . Combining this with our assump-

tions on common service rates and common abandonment
rates, and the fact that the functions BA and B are increas-
ing in λL and λD when all other arguments are fixed, we

obtain that �B(k+1)
i ≥ 0 for all i , in LDA and LDN. This

completes the induction.
Since the sequence {γ (k)

i, j }∞k=1 is obviously upper-bounded
by λ j (easily seen by induction on k), limk→∞ γ

(k)
i, j must exist

for each i and j , in LDA and LDN. Moreover, since each
B(k)

i is a continuous function of γ
(k)
i,L , γ (k)

i,D, µ(k)
i,L, µ(k)

i,D and η̃
(k)
i ,

and since these are continuous functions of certain γ
(k)
i, j , all

these sequences have limits that together satisfy Equations
(5) to (8). �

Algorithm LD can generally be made more efficient.
In the special case of an acyclic flow graph, it can even
be streamlined to give the exact solution in a single it-
eration. This is only summarized here; see Chan (2006)
for a complete treatment. In the general case, one can
first partition the flow graph into its strongly connected
components, via standard algorithms (Aho et al., 1974,
pp. 189–195). Second, one finds a permutation of the

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
a
m
p
t
o
n
]

A
t
:

2
0
:
2
0

2
9

M
a
r
c
h

2
0
0
9

490 Avramidis et al.

components such that all overflows occur along increasing
 value. If the flow graph is acyclic (each component is
one of the stations), then the solution is unique and can
be computed by executing Equations (5) to (8) in the order
i = (1), (2), . . . , (m). Otherwise, it suffices to apply a
restricted version of Algorithm LD to each of the compo-
nents, ordered along increasing value. The assumptions
of Proposition 3 can be weakened: to ensure convergence
to a solution, it suffices to have common parameters in
each station within a component, but not necessarily across
components.

4. Multi-skill staffing by search methods

Our method is supported by an evaluator of SLs. An in-
cumbent, i.e., current solution, is maintained throughout.
A solution is called E-(in)feasible and SIM-(in)feasible
depending on its (in)feasibility for (P2), as deemed by the
evaluator and simulation, respectively; in general, these do
not coincide with exact (in)feasibility. An outline of the
staffing algorithm appears in Fig. 2.

We now discuss the algorithm components, leaving out
the details to pseudocodes in online Appendix A.1. Solu-
tion vectors are denoted x, where xi is the i th component;
e j is the j th unit m-vector.

Stage 0: Initialization. Our method is as follows.

1. For each call class, allocate the arrival rate to the feasible
stations: send a fraction β (0 ≤ β ≤ 1) to the cheapest
one and split the remaining fraction evenly among the
others.

2. Compute parameters of the aggregate arrival stream in
each station, based on Step 1.

3. Viewing each station as Markovian (M/M/s/M) and
independent of all others, set the staffing to the minimal
one that achieves an SL of at least ξ .

4. If necessary, iteratively increase this solution to obtain
an E-feasible one.

The rationale is to roughly control the total number of
agents via ξ and the fraction of low-cost agents via β.
In all our experiments, setting ξ = l (the global SL tar-
get) yielded an E-feasible solution after Step 3, so Step 4
was unnecessary. The details, including two alternatives for
Step 4, are in Procedure Init in online Appendix A.1. On-
line Appendix A.2 contains experimental results for this
and other initialization methods, concluding that there is
occasional sensitivity to the initial solution and that the
proposed method is effective.

Stage 1: Neighborhood search.

Step 1a: Consider agent removal. We are given the incum-
bent x and a move size q. Consider the set of solutions
obtained by removing q agents of a single type; denote
it X1(x, q) = {y : y = x − qei , xi ≥ q} and call it a remove
neighborhood. These solutions are evaluated; if at least one
is E-feasible, then the new incumbent is the one minimizing
the ratio of global-SL decrease to cost decrease, where the
global-SL decrease is estimated by the evaluator; otherwise,
we have determined that X1(x, q) contains no E-feasible
solutions. Step 1a is implemented as function Remove in
online Appendix A.1.

Step 1b: Consider agent switching. We are given the incum-
bent x and a move size q. We select an agent type i to be
reduced, called pivot, via a rule specified below. Consider
the set of solutions obtained by decreasing xi by q and in-
creasing the number of agents of a less-expensive type by q;
denote itX2(x, q, i) = {y : y = x − qei + qe j , xi ≥ q, c j <

ci } and call it a cost-reducing switch neighborhood. These
solutions are evaluated; if at least one is E-feasible, then the
new incumbent is set by the same minimization criterion as
during agent removal; otherwise, we have determined that
all elements of X2(x, q, i) are E-infeasible. To explain the
pivot selection rule, suppose we were to consider all possi-
ble pivots; then in the worst case we would have to evaluate
O(m2) neighbors for the typical incumbent, which may be
prohibitive. (This calculation assumes that for the typical

Fig. 2. Outline of the staffing algorithm.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
a
m
p
t
o
n
]

A
t
:

2
0
:
2
0

2
9

M
a
r
c
h

2
0
0
9

Staffing multi-skill call centers 491

incumbent, there are O(m) possible pivots and for each of
these pivots there are O(m) candidates to increment.) In-
deed, considering all pivots led to unacceptably large work
in our Example 2, in Section 5.2, where m = 89. The set of
candidate pivots isP = {i : xi ≥ q, q∗

i > q}, where q∗
i is the

smallest q such that all elements of X2(x, q, i) are known
(from previous steps) to be E-infeasible; this is justified in
Proposition 4 below. The pivot is selected randomly, uni-
formly over P . Step 1b is implemented as function Switch
in online Appendix A.1.

Stage 1 termination and move size selection. We define
normal termination (of Stage 1) to mean that the incum-
bent x is locally optimal in the sense that X1(x, 1) and
∪i :xi ≥1X2(x, 1, i) contain no E-feasible solutions. In words,
every possible removal of one agent and every possible cost-
reducing switch between two agents is deemed infeasible.
Otherwise, we have early termination; this happens when a
work (CPU time) limit is reached before normal termina-
tion occurs. The move size q in Step 1a is a positive integer
that is no larger than maxi xi and is equal to one with
positive probability. Online Appendix A.3 provides an ex-
perimental assessment of different move-size selection rules
(both deterministic and random) and finds little sensitivity.

Stage 2: Simulation-based adjustment. The solution after
Stage 1 may be infeasible or suboptimal as a consequence of
evaluator error. Thus, we turn to simulation as the evaluator
and use local search to correct infeasibility and/or further
reduce the cost, as explained below. By design, only few
solutions are examined. Below, ĝ j is the estimated class-j
service level and f̂ i, j is the estimated rate of type-j service
completions at station i .

Stage 2a. The first thing we do is to simulate the in-
cumbent of Stage 1. If the incumbent has class-specific
constraint violations, then these are first addressed. The
main steps are: find the class j∗ with maximum vio-
lation; find the agent type i∗ whose fraction of busy
time spent serving class j∗ is maximum, i.e., i∗ =
arg maxi :xi >0(f̂ i, j∗/µi, j∗)/

∑
j∈Si

(f̂ i, j/µi, j) where Si is the
skill set of agent type i ; and add one agent of this type.
This is continued until the constraints for all classes are
satisfied. If the resulting incumbent violates the global con-
straint, then we iteratively add one agent of the type that
maximizes the occupancy-to-cost ratio, until this constraint
is satisfied. This yields a SIM-feasible solution. This is im-
plemented as Procedure SIMAdd in online Appendix A.1.

Stage 2b. We seek to reduce cost subject to maintaining
SIM-feasibility, considering only single-agent removals. We
maintain a list of agent types that are candidates for re-
moval. While the list is non-empty, we: (i) calculate a mea-
sure of “excess capacity” for each agent type in the list:
χi = ∑

j∈Si
wi, j (ĝ j − l j), where wi, j is the estimated frac-

tion of type-i agents’ busy time that is spent serving type- j
calls; (ii) sort the list by decreasing value of χi ci ; (iii) sim-
ulate the solution obtained by removing one agent of the

type at the top of the list; if it is SIM-feasible, then set it as
the new incumbent and reconsider the entire list (i.e., con-
tinue the While statement above); otherwise, remove this
type from the list and repeat Step (iii) above. This is imple-
mented as Procedure SIMRemove in online Appendix A.1.

The algorithm description is complete. We now establish
results on the search and discuss algorithm enhancements.

Properties of neighborhood search. Write g̃• for the eval-
uator’s estimates of the SL functions g•. For any given
solution x, we consider the condition:

[g̃ j (x − q1ei + q1ek) < g̃ j (x)] ⇒ [g̃ j (x − q2ei + q2ek)
≤ g̃ j (x − q1ei + q1ek) for all q2 > q1], (12)

for all j and for all i and k with ci > ck. In words, this says
that if some approximate SL g̃ j decreases after a switch
of size q1, then it decreases by at least as much for all
larger switch sizes. Condition (12) does not always hold in
general for arbitrary solutions. For instance, it is possible to
construct examples where g̃ j (x − qei + qek) is U-shaped as
a function of q for some j , in which case the condition fails.
However, these examples are not typical of a well-behaved
call center.

Proposition 4.

1. Normal termination of Stage 1 occurs after a finite number
of evaluations.

2. Suppose that Equation (12) holds for the incumbent
solution x after normal termination. Then ∪q≥1 ∪i :xi ≥q
X2(x, q, i) contains no E-feasible solutions.

Proof. Write x(1)
i for the i th component of the ini-

tial solution. Since only cost-reducing moves are ac-
cepted, the possible incumbents are contained in K = {x :
x integer-valued m-vector,

∑m
i=1 ci xi < c(1)}, where c(1) =∑m

i=1 c1x(1)
i ; and an element of K can become incumbent

at most once. Thus, the number of incumbents is at most
|K|. For each incumbent, there are at most

∑m
i=1 x(1)

i = q̃
possible move sizes; and for each incumbent and move size,
there are at most m possible removals and at most m2 pos-
sible switches. Thus, Stage 1 requires at most |K|q̃(m + m2)
evaluations. In the special case where q = 1, this bound im-
proves to |K|(m + m2). To prove part 2, observe that normal
termination implies that q∗

i = 1 for all i with xi ≥ 1. In view
of Equation (12), condition q∗

i ≤ q implies that X2(x, q, i)
contains no E-feasible solutions for each i , and the result
follows. �

Multistart. We run (start) the algorithm several times, each
with a different initial solution, and retain the cost-minimal
solution. Because of simulation noise, each run yields a so-
lution that has small positive probability of being infea-
sible (despite being SIM-feasible). As the number of runs
increases, the retained solution is more likely to be infea-
sible (because of selection bias). This suggests avoiding an
excessively large number of runs.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
a
m
p
t
o
n
]

A
t
:

2
0
:
2
0

2
9

M
a
r
c
h

2
0
0
9

492 Avramidis et al.

Work allocation to stages and runs. We control Stage-1
work via a CPU time limit. Stage-2 work is well mod-
eled as κ2T(NA + NR), where T is the number of sim-
ulated hours per solution; NA and NR are the number
of solutions simulated in Stage 2a and 2b, respectively;
and κ2 is the work per simulation of 1 hour of operation.
We found empirically conservative estimates E[NA] ≤ 3

√
ρ

and E[NR] ≤ 3
√

ρ + m, where the aggregate load is ρ =∑
j∈N ρ j and ρ j = λ j/µ j is the class-j load, where µ j is a

station-independent class-j service rate (the formula would
need adjustment otherwise). These estimates and knowl-
edge of κ2 allow roughly controlling Stage-2 work via T. In
multistart, an even-split rule is simple and reasonable: split
the remaining work budget evenly across starts and across
stages, i.e., for each run i = 1, 2, . . . , k, allocate to Stage 1
the fraction 1/[2(k − i + 1)] of the budget, then allocate to
Stage 2 the fraction 1/[2(k − i) + 1] of the budget.

The approach generalizes easily to formulations with
constraints on performance measures other than SL, as
long as the evaluator provides reasonable estimates. See
online Appendix A.0 for the LD approximation of aban-
donment fractions and mean waiting times for each call
class.

5. Numerical comparison to the
cutting-plane-and-simulation approach

To solve (P2) in its generality, i.e., with multiple constraints,
the only method we know is that of Cez̧ik and L’Ecuyer
(2008) (CP). We therefore compare our approach (RS) to
CP. We discuss in detail two examples that arose in collabo-
ration with Bell Canada. We also experimented with other
examples, but the ones we discuss summarize adequately
our findings.

1. Assessing solution feasibility and algorithm performance

We assess algorithm performance over a wide range of al-
gorithm work (CPU time). Work is controlled by the num-
ber of simulated hours of operation T (beyond a warm-up
period). We remarked that both approaches deliver infea-
sible solutions with non-negligible frequency, even under
a large work budget. To assess solution quality in light
of this, we do a number of independent runs with each
approach, and check the final solution’s feasibility by a
simulation that is more accurate than during optimization
(T = 12 800 hours of operation in apparent steady-state
conditions). The empirical optimum is the lowest-cost so-
lution found, across runs and the two approaches, that
passes this feasibility test. In some cases, we made small
manual corrections (adding one or two agents) to get fea-
sibility for a nearly-feasible low-cost solution. The true op-
timum is unknown. For each approach, we report: (i) the
minimum and median cost of the feasible solutions only;

the number of runs for which the solution is: (ii) feasi-
ble and within 1% of the empirical optimum (P∗

1); (iii)
within 1% of this cost, regardless of feasibility (P1); (iv)
feasible, regardless of cost (P∗); and (v) the average max-
imum relative constraint violation in percent, Ḡ, i.e., the
average of 100 max{[l − g(x∗)]/ l, [l j∗ − g j∗(x∗)]/ l j∗ } con-
ditional on the solution x∗ being infeasible, where j∗ =
arg max j∈N [l j − g j (x∗)] is the critical class. Infeasibility
of delivered solutions is reported in Green et al. (2001),
Atlason et al. (2008); and Cez̧ik and L’Ecuyer (2008); to
our knowledge, our study is the first to measure the fre-
quency and size of the infeasibility.

We now summarize call center parameters, algorithm
implementation and general behavior that apply to all
examples.

2. Call center parameters

Customer patience is exponential. In the absence of reliable
patience estimates, we consider two highly different cases
for the rate: η = 20 per hour (abandonment) and η = 0.02
(very low abandonment). The cost of an agent with s + 1
skills is 1 + 0.05s. We have a global SL target l = 0.80 and
acceptable waiting time τ j = τ = 20 seconds.

3. CP implementation

We used parameter values suggested in Cez̧ik and L’Ecuyer
(2008); see online Appendix A.5. Solution quality was
sometimes sensitive to parameters and fine-tuning these
is beyond our scope. In our large problem, solving the In-
teger Program (IP) to optimality required work that was
often excessive. Thus, we consider two variants: (i) solve
the IP exactly (CPIP); and (ii) solve the Linear Program-
ming (LP) relaxation and then round up each variable in
the final solution (CPLP). We did not use multistart with
CP because the work per start is generally high. One referee
suggested a third possibility: (iii) solve the IP, but not all
the way to optimality; stop as soon as the relative dual-
ity gap goes below a given threshold, such as 1% or 0.5%,
for example. This approach could appear as a good com-
petitor to (ii) when the budget is too small to apply (i),
because it is likely to provide a better solution to the IP
problem than just rounding up the LP solution. However,
our experiments with it were somewhat disappointing, es-
pecially for small work budgets. For (i) and (ii), the optimal
cost increases monotonously with the iterations, as we add
new constraints. However, for (iii) this is no longer true
and (according to our empirical observations) it tends to
take significantly more iterations on average to converge
to a feasible solution of the sample problem. This number
of iterations also tends to have larger variance. Moreover,
solving the IP in (iii) requires significantly more work than
solving the LP unless we are ready to accept a large duality
gap. All of this means shorter simulation lengths at each

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
a
m
p
t
o
n
]

A
t
:

2
0
:
2
0

2
9

M
a
r
c
h

2
0
0
9

Staffing multi-skill call centers 493

iteration, i.e., a smaller sample size for the sample problem,
for a given total work budget. This in turns gives a more
noisy sample problem, whose constraints are likely to have
more areas of non-concavity (increasing the chances of bad
cuts in the CP method), and whose optimal solution also
tends to be farther from the optimal solution of the exact
problem. Approach (iii) performed more poorly than (ii)
on our large example; it tended to return solutions with
large infeasibility gaps Ḡ on average. For this reason, we
do not report the detailed results with this method.

4. RS implementation

Labels CC1A and CC1L will refer to Example 1 with mod-
erate and very low abandonment, respectively, and use of
the LDA and LDN approximation, respectively; and like-
wise for Example 2. Our experience is that LDN domi-
nated LDA in problems with very low abandonment, in
the sense that it led to better solutions for similar work or
faster execution for similar solution quality. The approx-
imation accuracy is ε = 10−4 and kU = 400. In the LDA
variant, we set ψ = 2. Requiring higher accuracy or in-
creasing the queue size in LDA (via ψ) did not produce
noticeable differences. Multistart was applied; the initial
solution was constructed with ξ = 0.8 (the global SL tar-
get) and a different β in each start; the number of starts
was increased ad hoc with the work budget. The move size
was max(1, round(X)), where X is an exponential random
variable with mean equal to the median of the incumbent’s
elements. Work allocation to starts and stages followed the
even-split rule and was such that total work is comparable
to CP.

5. Effect of early termination

In side experiments, early termination had a negative effect
on final cost. In CC2A, normal termination gave a median
gap to empirical optimum of about 2.4%, while limiting
the Stage-1 work to 10% of the average work to normal
termination led to a gap of 5.3%. A similar but weaker
effect was present in CC2L. One remedy is to speed up
the LD approximation by requiring lower accuracy. This
means that for a fixed amount of time allocated to Stage
1, more solutions are examined and normal termination is
more likely to occur. We did that for CC2A.

6. Computing platform and tools

All experiments were done on a 2.0 GHz AMD Opteron
processor running Linux; we used SUN Java Development
Toolkit, version 1.4.2. Linear and integer programs were
solved by CPLEX, version 9.0. Our call center simulator
is likely to be much faster than typical (e.g., commercial)
simulators (Buist and L’Ecuyer, 2005); thus, our compar-
ison favors CP because this approach is more simulation-
intensive than ours.

5.1. Example 1: a medium-size center

The following example is based on discussions with
our industrial partner. We use different minimal SLs
per call type for illustrative purposes. There are
seven call classes and ten agent types, each hav-
ing one or two skills. Overflow routing is acyclic
and the data are: R1 = {1},R2 = {1, 3},R3 = {2, 4},R4 =
{5, 4, 3, 6},R5 = {7, 6, 8, 9},R6 = {9} and R7 = {10, 8}.
Agent type 1 prioritizes class 1 over 2. Agent
type 3 prioritizes class 2 over class 4. Except
when priority applies, calls are served in the or-
der of their arrival (FIFO). We have target service
levels (l j)7

j=1 = (0.80, 0.80, 0.80, 0.75, 0.60, 0.60, 0.60), ar-
rival rates (λ j)7

j=1 = (200, 133, 323, 760, 95, 10, 380), and
service rates varying by call class only: (µ j)7

j=1 =
(7.7, 7.7, 7.5, 7.7, 15, 7.7, 15). The aggregate load is 218.
The empirical optimal costs for examples CC1L and CC1A
are 241.30 and 222.65, respectively.

1. Stage 1 empirical data and algorithm parameters
Stage 1 work for a single start averaged a few seconds. Early
termination was unnecessary. At the end of Stage 1, the
approximation usually overestimated the SL. In the low-
abandonment case (CC1L), this solution did not require
much adjustment and its cost usually differed by less than
2% from the final cost. In the other case (CC1A), the Stage-
1 cost was about 10% lower than the final cost, and a much
bigger adjustment was necessary in Stage 2. Multistart was
applied with β ∈ {0.2, 0.5, 0.7, 0.9}.

2. Comparison to CP
Table 1 contains results for CC1A. We omit results for inter-
mediate work budgets because they tended to interpolate
the presented ones and did not reveal additional informa-
tion. We see that infeasibility occurs with non-negligible
frequency, and this persists up to our largest work budget.
However, the expected constraint violation conditional on

Table 1. Problem CC1A: comparison of RS to CP based on 32
runs. CPUavg is the average CPU time per run, in minutes (m)
and seconds (s)

Case Algo. T CPUavg

Min.
cost

Med.
cost P∗

1 P1 P∗ Ḡ

RS 25 55s 224.40 224.85 2 30 4 1.7
1 CPIP 25 2m15s 222.95 225.75 3 16 11 3.0

CPLP 25 30s 225.05 227.08 0 14 6 2.6

RS 640 17m10s 223.20 224.10 19 27 22 0.3
4 CPIP 640 15m29s 223.25 224.58 8 21 14 0.5

CPLP 1280 17m26s 223.05 224.70 14 22 23 0.6

RS 1920 54m02s 223.25 224.40 15 23 24 0.2
5 CPIP 2560 59m12s 223.00 224.05 22 31 23 0.2

CPLP 3840 57m30s 223.85 224.85 12 17 24 0.3

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
a
m
p
t
o
n
]

A
t
:

2
0
:
2
0

2
9

M
a
r
c
h

2
0
0
9

494 Avramidis et al.

infeasibility, Ḡ, is small and decreases steadily with work.
In view of this, we declare a solution (obtained in a single
run) as “good” if it is within 1% of the empirical opti-
mum, regardless of feasibility. The main result is: as the
work budget becomes smaller, RS delivers a good solu-
tion more frequently than CP (higher P1 values seen in
cases 1 and 4). Performance differences become smaller
as the budget increases (case 5). Staffing solutions occa-
sionally differed substantially between the approaches. In
the low-abandonment problem CC1L, performance differ-
ences were smaller, but our approach showed again an ad-
vantage under smaller budgets (detailed results omitted). In
the empirical optimum, the fraction of calls that abandon
was about 5.5% in CC1A and 0.03% in CC1L.

5.2. Example 2: a large center

This example was provided by our industrial partner about
3 years ago. They gave us the call types, the skill sets and
the routing rules. For each call class, they also provided
the number of calls that arrived and the aggregate call
handling time over a short period of time. From this,
we estimated the (class-specific) mean service times; the
arrival rates were then rescaled so that the aggregate load
is 500. Exactly the same example was used by Cez̧ik and
L’Ecuyer (2008). Of all problems we tried, this was the most
difficult. The complete data for this example is available at
http://www.iro.umontreal.ca/∼lecuyer/papers.
html, next to the entry of this paper.

There are 65 call classes and 89 agent types. The arrival
rates vary from 1.046 to 416.6. Except for nine classes whose
aggregate load is below three, the service rates are between
4.32 and 12.79. This is a virtual call center with two distinct
physical locations. Calls are distinguished by location and
needed skill, so for a given skill there are two call classes,
one for each location. Frequently needed skills are found at
both locations. Location 1 has 22 call classes and 15 agent
types; location 2 has 43 call classes and 74 agent types. The
number of skills per agent ranges from one to 24. Upon call
arrival, a call may be immediately assigned only to a local
agent. If no local agent is available, then the call is placed
in a local queue; as soon as the call has spent 6 seconds
in queue, an automatic call distributer tries to assign it
again, this time considering both local and remote agents,
and preferring local ones. In the routing list, local agents
precede remote ones (this induces cycles in the flow graph);
within each location, lower number of agent skills comes
first, and ties are broken arbitrarily. Of all agents of the same
type, the individual agent selected is the one with longest
idle time. Whenever an agent becomes free, he/she gives
priority to the local queue. We set a SL target of 50% per
class to reflect that the company usually wants to rule out
solutions in which certain classes receive very poor service.
In another experiment with a target of 80% per class, the
relative performance of the methods was roughly the same.

1. Stage 1 empirical data and algorithm parameters
Stage 1-work varied considerably and averaged 440 seconds
for CC2L and 540 seconds for CC2A. Early termination
was necessary on several runs for CC2A. Multistart was
applied with β ∈ {0.6, 0.8} except for the largest work bud-
get, where this set is {0.2, 0.5, 0.6, 0.7, 0.8, 0.9}. The cost
gaps between the solutions after Stage 1 and Stage 2 are
similar to those in Example 1.

2. Comparison to CP
Table 2 contains the main results. RS∗ denotes reduced
LD accuracy (ε = 10−3). The work budgets are larger than
Example 1 because the output is noisier. A clear pattern
emerges: our approach yields lower-cost solutions than CP
for all work budgets except the largest one, where the two
are comparable. In some cases, the cost margin is large. The
underperformance of CP is a consequence of simulation
noise that is too large, in this example. With CP, a very
bad cut was occasionally seen: for CC2A with 27 minutes
average work, one run gave a cost of 975.05 while the 15
others ranged from 617.80 to 643.25 (across all runs, some
of which gave infeasible solutions).

Table 3 gives more information on the empirical opti-
mum and typical solutions. In CC2L, the CP solution has
a large violation for one constraint. Our best solutions in
CC2L have substantial slack on the global SL constraint;
the staffing is dictated by a constraint for a single class
whose load is usually low. In the empirical optimum, the
fraction of calls that abandon was about 7.5% in CC2A
and 0.01% in CC2L.

Table 2. Example 2: comparison of RS to CP based on 16 runs.
‘A’ and ‘L’ in column ‘Ab’ denote the cases of moderate and very
low abandonment, respectively

Ab Case Algo. T CPUavg

Min.
cost

Med.
cost P∗

1 P1 P∗ Ḡ

1 RS 80 24m52s 660.55 663.60 3 10 6 13.6
CPLP 25 22m51s 668.75 668.75 0 4 1 20.0

L 2 RS 320 45m44s 657.95 663.00 2 13 3 5.7
CPLP 80 58m10s 677.20 677.20 0 6 1 15.7

3 RS 1280 435m31s 657.20 659.50 9 15 9 1.9
CPLP 960 567m52s 657.35 659.45 6 14 7 2.3

RS 25 52m01s 612.65 615.05 0 1 3 7.0
1 RS* 25 30m08s 608.80 613.32 0 0 6 7.4

CPLP 25 27m15s 631.10 634.65 0 0 3 8.6

RS 160 96m56s 608.85 611.35 0 0 7 1.5
A 3 RS* 160 46m12s 607.25 610.35 0 0 7 2.8

CPLP 80 60m21s 616.25 621.95 0 0 3 8.3

RS 640 804m25s 606.10 608.52 0 0 8 2.4
4 RS* 640 420m16s 605.65 607.68 1 4 8 1.1

CPLP 640 295m10s 605.20 613.25 1 5 5 2.0

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
a
m
p
t
o
n
]

A
t
:

2
0
:
2
0

2
9

M
a
r
c
h

2
0
0
9

Staffing multi-skill call centers 495

Table 3. Example 2: cost and service level of the empirical opti-
mum (“*”) and typical solutions. Service levels below the target
are typed in bold

Ab Case Algo. Cost SL SL j∗

* – 657.00 0.850 ± 0.001 0.501 ± 0.004
L 2 RS 661.80 0.867 ± 0.001 0.487 ± 0.006

CPLP 664.95 0.868 ± 0.002 0.36 ± 0.02
* – 600.00 0.812 ± 0.001 0.505 ± 0.003

RS 610.55 0.865 ± 0.001 0.516 ± 0.003
A 3 RS* 610.35 0.803 ± 0.001 0.500 ± 0.002

CPLP 617.70 0.842 ± 0.001 0.487 ± 0.002

6. Comparisons to existing and alternative approaches

6.1. The method of Wallace and Whitt (2005)

1. Modified Example 2 with skill-set constraints relaxed
We modify the example to fit the assumptions of Whitt
(2005) (WW). Each agent has exactly two skills (call types)
designated primary and secondary, and each skill pair ex-
ists in each location. There are 4160 agent types, defined by
the ordered pair of the two skills and the agent’s physical lo-
cation. The routing rule is that of WW. The WW algorithm
yielded solutions with 445 and 404 different agent types in
CC2L and CC2A, respectively; in both cases, the cost was
about 13% below our empirical optimum. This large cost
reduction is easy to explain: some skill pairs whose load
is relatively large do not exist alone; they are “bundled”
with other skills; so when this agent type is needed in the
skill-constrained problem, he/she is considerably costlier
than in the relaxed problem.

2. Adapting the WW approach
All skill set constraints, cost structure and routing are those
of our original examples. The square-root staffing formula
of WW was applied for initialization, subject to comply-
ing with existing skill sets: whenever they put a number of
agents having a skill pair, we put the same number of the
cheapest of the existing agent types having this skill pair;
if the pair did not exist, then we put the cheapest agent
type having the primary skill. Their algorithm was adapted
to account for unequal cost among agent types. This gave
solutions of much higher cost than ours in Example 2, and
comparable in Example 1. In two runs of our algorithm
with these solutions as initial ones, we found much better
solutions, but still not as good as found by our main ap-
proach. Thus, we have no reason to believe that this adapted
WW approach is competitive.

6.2. Alternative Stage-1 evaluator and alternative optimizer

Generalizing the proposed approach, one can combine
some optimizer with some fast approximate evaluator of
service levels (Stage 1) and then apply, if necessary, a local
adjustor supported by a more accurate evaluator (Stage 2).

We specify several possibilities and report algorithm per-
formance for selected examples. One evaluator we consider
is the loss approximation of Koole and Talim (2000) (KT).
The main finding of this comparison, which we detail next,
is that the final staffing appears to be rather insensitive to
the errors in the underlying service-level approximation.

1. The loss-approximation of Koole and Talim (2000) as
evaluator
We replace the LD approximation by the KT loss approx-
imation and call the resulting staffing algorithm RS/KT.
Thus, during Stage 1, we determine feasibility by compar-
ing one minus the approximated loss rates to the corre-
sponding target SL values. We compared RS/KT to our
standard approach (RS/LD) in our four problems. For
problems CC2L and CC2A, the final costs were quite com-
parable. The biggest cost differences occurred in CC1L: in
32 runs with parameters as in case 4, the minimum and
median RS/KT cost were 0.5% and 0.9% above the cor-
responding values of RS/LD, respectively. At the end of
Stage 1, the KT error is generally higher than the LD one,
especially in the low-abandonment case (note that Stage
1 of RS/KT behaves independently of the abandonment
aspect of the call center). In most of the 32 runs for CC1L,
the global SL of the RS/KT incumbent at the end of Stage
1 was under 10%, much lower than its typical counterpart
with RS/LD. Not surprisingly, the KT error is smaller in
CC1A, where behavior is closer to a loss system. As a conse-
quence of larger SL error with KT, Stage-2 execution times
were much higher.

The importance of having a somewhat good approxima-
tion is evidenced by additional experiments in which we
pretended having no approximation and ran Stage 2 only,
starting with one agent of each type. This worked well in
Example 1; but in Example 2, the typical cost was about
10% above the empirical optimum. In summary, we find: a
somewhat good approximation is essential in finding good
moves during Stage 1, and this is an essential part of our ap-
proach; smaller approximation error is additionally helpful
in reducing the Stage-2 execution time.

2. Simulation as evaluator
We replace the LD approximation by simulation and call
the resulting algorithm RS/SIM. Some experimentation
was needed to find appropriate simulation lengths for the
Stage-1 evaluator, say T1, and for the adjustor, say T. In
general, T1 must be small enough so that enough solutions
are examined; and T must be large enough to avoid large
infeasibility in the final solution. RS/SIM was ineffective
in both variants of Example 2. In CC2A, with T1 = 25,
T = 160 and B = {0.6, 0.8}, the costs for five runs ranged
in [627.95, 637.15] and work was about 15 hours. Our exper-
iments suggest that this method is unlikely to be effective,
except perhaps in small dimensions, because of the large
number of solutions that must be evaluated by simulation.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
a
m
p
t
o
n
]

A
t
:

2
0
:
2
0

2
9

M
a
r
c
h

2
0
0
9

496 Avramidis et al.

3. Alternative optimizer
Approach CP/LD combines the cutting-plane optimizer
of Cez̧ik and L’Ecuyer (2008), the LD evaluator and
the simulation-based adjustor. CP/LD may be interesting
when one is willing to accept some loss in solution quality in
exchange for faster execution. In problem CC2A, CP/LD
reduced Stage-1 work drastically relative to RS: the number
of evaluations was cut by a factor of 50, and execution time
was cut by a factor of ten. However, the overall speedup
was limited because of the need for simulation-based ad-
justment.

7. Conclusions

We formulated the problem of staffing in a multi-skill call
center as a mathematical program (P2) with constraints on
the SLs. We developed a solution approach using search
methods that are supported by the LD approximation of
class-specific service levels. The approximation is most rel-
evant when the routing policy belongs to the overflow-
routing family. The search delivers a staffing that is locally
optimal with respect to the approximate SL functions. This
solution is then adjusted for either feasibility or cost re-
duction via simple local-search methods, where simulation
provides unbiased (noisy) estimates of SLs.

We compared our approach to the only practical alter-
native we know Cez̧ik and L’Ecuyer (2008). Comparison
was via examples for which (partial) data were provided
by our industrial sponsor, including explicit constraints on
skill sets and policies in the overflow-routing family. We as-
sumed Poisson arrivals and exponential service times and
considered both substantial and low (exponential) aban-
donment. We solved problems for a wide range of work
budget. Our approach usually delivered better solutions
than the alternative, and this advantage increased as the
work budget decreased. It also appears that the advantage
increases as problem dimension increases.

Crucial in our approach is a fast approximation that
selects good moves among the many possible choices; the
approximation’s accuracy does not appear to be crucial.
In our experiments, the LD approximation had a small
advantage over the loss approximation of Koole and Talim
(2000): it gave noticeably better solutions in one example
(with very high customer patience); and it led to faster
execution. We conclude that our search methods supported
by the LD, and possibly by other approximations, can be a
useful tool in multi-skill staffing.

Acknowledgements

This research has been supported by Grants OGP38816-05
and CRDPJ-320308 from NSERC-Canada, a grant from
Bell Canada via the Bell University Laboratories, and a

Canada Research Chair, to the third author. The second
author benefited from a scholarship provided jointly by
NSERC and Bell Canada. The paper was written in part
while the third author was at IRISA, in Rennes, France.

References

Aho, A.V., Hopcroft, J.E. and Ullman, J.D. (1974) The Design and Anal-
ysis of Computer Algorithms, Addison-Wesley, Reading, MA.

Atlason, J., Epelman, M.A. and Henderson, S.G. (2004) Call center
staffing with simulation and cutting plane methods. Annals of Op-
erations Research, 127, 333–358.

Atlason, J., Epelman, M.A. and Henderson, S.G. (2008) Optimizing call
center staffing using simulation and analytic center cutting plane
methods. Management Science, 54(2), 295–309.

Bassamboo, A., Harrison, J.M. and Zeevi, A. (2006) Design and control
of a large call center: Asymptotic analysis of an LP-based method.
Operations Research, 54(3), 419–435.

Bhulai, S., Koole, G. and Pot, A. (2008) Simple methods for shift schedul-
ing in multi-skill call centers. Manufacturing and Service Operations
Management, 10, 411–420.

Buist, E. and L’Ecuyer, P. (2005) A Java library for simulating contact
centers. In Proceedings of the 2005 Winter Simulation Conference,
IEEE Press, Piscataway, NJ, pp. 556–565.

Cez̧ik, M.T. and L’Ecuyer, P. (2008) Staffing multiskill call centers via
linear programming and simulation. Management Science, 54(2),
310–323.

Chan, W. (2006) Optimisation stochastique pour l’affectation du per-
sonnel polyvalent dans un centre d’appels téléphoniques. Master’s
thesis, Département d’Informatique et de Recherche Opérationnelle,
Université de Montréal, Canada.

Chevalier, P., Shumsky, R.A. and Tabordon, N. (2003) Overflow anal-
ysis and cross-trained servers. International Journal of Production
Economics, 85, 47–60.

Chevalier, P., Shumsky, R.A. and Tabordon, N. (2004) Routing and
staffing in large call centers with specialized and fully flexible servers.
Technical report, Simon Graduate School of Business, University
of Rochester.

Cooper, R.B. (1981) Introduction to Queueing Theory, second edition,
New York, NY. North-Holland.

Franx, G.J., Koole, G. and Pot, A. (2006) Approximating multi-skill
blocking systems by hyper-exponential decomposition. Performance
Evaluation, 63, 799–824.

Gans, N., Koole, G. and Mandelbaum, A. (2003) Telephone call centers:
tutorial, review, and research prospects. Manufacturing and Service
Operations Management, 5, 79–141.

Green, L.V., Kolesar, P.J. and Soares, J. (2001) Improving the SIPP
approach for staffing service systems that have cyclic demands. Op-
erations Research, 49(4), 549–564.

Harrison, J.M. and Zeevi, A. (2005) A method for staffing large call
centers based on stochastic fluid models. Manufacturing and Service
Operations Management, 7(1), 20–36.

Henderson, S. and Mason, A. (1998) Rostering by iterating integer
programming and simulation. In Proceedings of the 1998 Winter
Simulation Conference, IEEE Press, Piscataway, NJ, pp. 1, 677–683.

Koole, G. and Mandelbaum, A. (2002) Queueing models of call centers:
an introduction. Annals of Operations Research, 113, 41–59.

Koole, G., Pot, A. and Talim, J. (2003) Routing heuristics for multi-
skill call centers. In Proceedings of the 2003 Winter Simulation
Conference, IEEE Press, Piscataway, NJ, pp. 1813–1816.

Koole, G. and Talim, J. (2000) Exponential approximation of multi-skill
call centers architecture. In Proceedings of QNETs, 23/1–10.

Pot, A., Bhulai, S. and Koole, G. (2008) A simple staffing method for
multi-skill call centers. Manufacturing and Service Operations Man-
agement, 10, 421–428.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
a
m
p
t
o
n
]

A
t
:

2
0
:
2
0

2
9

M
a
r
c
h

2
0
0
9

Staffing multi-skill call centers 497

Riordan, J. 1962. Stochastic Service Systems, Wiley, New York, NY.
Ross, S.M. (1983) Stochastic Processes, Wiley, New York, NY.
Wallace, R.B. and Whitt, W. (2005) A staffing algorithm for call cen-

ters with skill-based routing. Manufacturing and Service Operations
Management, 7(4), 276–294.

Wolff, R.W. (1989) Stochastic Modeling and the Theory of Queues,
Prentice-Hall, New York, NY.

Biographies

Athanassios N. Avramidis is a Lecturer in Operational Research in the
School of Mathematics at the University of Southampton, United King-
dom. This work was done while he was a Researcher in the Département
d’ Informatique et de Recherche Opérationnelle at the Université de
Montréal, Canada. He has been on the faculty at Cornell University
and a consultant with SABRE Decision Technologies. His main research
interests are Monte Carlo and discrete-event stochastic simulation, par-
ticularly efficiency improvement via variance reduction, and stochastic
modeling in industrial and service systems. His recent research articles are
available online from http://www.personal.soton.ac.uk/∼aa1w07.

Wyean Chan is a MSc Student in the Département d’Informatique et de
Recherche Opérationnelle, at the Université de Montréal, Canada. His
main interests are object-oriented programming, applied mathematics
and optimization. He is currently working on the development of staffing
tools for call centers.

Pierre L’Ecuyer is a Professor in the Département d’Informatique et
de Recherche Opérationnelle, at the Université de Montréal, Canada.
He holds the Canada Research Chair in Stochastic Simulation and
Optimization. His main research interests are random number gener-
ation, quasi-Monte Carlo methods, efficiency improvement via vari-
ance reduction, sensitivity analysis and optimization of discrete-event
stochastic systems and stochastic simulation in general. He is currently
Associate/Area Editor for ACM Transactions on Modeling and Com-
puter Simulation, ACM Transactions on Mathematical Software, Sta-
tistical Computing, International Transactions in Operational Research,
The Open Applied Mathematics Journal and Cryptography and Com-
munications. He obtained the E. W. R. Steacie fellowship in 1995–97,
a Killam fellowship in 2001–03, and became an INFORMS Fellow in
2006. His recent research articles are available online from his web page:
<http://www.iro.umontreal.ca/∼lecuyer>.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
U
n
i
v
e
r
s
i
t
y

o
f

S
o
u
t
h
a
m
p
t
o
n
]

A
t
:

2
0
:
2
0

2
9

M
a
r
c
h

2
0
0
9

