
Infinite-Dimensional Highly-Uniform Point
Sets Defined via Linear Recurrences in F2w

François Panneton and Pierre L’Ecuyer
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Summary. We construct infinite-dimensional highly-uniform point sets for quasi-
Monte Carlo integration. The successive coordinates of each point are determined
by a linear recurrence in F2w , the finite field with 2w elements where w is an inte-
ger, and a mapping from this field to the interval [0, 1). One interesting property of
these point sets is that almost all of their two-dimensional projections are perfectly
equidistributed. We performed searches for specific parameters in terms of differ-
ent measures of uniformity and different numbers of points. We give a numerical
illustration showing that using randomized versions of these point sets in place of
independent random points can reduce the variance drastically for certain functions.

1 Introduction

Quasi-Monte Carlo (QMC) methods estimate an integral of the form

µ =
∫

[0,1)t

f(u)du, (1)

for a given function f , by the average

Qn =
1
n

n−1∑
i=0

f(ui), (2)

for a highly-uniform (or low-discrepancy) point set Pn = {u0, . . . ,un−1} ⊂
[0, 1)t. Randomized QMC (RQMC) randomizes the point set Pn before com-
puting Qn, in a way that each individual point is uniformly distributed
over [0, 1)t even though the point set as a whole keeps its high uniformity
[6, 12, 8, 3].

In many practical simulation settings, f depends on a random and un-
bounded number of uniforms [8]. This can be covered by taking t =∞, with
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the understanding that f would typically depend only on a finite number of
coordinates of u with probability 1, if we interpret u as an infinite sequence
of independent uniform random variables over [0, 1). On the other hand, most
popular point set constructions (e.g., digital nets and lattice rules) usually
assume a fixed (finite) value of t. There are exceptions, e.g., Korobov lattice
rules and Korobov polynomial lattice rules [2, 4], where the dimension can be
infinite.

In this paper, we introduce a method for constructing infinite-dimensional
point sets Pn via a linear recurrence in the finite field F2w and a mapping from
F2w to the interval [0, 1). The construction is similar to the one used in [11]
for random number generation. These point sets are dimension-stationary, i.e.,
their projections over a subset of coordinates depend only on the spacings be-
tween these coordinates. Moreover, most of their two-dimensional projections
have maximal equidistribution. We provide a formula that gives the precise
number in terms of the parameters of the recurrence.

We define several measures of uniformity for Pn in terms of its equidistri-
bution properties, its q-value, and the distance between the closest points, in
several dimensions. We report partial results of a search for good point sets in
terms of these criteria. Then we try randomized versions of these point sets
on a few test problems and compare them, in terms of variance reduction with
respect to standard Monte Carlo (MC) simulation, with Sobol’ nets random-
ized in the same way. In certain settings, the new point sets perform much
better than the Sobol’ nets.

2 Definition of the Point Sets

Our point sets are constructed as follows. The successive coordinates of each
point are defined in essentially the same way as the successive random numbers
in [11].

Let q = 2w for some integer w ≥ 1 and Fq the finite field with q elements.
We consider a linear recurrence of order r in Fq,

mn =
r∑

i=1

bimn−i, (3)

where r is a positive integer, b1, . . . , br and m0,m1, . . . are in Fq, br 6= 0, and
all arithmetic is performed in Fq. The polynomial P (z) = zr −

∑r
i=1 biz

r−i

is a characteristic polynomial of this recurrence. It is well-known that (3) has
period length qr − 1 = 2rw − 1 (full period) for any nonzero initial state
(m−r+1, . . . ,m0) ∈ Fr

q if and only if P (z) is primitive over Fq. Regardless of
the primitivity of P (z), the recurrence (3) is purely periodic, in the sense that
it has no transient state. See, e.g., [5, 6] for an account of linear recurrences
in finite fields.
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To construct a point set from such a recurrence, we must define a map-
ping from the state space Fr

q to the real interval [0, 1). This requires an ex-
plicit representation of the elements of Fq. As in [11], we represent these
elements in terms of an ordered polynomial basis, defined as follows. Let
M(z) = zw +

∑w
i=1 aiz

w−i ∈ F2[z] be an irreducible polynomial over F2. Then
there exists an algebraic element ζ of Fq whose minimal polynomial over F2

is M(z) and the ordered set (1, ζ, . . . , ζw−1) is an ordered polynomial basis of
Fq over F2 (see [5], Chapter 1.4). This means that any element v ∈ Fq can be
written uniquely as a linear combination v = v1 + v2ζ + · · ·+ vwζw−1 where
v = (v1, . . . , vw)T ∈ Fw

2 . Here, we identify F2 with the set {0, 1} in which
addition and multiplication are performed modulo 2. Thus, after M(z) has
been chosen, each element v of Fq can be represented by its corresponding
binary column vector v, called its vector representation. Then, as explained
in [11], the recurrence (3) can be implemented by

mn =
r∑

i=1

Abimn−i (4)

where mn is the vector representation of mn and Abi
performs the multipli-

cation by bi in the vector representation, for 1 ≤ i ≤ r. Under this represen-
tation, the state at step n can be written as the rw-bit column vector

sn = (mT
n−r+1, . . . ,m

T
n)T.

From recurrence (4), we define an output sequence u0, u1, . . . in [0, 1) as
follows:

yi = (mT
iν ,mT

iν+1, . . .)
T = (yi,0, yi,1, . . .)T,

ui =
∞∑

j=1

yi,j−12−j (5)

for i ≥ 0, where ν is a fixed positive integer and yi,0, yi,1, . . . are the successive
bits of yi. In practice, yi and the expansion in (5) are necessarily truncated
to a finite number of bits, but here we neglect the impact of this truncation.
Let

Pn = {(u0, u1, u2, . . .) : s0 ∈ F2rw} (6)

be the set of all sequences of successive output values ui, from all possible
initial states s0 = (m−r+1, . . . ,m0) in F2rw . Since the number of states is 2rw

and the recurrence (3) is purely periodic, the cardinality of Pn is n = 2rw.
This Pn is our infinite-dimensional point set. Each point u ∈ Pn is in fact
a periodic infinite sequence, whose period length is that of the cycle of the
recurrence that corresponds to the initial state s0. In the case where P (z)
is primitive, for example, there are two cycles: one contains the single state
s0 = 0 and has period 1 (it gives the point u = 0) while the other contains
all nonzero states and has period length 2rw − 1. In this case, all nonzero
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points can be enumerated as follows: to get the next point, discard the first ν
coordinates of the current point and shift all other coordinates by ν position
to the left. If P (z) is not primitive, there will be more cycles.

It is easily seen that this Pn is a digital net in base 2. Indeed, because of
(4), each bit vector yi is a linear function of the bit vector s0. That is, we can
write yi = C(i)s0 for some ∞× rw binary matrix C(i), for i = 0, 1, 2, . . .. A
quick examination of the definition of Pn immediately tells us that it satisfies
the definition of a digital net (see [6, 7]) with generating matrices C(0), C(1),
. . . . This net is infinite-dimensional. The sequence of generating matrices is
periodic and the successive rows of any C(i) also form a periodic sequence. If
we replace s0 by the jth canonical vector ej , the corresponding yi gives us
the jth column of C(i). Since the recurrence is purely periodic, there must be
a one-to-one correspondance between s0 and the first rw bits of yi for each i.
This implies that the first rw rows of C(i) must be linearly independent over
F2. Thus, the first rw bits of any given coordinate uj of the points of Pn take
all possible 2rw values exactly once. That is, if the binary expansion in (5) is
truncated to its first rw bits, then each one-dimensional projection of Pn is
the set {0, 1/n, . . . , (n− 1)/n}.

Some may argue that this type of infinite-dimensional point set is not very
interesting because of the periodicity of the point coordinates. However, in
practice, Pn would typically be randomized to get an unbiased estimator of µ,
and the randomization would normally destroy the periodicity. For example,
one simple randomization is a random binary digital shift : generate a single
random point U uniformly distributed in [0, 1)∞ and add it to each point of
Pn by a bitwise exclusive-or of each coordinate [3]. After this randomization,
every individual point of Pn is a random point uniformly distributed over
[0, 1)∞, whereas Pn preserves all its p-equidistribution properties, as defined
in the next section. The successive coordinates of the randomized points are
no longer periodic.

3 Measures of uniformity

To measure the uniformity of Pn, we will examine its projections over fi-
nite subsets of the coordinates. For each such projection, we obtain a finite-
dimensional point set, say a point set Qn over the t-dimensional hypercube
[0, 1)t. Several figures of merit can be adopted to measure the uniformity of
such a point set Qn [6, 3]. The measures considered in this paper are based
on p-equidissections of the unit hypercube [0, 1)t and on the minimal distance
between the points of Qn. We recall definitions that can be found, e.g., in [3]
and at other places.

Let p = (p1, . . . , pt) be a vector of positive integers such that p = p1+. . .+
pt ≤ k. A p-equidissection is a partition of the unit hypercube in rectangular
cells aligned with the axes, of equal volume 2−p, defined by dividing the
interval [0, 1) along the i-th coordinate into 2pi equal parts, for each i. A
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p-equidissection such that p1 = . . . = pt = ` is called an `-equidissection. A
set Qn with n = 2k is said to be p-equidistributed if every cell defined by the
p-equidissection contains exactly 2k−p points from Qn. It is `-equidistributed
if it is p-equidistributed for p1 = . . . = pt = `.

A point set Qn ⊂ [0, 1)t with n = 2k points is a (q, k, t)-net (in base 2) if it
is p-equidistributed for every p-equidissection such that p1 + . . .+ pt ≤ k− q.
The smallest q such that Qn forms a (q, k, t)-net is called the q-value of Qn. We
denote it by qt. Generally speaking, a smaller q-value means a more uniform
point set.

The largest ` such that Qn is `-equidistributed is called its resolution and
is denoted `t (in t dimensions). We have the upper bound `t ≤ `∗t

def= bk/tc.
We define the resolution gap in t dimensions as

Λt = bk/tc − `t.

A smaller resolution gap means a more uniform point set.
Equidistribution in p-equidissections has its limitations in measuring the

uniformity of a point set. For example, if a point u is a common corner for
2t cells in t dimensions, then up to 2t distinct points of Qn can be arbitrarily
close to u, one in each cell. Thus, despite good equidistribution properties, one
may have a cluster of several points that are almost identical to each other.
To prevent this, one may consider the minimal distance of Qn under the Lp

norm, defined as

d∗p(Qn) = min{dp(x,y) : x,y ∈ Qn,x 6= y},

where dp(x,y) is the Lp-distance between x and y. A large value of d∗p(Qn)
means that all points are far away from each other, and are thus more evenly
spread over the hypercube.

Here, instead of d∗p(Qn), we use a related figure of merit defined as follows.
Two cells defined by a p-equidissection are adjacent if they have at least
one corner in common. A point set Qn ⊂ [0, 1)t is said to be neighbor-free in
resolution ` if in the `-equidissection, no cell contains more that one point from
Qn and every cell that contains one point is adjacent to no other such cell.
The smallest value of ` such that Qn is neighbor-free is called the neighbor-free
resolution and is denoted by vt. A lower bound on vt is dk/te+ 1. We define
the neighbor-free gap as

Γt = vt − dk/te − 1.

The neighbor-free resolution is linked to the minimal distance by the inequal-
ities

2−vt < d∗2(Qn) < 2−vt+2
√

t,
2−vt < d∗∞(Qn) < 2−vt+2,

proved in [10]. We want vt (or equivalently, Γt) to be as small as possible.
We now return to our infinite-dimensional point set Pn. For any subset of

coordinates J = {j1, j2, . . . , ji}, where 0 ≤ j1 < j2 < · · · < ji < t, we define
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Pn(J) as the i-dimensional projection of Pn over these coordinates. Figures
of merit that take into account the uniformity of projections are discussed
in [2, 3], for example. Giving special attention to the most important projec-
tions often has a significant impact on the performance of RQMC. The most
important projections depend on the problem in general, but they are often
of small dimension, and associated with coordinate numbers that are close to
each other.

For any given family J of projections, we define

∆(Pn,J , C) = max
J∈J

C(Pn(J))

and
Θ(Pn,J , C) =

∑
J∈J

C(Pn(J)),

where C(Pn(J)) can be either qi, Λi, or Γi, for i = |J |. The criterion
∆(Pn,J , C) looks at the worst-case projection in J , whereas Θ(Pn,J , C)
considers the average instead.

4 Guaranteed Uniformity of Certain Projections

For the point sets defined in (6), each one-dimensional projection contains
exactly one point in each of the intervals [0, 1/n), [1/n, 2/n), . . . , [(n−1)/n, 1).
Moreover, because of the way Pn is defined via a recurrence, for any given set
of non-negative integers J = {j1, j2, . . . , ji}, the projections Pn({j1+j, . . . , ji+
j}) are identical for all j ≥ 0. That is, the point set is dimension-stationary
[2].

The following proposition, on the equidistribution of two-dimensional pro-
jections, is proved in [10].

Proposition 1. Suppose that the minimal polynomial P (z) of the recurrence
(3) over F2w is a primitive polynomial. Let h = lcm((2k − 1)/(2w − 1), ν)/ν,
where lcm means the least common multiple. Then, the two-dimensional pro-
jection Pn({j1, j1 + j}) is w-equidistributed if and only if j is not a multiple
of h.

As an illustration, consider a point set Pn of cardinality n = 216, ob-
tained by taking r = 2, w = 8, and ν = 13. In that case, h = lcm((216 −
1)/(28− 1), 13)/13 = lcm(257, 13)/13 = 257. This means that among all two-
dimensional projections of the form Pn({0, j}), exactly 65280 out of 65535
(i.e., all but 1 out of every 257) are 8-equidistributed (which is the best pos-
sible two-dimensional equidistribution for 216 points).
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5 A Search for Good Point Sets

We made extensive computer searches for good point sets in terms of the
general figures of merit defined in Section 3, for various values of n. A small
subset of the results, for n = 214 and 216, is given in Table 1. The elements
of the finite field F2w are represented using the hexadecimal notation and the
polynomial basis (as in [11]).

Table 1. Point sets with cardinality 214 and 216.

Number r w k M(z) ν b1 b2 b3 b4 b5 b6 b7 ∆(S, C) Θ(S, C) S C

1 2 7 14 77 152 73 52 – – – – – 1 12 J1 Λt

2 4 4 16 9 842 3 e 0 e – – – 1 32 J1 Λt

3 7 2 14 3 548 2 0 0 2 1 0 1 12 J1 Λt

4 4 4 16 c 286 4 9 e 4 – – – 31 J1 Λt

5 7 2 14 3 468 2 0 1 1 0 1 3 7 934 J1 qt

6 4 4 16 9 883 0 4 e b – – – 9 989 J1 qt

7 7 2 14 3 236 3 2 0 0 0 3 1 889 J1 qt

8 4 4 16 9 816 0 3 d 3 – – – 959 J1 qt

9 7 2 14 3 199 1 0 3 0 1 1 1 4 303 J2 Γt

10 4 4 16 c 675 b f 0 9 – – – 4 295 J2 Γt

11 2 7 14 5f 101 30 1f – – – – – 302 J2 Γt

12 2 8 16 d8 702 88 da – – – – – 294 J2 Γt

The sets of projections considered in the figures of merit were of the form

J = J (s, t1, . . . , ts) =

(
s⋃

i=1

{{j1, . . . , ji}, 0 = j1 ≤ · · · ≤ ji < ti}

)
⋃
{{0, . . . , j}, 0 ≤ j < t1}.

They are the projections defined by j successive coordinates for j up to
t1, the two-dimensional projections with coordinates less that t2, the three-
dimensional projections with coordinates less that t3, and so on. This type of
J was also considered in [2]. Let us denote J (5, k, 24, 16, 8, 8) by J1(k) and
J (3, 3, 24, 16) by J2.

The parameters reported in Table 1 are for the criteria ∆(Pn,J1(k),Λt),
Θ(Pn,J1(k),Λt), ∆(Pn,J1(k), qt), Θ(Pn,J1(k), qt), ∆(Pn,J2,Γt), and Θ(Pn,
J2,Γt). More extensive tables of parameters are given in [10]. The effectiveness
of these point sets will be assessed empirically for simple examples in the next
section.
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6 Examples

We report the results of simple numerical experiments where the point sets
of Table 1 perform quite well for integrating certain multivariate functions
in a RQMC scheme. We compare their performance with that of Sobol’ nets
when both are randomized by a random binary digital shift only (see, e.g.,
[3] and [9] for a definition and discussions of other randomization methods).
In both cases, we estimate the variance per run, i.e., n times the variance of
the average over the n points, and compare it with the empirical variance of
standard MC. The variance reduction factor reported is the ratio of the MC
variance over the RQMC variance per run.

6.1 A Markov Chain

We consider a Markov chain with state (i, c,U) where i ∈ {0, 1, 2}, c is an
integer, and U = (u1, u2, . . .) is an infinite sequence with elements in [0, 1).
The chain starts in state i = 1, c = 0 and U = (1, 1, . . .). To determine the
next state, we generate U ∼ U(0, 1), a uniformly distributed random variable.
If U < pi,i+1 then i ← (i + 1) mod 3, otherwise i ← (i − 1) mod 3. At
each step, we increase c by one and update U as U = (U, u1, u2, . . .). When
c ≥ 300, i = 2, and 1 − p3 < U ≤ 1, the chain terminates. In our numerical
experiments, we also terminate the chain whenever i = 360, in order to be
able to compare with the Sobol’ nets, for which we have an implementation
only for up to 360 dimensions. At each step, there is a cost fi(U), for some
functions fi that depend on only two coordinates of U. The goal is to estimate
the expected total cost, µ = E[C]. Figure 1 illustrates the behavior of the
chain. We can view this Markov chain as a way of randomly sampling two-
dimensional projections of the point set Pn, and summing up the values of
uiuj observed on these projections.

We consider two cases for the choice of the fj ’s in our experiments. In
both cases, pi,j = 1/2 for 0 ≤ i, j ≤ 2 and p3 = 1/2. In the first case, we take
f0(U) = u1u9, f1(U) = u2u8, and f2(U) = u3u7. In the second case, we take
f0(U) = u1u2, f1(U) = u2u3, and f2(U) = u1u3.

We also give the results when we do not stop the chain when i = 360
(“Case 1(b)” and “Case 2(b)”). In these cases, the dimension is not bounded
and our implementation of the Sobol’ nets cannot be used.

The empirical variance reductions of RQMC compared with MC are given
in Table 2. These improvement factors are quite large, and much larger for
our new point sets than for the Sobol’ nets. For most point sets, the variance
reduction factors is slightly lower in the “(b)” cases but, for some, the trend
is reversed (like point set number four).

6.2 Some multivariate functions

Here, we consider the following two functions f , defined over the unit hyper-
cube [0, 1)t:
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Fig. 1. Evolution of i for our Markov chain.

Table 2. Variance reduction factors of RQMC compared with MC for the Markov
chain

Number Case 1 Case 2 Case 1(b) Case 2(b)

Sobol, n = 214 5 28 X X
Sobol, n = 216 39 37 X X

1 1000 1400 1200 1300
2 4900 2500 4600 2100
3 1500 1200 1400 910
4 1300 1400 1800 2100
5 1300 730 1100 910
6 1900 160 1800 180
7 550 1200 470 1000
8 1400 1200 1200 900
9 10 680 8 880
10 4200 1500 3900 1400
11 22 870 20 900
12 470 270 430 250

f(u) = f1(u) =

√
2

t(t− 1)

t−1∑
j=0

j−1∑
i=0

g(ui)g(uj)

where g(x) = 27.20917094x3−36.19250850x2 +8.983337562x+0.7702079855,
and

f(u) = f2(u) =
n−1∑
i=0

1−
m−1∏
j=0

2uim+j


for m = 5, n = 20, and t = 100. Function f1, which is from [1], is a sum of
functions defined on two-dimensional projections and f2, taken from [10], is a
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sum of functions that depend on projections in five dimensions. Table 3 reports
the empirical variance reduction factors observed for these two functions. For
certain point sets, the reduction factors are enormous and much better than
for Sobol’ nets.

Table 3. Variance reduction factors for functions f1 and f2.

Number f1 f2

Sobol, n = 214 1.7 820
Sobol, n = 216 0.9 220

1 5× 104 2× 104

2 24 2× 105

3 370 4× 107

4 9500 800
5 19 2× 108

6 80 1× 104

7 10 1× 109

8 1× 105 1× 109

9 630 1× 109

10 7700 8× 105

11 580 2× 105

12 4× 105 5× 108

7 Conclusion

In this paper, we have introduced new point sets for quasi-Monte Carlo inte-
gration that are very flexible because of their infinite dimensionality. We have
provided parameters for point sets that are uniform for many preselected pro-
jections and tested them with simple functions to integrate. Tables 2 and 3
show that the point sets selected are efficient in integrating the selected func-
tions. A nice surprise revealed by these tables is the relatively good perfor-
mance of the point sets (numbers 8 to 12) selected via the minimal distance
criteria. It indicates that this uniformity criterion is worth considering for
quasi-Monte Carlo applications.
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