
Quasi-Monte Carlo Simulation of
Discrete-Time Markov Chains on
Multidimensional State Spaces

Rami El Haddad1, Christian Lécot2, and Pierre L’Ecuyer3
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Summary. We propose and analyze a quasi-Monte Carlo (QMC) method for sim-
ulating a discrete-time Markov chain on a discrete state space of dimension s ≥ 1.
Several paths of the chain are simulated in parallel and reordered at each step. We
provide a convergence result when the number N of simulated paths increases toward
infinity. Finally, we present the results of some numerical experiments showing that
our QMC algorithm converges faster as a function of N , at least in some situations,
than the corresponding Monte Carlo (MC) method.
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1 Introduction

Markov chains are used in many fields such as physics, queueing theory,
telecommunications, option pricing, etc. Very often the state space of the
chain is so large that using the matrix equations to compute the state proba-
bilities (or the expected cost) at each step is simply impractical, both in terms
of computing time and required memory size. Then, the only viable method is
MC simulation. Despite the versatility of MC methods, one drawback is their
slow convergence: Based on the central limit theorem, their convergence rate
is roughly of O(N−1/2) if N denotes the number of copies of the chain that
are simulated.

One possible approach to accelerate the computation is to replace the
random numbers by low discrepancy sequences, i.e., quasi-random numbers.



2 El Haddad, Lécot & L’Ecuyer

This is the general idea of QMC methods, which outperform MC methods
in some cases, but also have limitations. Frequently, we want to estimate the
expectation of a cost function that depends on the sample path of a Markov
chain over several steps. This can be reformulated as an integration problem
over the s′-dimensional unit hypercube, where s′ represents the total number
of U(0, 1) (uniform over (0,1)) random variates needed to run the simulation.
In this case, the classical QMC method would use an s′-dimensional low-
discrepancy point set of cardinality N , use each point to simulate one copy of
the chain, and estimate the expected cost by the average over these N copies.
But this s′ is usually very large, so we end up with an integration problem in
a very large number of dimensions, in which case QMC is typically not very
effective.

A QMC algorithm for the simulation of Markov chains with a one-
dimensional state space was studied in [LT04]. Randomized variants of this
method were proposed and examined in [LLT06]. In the present paper, we
generalize the method of [LT04] by proposing a QMC algorithm for Markov
chains with multidimensional state spaces. This algorithm employs a low-
discrepancy sequence with the property that each subsequence of length N
starting at an index which is a multiple of N in the sequence has a low discrep-
ancy in a sense to be specified. At each step, it uses one such subsequence to
advance the N chains by one step, after matching the chains with the points
in a clever way. This matching is done by sorting both the chains and the
points according to their successive coordinates.

The remainder of the paper is organized as follows. In Section 2, we present
the algorithm, which simulates the N sample paths of the chain in parallel
using a low-discrepancy sequence. In Section 3 we adapt the basic concepts of
QMC methods to the present study and we recall some definitions and proper-
ties related to the variation of multi-dimensional sequences. In Section 4, under
a certain assumption on the transition matrix, we prove a convergence bound
on the worst-case error for our method. This assumption could certainly be re-
laxed, at the expense of more complicated notation in the convergence proof.
Finally, in Section 5, we present the results of numerical experiments that
compare our method with standard MC. The convergence rate observed em-
pirically for our method is much better than for MC and also much better
than what is guaranteed by the worst-case bound.

2 The method

We consider a time-homogeneous discrete-time Markov chain {Xn, n ∈ N}
with state space E of the form E :=

∏s
r=1 Er, where Er ⊆ Z. The initial state

X0 has distribution λ0, so P[X0 = i] = λ0{i} for each i = (i1, . . . , is) ∈ E,
and the transition matrix is P = (p(i, j) : i, j ∈ E), where p(i, j) = P[Xn = j |
Xn−1 = i]. The probability that the chain is in state i after n steps is

λn{i} = P[Xn = i] = λ0Pn{i}
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for all i ∈ E. Our aim is to estimate either (a) the function (or vector of
probabilities) λn, or (b) the expected cost E[w(Xn)] at step n, for some func-
tion w : E → [0,∞). For the remainder of this section, w denotes a bounded
function w : E → [0,∞); it is also called a sequence with multivariate indices
(the indices are the elements of E).

Let δi be the row vector of unit mass at i = (i1, . . . , is) defined, for all
j = (j1, . . . , js) ∈ E, by

δi{j} =
{

1 if i1 = j1, . . . , is = js,
0 otherwise.

We denote by δiw the real number w(i). In case (a) above, we are looking for
an approximation of λn, of the form

λ̂n :=
1
N

∑
0≤`<N

δin`

for some integer N and for judiciously selected states in0 , . . . , inN−1 ∈ E.
A simple approximation can be obtained by the MC method. For that, we

assume that from each state i ∈ E, the interval I = [0, 1) has been partitioned
in subintervals Ii,j := [mi,j,m

′
i,j) where m′

i,j = mi,j + p(i, j), for all j ∈ Ei :=
{j ∈ E : p(i, j) > 0}, so that ∪j∈Ei Ii,j = [0, 1). Now, for all y ∈ I, there is a
unique j ∈ Ei such that y ∈ Ii,j. We denote this element by j(i, y). The MC
method simulates the chain as follows. At step n, if we are in state Xn−1 = i,
we generate a U(0, 1) random variate Un and the next state is Xn = j(i, Un).
This is repeated N times independently to obtain N i.i.d. copies of Xn.

Before defining our QMC approximation, we recall the notion of (t, s+1)-
sequence and (t, m, s)-net. Let Is := [0, 1)s denotes the s-dimensional half
open unit cube. For an integer b ≥ 2, an elementary interval in base b is a
subinterval of Is of the form

s∏
r=1

[
ar

bdr
,
ar + 1

bdr

)
,

for some integers dr ≥ 0 and 0 ≤ ar < bdr for all 1 ≤ r ≤ s. If 0 ≤ t ≤ m
are integers, a (t,m, s)-net in base b is a set Y of bm points in Is such that
every elementary interval Q in base b with Lebesgue-measure (or volume)
bt−m contains exactly bt points of Y . An infinite sequence of points y0,y1, . . .
in Is is a (t, s)-sequence in base b if for all integers n ≥ 1 and m > t, the set
Yn = {yp : (n− 1)bm ≤ p < nbm} is a (t, m, s)-net in base b.

Choose a base b ≥ 2 and non-negative integers d1, . . . , ds. Put m := d1 +
· · · + ds and N := bm. For the QMC approximation, we assume that Y =
{y0,y1, . . .} ⊂ Is+1 is a (t, s + 1)-sequence in base b for some integer t ≥ 0,
and such that if Π : Is+1 → Is denotes the projection defined by

(x1, . . . ,xs+1)
Π7−→ (x1, . . . ,xs) =: x′,



4 El Haddad, Lécot & L’Ecuyer

then the point set Π(Yn) is a (0,m, s)-net in base b for each n. This implies
that b ≥ s− 1. The method is comprised of three steps:

1. Discretize the initial distribution.
2. Relabel the states before each transition.
3. Perform QMC integration for one transition of the chains.

We now explain them.

Discretizing the initial distribution. Initially, a set Ξ0 of N states i00, . . . , i
0
N−1

is chosen such that
λ̂0 :=

1
N

∑
0≤`<N

δi0` ≈ λ0.

The approximation sign here means that the point set Ξ0 has a small star
λ0-discrepancy (this will be defined more precisely in Section 3).

At step n + 1, given that we have a set Ξn of N states in0 , . . . , inN−1 such
that

λ̂n :=
1
N

∑
0≤`<N

δin` ≈ λn,

we start computing λ̂n+1 by sorting the set Ξn as we now explain.

Relabeling the states. The states are labeled ink = (ink,1, . . . , i
n
k,s), using a multi-

dimensional index k = (k1, . . . , ks), with 0 ≤ kr < bdr for 1 ≤ r ≤ s, such
that:

if k1 < l1, then ink,1 ≤ inl,1,
if k1 = l1, k2 < l2, then ink,2 ≤ inl,2,

...
if k1 = l1, . . . , ks−1 = ls−1, ks < ls, then ink,s ≤ inl,s.

These conditions can be interpreted as follows. The N states are first sorted
in bd1 batches of size Nb−d1 according to their first coordinates; then each
batch is sorted in subgroups of bd2 batches of size Nb−d1−d2 by order of the
second coordinates, and so on. At the last step of the sort, subgroups of size
bds are ordered according to the last coordinate of the state.

A graphical illustration is given in Figure 1, with b = 2, s = 2, and
d1 = d2 = 2. Here we have N = bd1+d2 = 16 points in s = 2 dimensions. We
first sort these points in four groups of four points, according to their first
coordinate (which corresponds to the horizontal axis in the figure), and then
sort each group according to the second coordinate.

Advancing the chains by one step via QMC integration. Let λ̃n+1 = λ̂nP. We
have

λ̃n+1w =
1
N

∑
k∈K

(Pw)(ink) =
1
N

∑
k∈K

∑
j∈E

p(ink , j)w(j) (1)
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Fig. 1. Relabeling the states (b = 2, s = 2, d1 = d2 = 2)

where K = {0, . . . , bd1 − 1} × · · · × {0, . . . , bds − 1}. This expression could be
seen as the expected average cost at the next step, given the current set of
states Ξn. For k = (k1, . . . , ks) ∈ K, denote by χk the indicator function of
the s-dimensional elementary interval

Ik =
s∏

r=1

[
kr

bdr
,
kr + 1

bdr

)
.

At any given step, if a chain in state i is matched with a point y = (y′, ys+1),
then this chain will move to state j(i, ys+1), where the latter is defined as in
the MC method.

For any given point y = (y′, ys+1) ∈ Is+1, let

Gnw(y) :=
∑
k∈K

χk(y′)w(j(ink, ys+1)), (2)

which represents the cost at the next transition if we use y to move by one
step the chain associated with the point of index k. Integrating with respect
to y, we get

λ̃n+1w =
∫

Is+1
Gnw(y)dy, (3)

whereas averaging over the point set used at step n + 1, we obtain the QMC
estimator λ̂n+1 of λn+1 defined by

λ̂n+1w =
1
N

∑
nN≤p<(n+1)N

Gnw(yp).

For any y′ = (y1, . . . , ys) ∈ Is, we define the multidimensional index
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k(y′) := (bbd1y1c, . . . , bbdsysc) ∈ K,

where bxc denotes the largest integer ≤ x. Because Π(Yn) is a (0,m, s)-net in
base b, the function

p ∈ {nN, nN + 1, . . . , (n + 1)N − 1} 7−→ k(y′p) ∈ K
is one-to-one. Combining this with (2), we have

1
N

∑
nN≤p<(n+1)N

Gnw(yp) =
1
N

∑
nN≤p<(n+1)N

w(j(ink(y′p), yp,s+1)). (4)

Then, at step n + 1, the point set Ξn+1 = {in+1
0 , . . . , in+1

N−1} ⊂ E is computed
according to

in+1
p−nN = j(ink(y′p), yp,s+1), nN ≤ p < (n + 1)N.

This means that the projection y′p of each point yp of the low discrepancy
sequence on the first s axes is used to select the state that is matched to this
point at that step (i.e., which chain advances by one step), while the remaining
component yp,s+1 is used to determine the evolution (the next state).

3 Discrepancies and variations of sequences

The efficiency of a QMC method depends on the uniformity of the quasi-
random points that are used. These points should form a low discrepancy
point set. In this section, after recalling classical notions of discrepancy from
[Nie92], we define and examine discrepancy measures adapted to the context
of our method.
The star discrepancy. For an s-dimensional point set Y = {y0, . . . ,yN−1} ⊂
Is and for a Lebesgue-measurable subset Q of Is we define the local discrep-
ancy by

D(Q,Y ) :=
1
N

∑
0≤p<N

χQ(yp)−
∫

Is

χQ(x)dx,

where χQ is the indicator function of Q. The discrepancy of the point set Y
is defined by

D(Y ) := sup
Q
|D(Q,Y )|,

the supremum being taken over all subintervals of Is. The star discrepancy of
Y is

D∗(Y ) := sup
Q∗

|D(Q∗, Y )|,

where Q∗ runs through all subintervals of Is with one vertex at the origin.
The following result is shown in [Nie87].

Lemma 1. Let Y be a (t, m, s)-net in base b. For any elementary interval
Q′ ⊂ Is−1 in base b and for any ξ ∈ Ī := [0, 1], we have

|D(Q′ × [0, ξ), Y )| ≤ bt−m.
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The star λ-discrepancy. Let λ be a distribution on E and consider a set of
states Ξ = {i0, . . . , iN−1} ⊂ E. For an arbitrary F ⊂ E, we define the local
λ-discrepancy of Ξ for F by

D(F ;Ξ, λ) :=
1
N

∑
0≤`<N

χF (i`)−
∑
i∈F

λ{i},

where χF denotes the function

χF (i) =
{

1 if i ∈ F,
0 otherwise.

The star λ-discrepancy of the point set Ξ is defined by

D∗(Ξ, λ) := sup
h∈E

|D(Fh;Ξ, λ)|,

where Fh =
∏s

r=1((−∞, hr) ∩ Er). If w is a nonnegative and bounded se-
quence, we set

D(w;Ξ, λ) :=
1
N

∑
0≤`<N

w(i`)−
∑
i∈E

λ{i}w(i),

so that if F ⊂ E, we have D(F ;Ξ, λ) = D(χF ;Ξ, λ). Similarly, if Y ′ =
{y′0, . . . ,y′N−1} ⊂ Is and f is a nonnegative and bounded function defined on
Is, we put

D(f, Y ′) =
1
N

∑
0≤`<N

f(y′`)−
∫

Is

f(x′)dx′.

If Q ⊂ Is, then D(χQ, Y ′) = D(Q,Y ′).

Variations of sequences. For w : E → R and j, j′ ∈ E, let T r
j w and ∆r

j,j′w be
the functions (or multivariate sequences) defined by

T r
j w(i) := w(i1, . . . , ir−1, jr, ir+1, . . . , is) and ∆r

j,j′w := T r
j′w − T r

j w.

If R = {r1, . . . , rq} ⊂ S = {1, . . . , s}, we denote

TR
j w := T r1

j . . . T
rq

j w and ∆R
j,j′w := ∆r1

j,j′ . . .∆
rq

j,j′w.

When R = S, we put Tjw := TS
j w and ∆j,j′w := ∆S

j,j′w. For j ∈ E, let j+ be
the vector (j1 + 1, . . . , js + 1) and ∆jw the sequence ∆j,j+w. Let E′ = {i ∈
E : i+ ∈ E}. The variation in the sense of Vitali of w : E → R is defined by

V s(w) =
∑
j∈E′

|∆jw|,

and the variation of w in the sense of Hardy and Krause is the sum



8 El Haddad, Lécot & L’Ecuyer

V (w) =
s∑

r=1

∑
R⊂S
#R=r

V r(TRc

0 w)

where 0 = (0, . . . , 0).
Let M = (M1, . . . ,Ms) be the vector with coordinates Mr = supEr = sup{i :
i ∈ Er}. If w can be extended to M, we define the upper variation of w as

V ∗(w) =
s∑

r=1

∑
R⊂S
#R=r

V r(TRc

M w).

One can prove that if w is of bounded variation in the sense of Hardy and
Krause, then w may be extended to M and has a bounded upper variation.
The next Lemma is a version of the classical Koksma-Hlawka inequality. The
proof follows the general outline of the proof given by Zaremba [Zar68].

Lemma 2. Let λ be a distribution on E. If w is a sequence of bounded vari-
ation in the sense of Hardy and Krause and if Ξ = {i0, . . . , iN−1} ⊂ E, then

|D(w;Ξ, λ)| ≤ V ∗(w)D∗(Ξ, λ).

The following Lemma is an analogue of a result previously given in the
continuous case in [Lec96] and can be proved with similar arguments.

Lemma 3. Let w : E → R be a sequence of bounded variation in the sense of
Hardy and Krause and p1, . . . , ps be integers. We consider a nested partition
of E of the form

· g0,1 ≤ g1,1 ≤ . . . ≤ gp1,1 ∈ E1

· gk1,0,2 ≤ gk1,1,2 ≤ . . . ≤ gk1,p2,2 ∈ E2 for 0 ≤ k1 < p1.
· . . .
· gk′,0,s ≤ gk′,1,s ≤ . . . ≤ gk′,ps,s ∈ Es for k′ = (k1, . . . , ks−1) with 0 ≤ k1 <

p1,. . . , 0 ≤ ks−1 < ps−1.

For each k = (k1, . . . , ks) ∈ P :=
∏s

r=1{0, . . . , pr−1}, let

ik, jk ∈ {gk1,1, . . . , gk1+1,1} × {gk1,k2,2, . . . , gk1,k2+1,2} × · · ·
· · · × {gk′,ks,s, . . . , gk′,ks+1,s}.

Then we have the following inequality

∑
k∈P

|w(jk)− w(ik)| ≤ V ∗(w)
s∏

r=1

pr

s∑
r=1

1
pr

.

Equipped with these tools, we now return to the convergence of the QMC
algorithm.
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4 Convergence analysis

We provide a convergence result under the following simplifying assumption:
We suppose that the transition probabilities satisfy

p(i, j) = 0 if there exists 1 ≤ q 6= r ≤ s such that iq 6= jq and ir 6= jr. (5)

In other words, we assume that only one coordinate of the state can be changed
at any one step. (The result could certainly be generalized, but this would
require more complicated notations.) Under this condition, we can take

mi,j = p(i, i) +
∑

g∈Ei∗

g1 6=i1

p(i,g) + · · ·+
∑

g∈Ei∗

gr−1 6=ir−1

p(i,g) +
∑

g∈Ei∗,gr<jr
g`=i`,` 6=r

p(i,g)

in the definition of the intervals Ii,j. We set:

q(i) := p(i, i) , pr(i) :=
∑

g∈Ei∗

gr 6=ir

p(i,g),

phr,r(i) :=
∑

g∈Ei∗,gr<hr
g`=i`,` 6=r

p(i,g), ∀hr ∈ Er.

We assume that these sequences are of bounded variation in the sense of
Hardy and Krause and that there exists positive constants c0, c1,r and c2,r,
for 1 ≤ r ≤ s, such that

V ∗(q) ≤ c0, V ∗(pr) ≤ c1,r, and V ∗(phr,r) ≤ c2,r.

We have the following worst-case error bound.

Proposition 1. If the transition matrix of the chain satisfies V ∗(PχFh
) ≤ 1

for all h ∈ E and under the previous assumptions, there exists a constant
C(s) ≥ 0 depending only on s, such that

D∗(Ξn, λn) ≤ D∗(Ξ0, λ0) +
(4s + 1)n
bb(ds−t)/2c

+ C(s) n

(
1

bd1
+ · · ·+ 1

bds−1
+

1
bb(ds−t)/2c

)
.

Proof. The proof of this proposition is quite technical; We only give a sketch
of the proof in what follows. For any nonnegative and bounded sequence w,
write

D(w;Ξn+1, λn+1) = D(Pw;Ξn, λn) + D(Gnw, Yn).

If we take w = χFh
, h ∈ E, we get
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D(Fh;Ξn+1, λn+1) = D(PχFh
;Ξn, λn) + D(GnχFh

, Yn).

By Lemma 2 and using the inequality V ∗(PχFh
) ≤ 1, we have

|D(PχFh
;Ξn, λn)| ≤ V ∗(PχFh

)D∗(Ξn, λn) ≤ D∗(Ξn, λn).

On the other hand, GnχFh
is the indicator function of

Qn
h :=

⋃
k∈K

(
Ik ×

⋃
j∈Eink

j<h

Iink ,j

)
,

where j < h means that j1 < h1, . . . , js < hs. Thus, D(GnχFh
, Yn) =

D(Qn
h, Yn). By decomposing Qn

h into s + 1 disjoint subsets and studying the
local discrepancy for each one of them apart using Lemmas 1 and 3, we get
the following bound

|D(Qn
h, Yn)| ≤ 4s + 1

bb(ds−t)/2c + C(s)
(

1
bd1

+ · · ·+ 1
bds−1

+
1

bb(ds−t)/2c

)
,

where C(s) is a positive constant. The desired inequality is then obtained by
induction on n.
By taking

d1 = · · · = ds−1 =
⌊

m− t

s + 1

⌋
and ds = m− (s− 1)

⌊
m− t

s + 1

⌋
,

the proposition shows that the error converges as O(N−1/(s+1)) in the worst
case.

5 Numerical examples

In this Section, we assess the accuracy of the QMC algorithm empirically,
through two (academic) examples where exact solutions are known. We show
the kind of improvement that our method can bring with respect to MC. For
our experiment, we use Niederreiter’s sequences in base 2. For MC, the pseudo-
random numbers are produced by the generator MRG32k3a of [L’Ec99]. Con-
vergence speed is assessed by looking at the absolute difference between the
empirical and theoretical means, for several values of N .

5.1 A bivariate Markovian asset valuation model

We consider a bivariate extension of Cox-Ross-Rubinstein’s binomial single
asset pricing model, as proposed in [HKY03]. At time n, the values of the two
risky assets are denoted by S1

n and S2
n, and Sn = (S1

n, S2
n)t is the price vector.

The sequence (Sn)n≥0 is defined in term of two independent and identically
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distributed sequences (U1
n)n≥0 and (U2

n)n≥0: For all n ∈ N, U1
n can take the two

values a and b, where −1 < a < b, with probabilities p and 1−p, respectively,
while U2

n can take the two values c and d, where −1 < c < d, with probabilities
q and 1−q, respectively. We suppose that 0 < p, q < 1. The model is a Markov
chain whose state evolves as(

S1
n

S2
n

)
=

(
1 + U1

n

δ(U1
n − r)

ε(U2
n − r)

1 + U2
n

) (
S1

n−1

S2
n−1

)
, (6)

where ε and δ are small numbers expressing the perturbation caused by S2
n on

S1
n and by S1

n on S2
n. We suppose εδ 6= 1 and (ε, δ) 6= (0, 0). At each step, there

are four possibilities for the vector (U1
n, U2

n). In order to follow the geometry
of the transition, we partition the unit square [0, 1)2 in four rectangles

[0, p)× [0, q), [0, p)× [q, 1), [p, 1)× [0, q), [p, 1)× [q, 1);

each one is assigned to one of the four possible outcomes.
We want to estimate E(S1

n) and E(S2
n) for some fixed n. These (exact)

values are

E(S1
n) = (1 + r)n E(S1

0) and E(S2
n) = (1 + r)n E(S2

0) (7)

but for the purpose of our experiment, we pretend that they are unknown and
have to be estimated. Note that here Y ⊂ Is+2 and that this bidimensional
Markov chain does not satisfy condition (5).

We take the following parameters: n = 20, a = 0.074, b = 0.141, c = 0.086,
d = 0.182, r = 0.1, ε = 0.30, and δ = 0.20. The initial values are S1

0 = 120 and
S2

0 = 130. The number of states N varies from 24 to 220, and want to estimate
the error as a function of N , say ErrMC(N) for MC and say ErrQMC(N) for
our QMC method. Figure 2 shows the empirical values of these errors, in log-
log scale, for both S1

n and S2
n. A linear regression analysis with this data gives

the following empirical convergence rates:

For S1
n, ErrMC = O(N−0.41) and ErrQMC = O(N−0.91).

For S2
n, ErrMC = O(N−0.34) and ErrQMC = O(N−0.89).

Clearly, the QMC method enjoys a much faster convergence than MC.

5.2 Pricing a European call on the maximum of two risky assets

For our second example, we consider the pricing of an European call option
on the maximum of two risky assets, in a setting where the (continuous-
time) evolution of the asset price vector is approximated by a (discrete-time)
binomial lattice model. Again, the example is artificial and simplified, since
the option price can be computed exactly in this case, but we want to use it
as a benchmark to evaluate the viability of our method.



12 El Haddad, Lécot & L’Ecuyer

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

 4  6  8  10  12  14  16  18  20

log_2 (N)

MC
QMC

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

 4  6  8  10  12  14  16  18  20

log_2 (N)

MC
QMC

Fig. 2. Bivariate Markovian asset valuation model. Linear fits to the error as a
function of N on log-log scale (in base 2), for S1 (left) and S2 (right), with MC (thin
line) and QMC (thick line).

The original (continuous-time) model is a bivariate geometric Brownian
motion (GMB) {S(t) = (S1(t), S2(t))t, t ≥ 0} with drift parameter µi, volatil-
ity parameter σi, and correlation parameter ρ. Thus, for i = 1, 2,

Si(t) = Si(0) exp
[
(µi − σ2

i /2)t + σiWi(t)
]

where Wi is a standard Brownian motion, and Cov[W1(t+δ)−W1(t), W2(t+
δ)−W2(t)] = ρδ for all δ > 0. The option has discounted payoff

e−rT max[max(S1(T ), S2(T ))−K, 0]

for some constants K > 0 (the strike price) and T > 0 (the maturity), where
r is the riskless rate. The expected value C of this payoff, which is the exact
value of the option, can be computed by the formulas given by Stulz [Stu82]
and Johnson [Joh87].

Instead of simulating the BGM directly (which can be done by simulating
the Brownian motion (W1,W2) at the desired observation times), here we
simulate a numerical approximation based on the multivariate binomial lattice
method developed in [BEG89]. This method is an extension of the Cox-Ross-
Rubinstein approach [CRR79]. It proceeds as follows.

A discrete-time model with discrete probability distribution is constructed
to approximate the bivariate lognormal distribution. In this model, at each
time step, each asset price can only move up or down (only two possibilities),
so there is four possible transitions for the process. Let h = T/P be the
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length of the time step, where P is the number of steps. The value of Si(t)
is multiplied by exp(σi

√
h) in an move up and divided by this same value in

a down move. The formulas for the transition probabilities of up and down
moves (and other details) can be found in [BEG89]. They are selected in a
way that the characteristic function of the discrete distribution at any fixed
time point converges to that of the lognormal at that point, when h → 0. This
model does not satisfy condition (5).

We use the following parameter values (time is measured in years): S1(0) =
S2(0) = 40, σ1 = 0.2, σ2 = 0.3, ρ = 0.5, r = 0.05, T = 7/12, K = 35. Let
CN,P be the QMC approximation of C with N paths and P time steps. We
measure the error with the following discrete L1 norm:

ErrN,P =
1
20

20∑
m=1

|C − CN,Pm/20|.

Figure 3 shows the value of ErrN,P for P varying from 22× 20 to 26× 20, and
N varying from 25 to 220, for both the MC method (left panel), and QMC
(right panel), in a log-log scale. Note that there are two sources of error here:
(1) the discretization error and (2) the additional error due to using MC or
QMC instead of solving the binomial lattice model exactly. The discretization
error vanishes when P → ∞, whereas the other source of error converges to
zero when N →∞.

For MC, the error does not seem to depend much on P , which means that
the discretization error is small compared with the MC (statistical) error.
For QMC, this is also true for the small values of N , but not for the large
ones. For MC, we have a slope of about −1/2, so the error converges as
O(N−1/2) as a function of N , as expected. For QMC, when P is large, the
slope is steeper than −1/2, which indicates a faster convergence rate than for
MC. For small values of P , the error eventually reaches a plateau and stops
decreasing when we keep increasing N ; this indicates that the QMC error
eventually becomes negligible compared with the discretization error. This
shows that a good strategy in this type of situation is to increase both P and
N simultaneously. QMC clearly dominates MC in that case. For instance, for
P = 1200 and N = 220, ErrN,P is about 2−7 for MC and 2−11 for QMC. As
another example, for P = 320, the same error level is attained by QMC with
N = 8192 and by MC with N = 524 288.

6 Conclusion

We have proposed and analyzed a QMC method for the simulation of discrete-
time Markov chains on a multi-dimensional state space. The method simulates
several copies of the chain in parallel and reduces the error by a technique
that sorts the chain in a special way, based on the several coordinates of their
states, at each step. We have proved a convergence result for the worst-case
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Fig. 3. Pricing an European call on the maximum of two risky assets by a binomial
lattice model. The error ErrN,P as a function of N in log-log scale (in base 2) for
different numbers of time steps P , for MC (left) and QMC (right).

error as the number of simulated paths increases, under a special condition.
In our empirical experiments, the performance of the proposed method was
clearly superior to MC. Directions for future research include the theoretical
analysis of the method in more general settings, experiments with larger and
more complicated models, and the analysis of a randomized version of the
method to produce unbiased low-variance estimators.
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