
1 Appendix

1.1 Solution to small example

Shift Agent 1 Agent 2
length shift start break 1 delay lunch start break 3 delay
7:30 8:00 1:30 12:30 1:45 2 0
7:30 8:00 1:45 13:00 1:30 2 0
7:30 8:00 1:45 12:00 2:00 1 0
7:30 9:30 1:30 12:00 2:00 2 0
7:30 9:30 2:00 12:00 2:00 0 2
7:45 9:15 1:30 12:00 2:00 1 0
7:45 9:15 1:30 12:30 1:45 0 1
8:00 9:00 1:30 12:30 1:45 1 0
8:00 9:00 1:30 13:00 1:30 1 0
8:00 9:00 1:45 13:00 1:30 1 0
8:15 8:45 1:30 13:00 1:30 2 0
8:30 8:30 1:30 12:30 1:45 0 1
8:30 8:30 1:30 12:30 2:00 1 0
9:00 8:00 3:00 14:00 1:45 0 1
9:00 8:00 3:15 13:30 1:15 0 1
9:00 8:00 3:15 14:00 1:15 0 1
9:00 8:00 3:15 14:00 1:30 2 0
9:00 8:00 3:30 13:30 1:30 2 0
9:00 8:00 3:45 13:30 1:15 2 1
6:30 10:00 1:45 14:00 0:45 2 0
6:30 10:00 2:00 14:00 0:45 1 0

All others 0 0

Table 1: Solution to small example

1

1.2 Skill sets for the large example

Agent type Skill set Agent type Skill set
1 1,2,5,11,16 19 4
2 3,5,9,13,15,17,19 20 5
3 1,6,18,20 21 6
4 3,4,9,12,18 22 7
5 1,5,7,8,9,10,11,13,16 23 8
6 3,8,9,10,15,17,20 24 9
7 1,6,13,15 25 10
8 3,6,11,14,19,20 26 11
9 1,7,10,12,14 27 12

10 3,6,8,9,11,13,16 28 13
11 2,5,12,17 29 14
12 4,7,8,11,16,19,20 30 15
13 2,7,10,14,18,20 31 16
14 4,8,10,12,15,18,20 32 17
15 2,8,12,13,14,19 33 18
16 1 34 19
17 2 35 20
18 3

Table 2: Skill sets for the large example.

1.3 CP-LP algorithm: Pseudocode
We will refer to the following linear integer problem:

min ctx
s.t.

Ax+Bz≥ y
[skill-supply constraints]
Guy≥ gu
x≥ 0, z≥ 0, y≥ 0 and integer

(1)

where: Guy ≥ gu denotes the set of cuts generated up to iteration u. The skill-supply constraints
(discussed in the last paragraph of Section 3 of the paper) are not shown explicitly.
Algorithm 1 shows the complete algorithm, making reference to functions BinarySearch and Lo-
calSearch. LocalSearch uses functions Phase1, Phase2, and Phase3 . In function BinarySearch,
for any vector x of real numbers and 0≤ δ ≤ 1, x(δ) denotes the vector whose i-th component is

xi(δ) :=
{
dxie, xi−bxic> δ

bxic, otherwise (2)

where xi denotes the i-th component of x. In function Phase1, ArrivalRate(p,k) is the Poisson arrival
rate of type-k calls during period p; and Occupancy(y,a, p) is the simulated time-average number

2

of type-a busy agents divided by the number of type-a agents for period p under staffing y. In
function Phase3, Rand(S) denotes an element of the finite set S sampled randomly from the uniform
distribution.

Algorithm 1: CP-LP
input : Call center and optimization parameters, simulator
output: Scheduling solution x
begin1

u← 0.2

Initialize problem (1) with Gu← /0 and gu← /0.3

finished← false.4

while finished = false do5

Solve the relaxed linear problem (1) and retrieve solutions xu, zu and yu.6

if vector yu is converging then // to avoid loop7

finished = true.8

Round xu and yu using a fixed threshold δ and round down zu (see section 1.3.1 for9

motivation).
Correct solution (xu,zu) such that ȳu = Axu +Bzu has no negative values.10

Compute the service levels ĝn(yu), ĝn,k(yu), ĝn,p(yu), and ĝn,k,p(yu), for all k and p.11

Compute also for ȳu. It is possible that yu 6= ȳu or yu has no feasible corresponding
solution (xu,zu).
if the service levels with yu OR ȳu satisfy all their targets l, lk, lp and lk,p then12

finished← true.13

if finished = false then14

if global service level : ĝn(yu) < l then15

Add associated cut to Gu and gu.16

else if for some k : ĝn,k(yu) < lk then17

Add associated cuts to Gu and gu.18

else if for some p : ĝn,p(yu) < lp then19

Add associated cuts to Gu and gu.20

else21

Add associated cuts to Gu and gu (for some (k, p) : ĝn,k,p(yu) < lk,p).22

Let Gu+1←Gu, gu+1←gu and u←u+123

(x,z)← BinarySearch(xu,zu).24

x← LocalSearch(x,z).25

end26

1.3.1 Applying skill transfers

Because the algorithm rounds x and z independently, we may need to apply some correction (also
in the local search where z remains fixed from the last Solve call). The application of skill transfers
is limited to the condition that y = Ax+Bz has no negative values.
The definitions of the supersets and subsets avoid the problem of looping (where an agent can be
downgraded and re-upgraded) when applying the skill transfers. We present a simple algorithm to

3

retrieve the staffed agents vector y from the scheduling and skill transfer solutions (x,z).

Algorithm 2: GetStaffedAgents
input : x,z and S − (contains the strict maximum subsets of each agent group)
output: y (the actual number of staffed agents per group and per period)
begin1

y← Ax.2

for each period p do3

continue← true.4

while continue = true do5

continue← false.6

for each agent group g do7

for each s ∈S −
g do8

if yg,p > 0 and zg,s,p > 0 then9

size← min(yg,p,zg,s,p).10

yg,p← yg,p− size.11

ys,p← ys,p + size.12

zg,s,p← zg,s,p− size.13

continue← true.14

end15

Because zg,s,p = zs,g,p, we only modelize the skill transfer variables zi, j,p such that j ∈S −
i in our

algorithm. A conservative estimation of the complexity is O(IU), where I is the number of agent
groups and U = ∑

P
p=1 ∑

I
i=1 yi,p is the sum of agents of each period.

We may better balance the rounding errors by implementing a randomized round-robin selection of
”for each s ∈S −

g do” and a constant size = 1 (this would require an additional loop).

Note: Using such simple straightforward skill transfer correction might not be practical in certain
cases. For example, suppose the staffing of a M-design call center composed of 2 call types, the
specialist agent group 1 and 2, and a generalist agent group 3. Suppose the continuous solution is
y1 = y2 = 0,y3 = 0.8 and z3,1 = z3,2 = 0.4. Assuming a rounding threshold δ < 0.4, we obtain the
rounded values : ȳ3 = 1 and z̄3,1 = z̄3,2 = 1. Applying plainly the skill transfers z̄, we obtain the
solution ŷ1 = ŷ2 = 1 and ŷ3 =−1, which is not feasible. If we correct using Algorithm 2, we would
obtain ŷ1 = 1 and ŷ2 = ŷ3 = 0. But this solution has no agent to serve calls of type 2! For this reason,
we are more conservative when applying skill transfers by rounding down z.
Better algorithms can be designed to further balance the skill transfers.

1.3.2 Generating the subgradient cut

At each call to Solve in algorithm 1, we retrieve the continuous solutions x̄, z̄ and ȳ. In our exper-
iments, we found it was more efficient to generate cuts based on ȳ instead of the staffed solution
ỹ = Ax̄+Bz̄≥ ȳ.
Let ŷ = Round(ȳ) and q(ŷ) be a subgradient at point ŷ (calculated using forward finite difference
method). The linear cut to add is :

q(ŷ)ty≥ q(ŷ)tȳ+ l−g(ŷ).

4

We can see this approach as solving the relaxed version of the problem where we borrow the service
levels and subgradients from the integer neighbors. This approach has the advantage of having lower
chance to end in a loop as opposed to q(ŷ)ty ≥ q(ŷ)tŷ + l− g(ŷ), but requires possibly more cuts
(iterations).

1.3.3 Avoiding infinite loop

On rare occasions, it is possible that the algorithm enters a loop situation. When solving and round-
ing the solutions of the relaxed problem, it is possible to enter a loop (unless maybe if we always
round up) because the subgradient cut may not actually cut the current solution. The next iteration
may return the same solution and a loop is started.
Another possibility to loop is when the service level is within ε to the target and the solution con-
verges very slowly (or sometimes indefinitely because of rounding errors of the machine).
We propose two easy solutions :

1. Detect converging solution. After each Solve call in Algorithm 1, check if every element yu+1
i,p

has changed less than ε from yu
i,p. A shortcut is to perform the check only if |cost(xu+1)−

cost(xu)|< ε . If convergence is detected, stop the algorithm and continue with binary search
and local search.

2. Set a minimal improvement when generating a subgradient cut : q(ŷ)ty≥ q(ŷ)tȳ+∆, where
∆ = max{l−g(ŷ),ε} and ε is a small number, e.g.: 0.005.

1.3.4 Binary search

After completing the subgradient cut phase, we correct the rounding threshold parameter δ with
binary search.

Algorithm 3: BinarySearch
input : x,z
output: x,z
begin1

δL← 0, δU← 1, δBest← δL.2

while δU−δL > 0.01 do3

δ ← (δU +δL)/2.4

Round (x,z,δ).5

y← GetStaffedAgents (x,z). (see Algorithm 2)6

Simulate solution y.7

if y is feasible then8

δBest← δ .9

δL← δ + 0.01.10

else11

δU← δ - 0.01.12

Round (x,z,δBest).13

end14

The procedure Round does floor rounding on z (it does not depend on parameter δ).

5

1.3.5 Local search

A local search procedure is executed at the end of CP-LP. The same local search is used for CP-IP
without the rounding steps. A time-limit is used which terminates the algorithm at any step once
this limit is reached.

Algorithm 4: LocalSearch
input : x,z
output: x
n1← n2.1

p← 0.2

begin3

do4

n1← min{n,Round((1+ p)n2)}.5

x← Phase1 (x,z,n1).6

x← Phase2 (x,z,n1).7

x← Phase3 (x,z,n1).8

p← p+0.5.9

y← GetStaffedAgents (x,z).10

Simulate y with n days.11

while n1 < n AND y is infeasible for SP0n.12

end13

In Phase1 (Algorithm 5), sets are used to treat ties simultaneously.

1.4 Quality of IP solutions in CP-IP and TS
IP instances for CP-IP and TS are solved using CPLEX 9.0. CPLEX uses branching methods to
solve the IP. For practical reasons, a time limit is set and the solver usually stops before claiming
optimality. The quality of the returned integer solution can be measure by its MIP gap, defined as :

cINT− cNODE

cINT + ε
×100,

where cINT is the cost of the returned integer solution, cNODE is the cost of the best node in the branches
and ε is a very small positive number. The MIP gap measures the potential cost improvement over
the returned integer solution.
In summary,

• For the small call center, the solutions of TS have a MIP gap smaller than 0.3% and the IP
instances of CP-IP generally have a MIP gap of less than 1.5%.

• For the medium-sized problems, the solutions of TS have a MIP gap smaller than 1.5% and
IP instances of CP-IP can sometimes have a MIP gap up to 10% because of the short CPLEX
time limit.

• For the large-sized problems, the solutions of TS have a MIP gap smaller than 0.03% for L36
and 0.001% for L52. The problems were too large to be solve by CP-IP.

6

Algorithm 5: Phase1
input : x,z,n
output: x
begin1

y← GetStaffedAgents (x,z).2

Simulate y with n days.3

while y is not feasible for SP0n do4

V ← {k|ĝn,k(y) < lk}.5

if V = /0 then6

(a, p)←argmaxa,p{Occupancy(y,a, p)}. (in case of ties : take cheapest agent)7

L← argmink{ĝn,k(y)}. (L is a set)8

else9

a← argmaxa{|Sa∩V |}.10

L← argmink{ĝn,k(y)− lk}. (L is a set of call types)11

PV ←∪k∈L argmaxp{ArrivalRate(p,k)}. (PV is a set of periods)12

Q′← argmaxs ∑p∈PV A0(p,s). (Q′ is a set of shifts)13

s← Rand (Q′).14

xa,s← xa,s +1.15

y← GetStaffedAgents (x,z).16

Simulate y with n days.17

end18

1.5 The indexing of shifts
In all the examples with 285 shifts, the order followed for sorting them is: the ones 30 periods long;
the ones 31 periods long; the ones 32 periods long; the ones 33 periods long; the 34 periods long;
the 36 periods long and finally the ones 26 periods long. For the shift definition for the ones with
the same length, the order is: the shift 1 has the first element in S, the first in D1, the first in P2 and
the first in D3; the shift 2 has the first in S, the first in D1, the first in P2 and the second in D3; the
shift 3 has the first in S, the first in D1, the first in P2 and the third in D3 and so on.

7

Algorithm 6: Phase2
input : x,z,n
output: x
begin1

for each agent group a ∈ I do2

for each shift s ∈ Q do3

if xa,s > 0 then4

xa,s← xa,s−1.5

y← GetStaffedAgents (x,z).6

Simulate y with n days.7

if y is infeasible for SP0n then8

xa,s← xa,s +1.9

end10

Algorithm 7: Phase3
input : x,z,n
output: x
begin1

i← 0.2

maxTries← 40.3

while i < maxTries do4

do5

a1← Rand ({1,2, . . . ,K}). (group to remove agent)6

s1← Rand ({1,2, . . . ,Q}).7

a2← Rand ({1,2, . . . ,K}). (group to add agent)8

s2← Rand ({1,2, . . . ,Q}).9

while ca1,s1 < ca2,s2 OR xa1,s1 = 010

xa1,s1 = xa1,s1−1.11

xa2,s2 = xa2,s2 +1.12

y← GetStaffedAgents (x,z).13

Simulate y with n days.14

if y is infeasible for SP0n then15

xa1,s1 = xa1,s1 +1.16

xa2,s2 = xa2,s2−1.17

i← i+1.18

else19

i = 0.20

end21

8

