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We consider a class of noncooperative stochastic games with general state and action spaces and with a
state dependent discount factor. The expected time duration between any two stages of the game is not
bounded away from zero, so that the usual N-stage contraction assumption, uniform over all
admissible strategies, does not hold. We propose milder sufficient regularity conditions, allowing
strategies that give rise with probability one to any number of simultaneous stages.

We give sufficient conditions for the existence of equilibrium and ¢-equilibrium stationary strategies
in the sense of Nash. In the two-player zero-sum case, when an equilibrium strategy exists, the value of
the game is the unique fixed point of a specific functional operator and can be computed by dynamic
programming.
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1. INTRODUCTION

Noncooperative stochastic games are mathematical models which can represent
the behavior of a group of competing decision makers, acting on a dynamic
system at discrete points in time, under uncertainty. Discounted stochastic games
were introduced by Shapley [13]. His original model was a zero-sum, two player
game with finite state and action spaces. More general models of discounted
stochastic games were later introduced [3, 9, 11, 12, 14-16], some with an
arbitrary number of players, nonzero-sum, state dependent discount factors, and
general state and action spaces. These models have been analyzed under contrac-
tion assumptions that are uniform over all admissible policies.

The aim of this paper is to analyze a class of stochastic games that violate such
uniform contraction assumptions. In these games, any number of successive stages
may occur simultaneously, so that the N-stage expected discount factor is not
bounded away from one. We focus on noncooperative Nash equilibria or e-
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equilibria [10], under the total expected discounted reward criterion. Consider for
example a system with state space S and finite player set I. The system evolves in
continuous time but is observed only at discrete points 0=1,<7,<1,<.... At
each observation time 7, (i.e. at each stage of the game), each player selects a
decision, and among these decisions, one of the players must decide (or select a
probability law according to which will be generated) the time 7,,, —1t, until the
next observation time. Also at each stage, returns are given to each player
depending on the state of the system and the decisions selected. All returns are
discounted at rate p>0. The point to note is that for such a system, the expected
duration between any two successive stages of the game is not bounded away from
zero: it can be smaller than ¢ for any ¢>0. Therefore, in principle, there is no
upper bound on the number of stages in a given time interval. This substantially
complicates the analysis.

Models of this kind can be useful for instance to study the sharing of resources
among different agents. A resource may deteriorate with time and break down in
some cases. An agent may hold the resource for a given amount of time (which
can be zero), before passing it to another agent. When receiving the resource, he
may also perform some maintenance on it to improve its utility or lower its failure
rate. An observation time occurs every time a resource changes hands.

In this paper, we introduce local contraction assumptions, similar to those
introduced by L’Ecuyer and Haurie [8] for Markov renewal programs, and show
that under these weaker assumptions, it is still possible to analyze the model via a
contraction mapping approach [4]. This model generalizes the locally contracting
discrete event dynamic programming model developed in [7, 8]. The latter was
motivated by the modeling of continuous-time maintenance/replacement systems
{6,7], for which the N-stage contraction assumption does not hold. The generali-
zation to stochastic games is not straightforward, and the proofs given here differ
substantially from those given in [7, 8]. We note that in [7, 8], the development
was made under a one-stage local contraction assumption, but the properties
derived there can be generalized easily to a N-stage locally contracting model by a
reasoning similar to the one used here.

In Section 2, we state our N-stage locally contracting sequential game model,
and examine its relationship with the models studied previously. Basic properties
of the associated total expected reward functions are examined in Section 3. In
Sections 4 and 5, we derive existence results similar to those obtained by Nowak
[11] and Whitt [16] respectively, but under the N-stage local contraction
assumptions. An example is given in Section 6. For the special case of a two-player
zero-sum game (also called a duel) with Borel state and action spaces, we obtain
sufficient conditions for the existence of a Nash equilibrium in stationary strategies
(a saddle point). When a Nash equilibrium exists in a duel, the value of the game
is the unique fixed point of a specific functional operator and can be computed by
dynamic programming. For the general case (many players, non zero-sum), we
obtain sufficient existence conditions for an equilibrium if the state space is
countable, and for an ¢-equilibrium if it is uncountable. In this paper, we assume
bounded rewards, but the model could be easily modified as in Whitt [16] to
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allow for unbounded rewards. For the definitions concerning the measurability
concepts used in this paper, we refer to [1].

2. A LOCALLY CONTRACTING SEQUENTIAL GAME MODEL

We consider a stochastic sequential game model with Borel state space S and finite
player set 1. For each player i in I, let A; be a separable metric space of actions,
and for each state s in S, let A(s)S A4; be the non-empty compact set of admissible
actions to player i when the system is in state s. The mappings s— A{s) are assumed
to be Borel-measurable. To allow for randomized strategies, we assume that each
action in A, is in fact a mixed action, i.e. a probability measure over an underlying
set of pure actions B;. For each s in S, let B{s) be a non-empty compact subset of
a separable metric space B;, and A(s) the set of all probability measures on B{s),
endowed with the weak topology. At each of an infinite sequence of stages
(decision times), every player i observes the state s of the system and selects an
action a; in A(s). Let a=(a,iel)e A(s)=]];c; A{s) be the corresponding action
vector. The expected return to player i for the current stage is r(s,i,a), and the
system moves to a new state s" according to a probability measure q(-Is, a) over §.
A new action vector a' is selected from A(s'), and so on. The (expected) one-stage
return function r(s,i,a) is a bounded Borel-measurable real-valued function of se§,
iel and ae A(s), and the law of motion is given by the famify of probability
measures {q(- | 5,a) | s€S,ae A(s)}, which form a Borel-measurable stochastic kernel
on S given se S and ae A(s) (for a given §, Borel subset of S, g(S|s,a) is a Borel-
measurable function of (s, a)).

Associated with each state s is a discount factor B(s), where B:S—(0,1] is Borel
measurable. Each q('ls, a) is assumed to be concentrated on the set of states s’ for
which B(s') < f(s), so that

s, “’W% § (s )atds'| .0 (1)

which represents the one-stage expected discount factor, takes its value in (0,1].
Thus, with probability one, the discount factor never increases.

A policy 6; for player i is a Borel-measurable function from seS into As),
under which player i takes the mixed action d,(s) whenever the system is in state s.
Let A; denote the set of policies for player i, and A =]—[,»e 1A; be the space of policy
vectors. A Markov behaviour strategy for player i is a sequence w;=
(69,0%,...,8,...) such that &€ A, for each t. Let II, represent the set of all such
strategies for player i and IT=[];,II; the set of all strategy vectors, of the form
n=(06%0%,...,8,...), where &'eA for each t. A strategy for player i is called
stationary if all & are identical (=6)), i.e. if the same policy is used at each stage.
In this case, we also use the symbol §, to denote that stationary strategy, and the
symbol & to denote the stationary strategy vector m=(4,4d,...). In this paper, we
consider only Markov strategies. It is well known (see Proposition 8.1 in [1]) that
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if all other players use a fixed stationary Markov strategy, no single player acting
alone can improve his expected return by using a more general strategy.

From the Ionescu-Tulsea theorem, we know that associated with any initial
state s€S and strategy vector mell, there is a uniquely defined probability
measure P, ; and a corresponding mathematical expectation E, ; over the set of all
infinite sequences (s°,a°, s, a',...,s',d,...), where s°=s, s'e § and a’'c A(s") for all
t=0. The pair (s',a') represents the state of the system and the action vector
chosen at stage t. We also denote by ' the value of B(s")/B(s°). These upper
indexes are not to be confused with exponents.

Nowak [11] has obtained sufficient conditions for the existence of a Nash
equilibrium (ie. a sadle point) for two-player zero-sum stochastic games with
general state spaces, and showed that in this particular case, the value of the game
can be computed by dynamic programming. His model is in discrete time and
assumes a constant discount factor a, between the successive stages. Whitt [16],
using the monotone contraction operator framework of Denardo [4], has investi-
gated noncooperative sequential games with a countable number of players. He
gave sufficient conditions for the existence of a Nash equilibrium [e-equilibrium]
when the state set is countable [uncountable]. The models of Nowak and Whitt
(and to our knowledge, all other infinite horizon discounted games models) are
based on contraction assumptions that are uniform over all admissible policies.
For the discounted case, Nowak assumes that

K
lim [sup sup Ea,s[ Y (o) (s i, a’)l] =0 2
N—-ax | K>N deA t=N

for all seS and i=1,2 (he also considers positive games, for which ay=1 and all
rewards are non negative). Whitt’s N-stage contraction assumption is that for
some integer N >0, there exists two constants m=0 and 0<a,<1 such that

Eé,s[ﬁlj é m and Ed,s[ﬁN] §0‘0 (3)

for all 6e A and seS.

In this paper, we investigate a model for which these uniform contraction
assumptions are replaced by milder conditions that generalize those introduced by
L’Ecuyer and Haurie [8] for Markov renewal programs. It allows for strategies
under which the expected time duration between any two stages is not bounded
away from zero. Some admissible strategies could even give rise, with probability
one, to an unlimited number of successive stages without any movement of the
clock (i.e. with the same value of the discount factor §* at all these stages). The
basic idea of our assumptions is to make sure that at least one of the players
(without loss of generality, say player 1) has the ability to move the clock forward,
and that the occurrence of too many stages of the game in a short period of time
would be costly to this player.

For any iel, nell and 8;e11;, we denote by [z, 6,] the strategy vector =’ eIl
such that nj=6, and nj=mn; for jsi. Likewise, for €A and y;eA, [67%7]
represents the policy (or stationary strategy) vector d'€A such that §;=y; and
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8;=9; for j#i. We say that a strategy 0,=(y?,7},7?,...)eIl, for player i is N-stage
distinguished, for an integer N = 1, if there exists a constant ay <1 such that

Epp-i00.[B" 1S, forall seS, nell (4)

The stochastic game model is called N-stage locally contracting if the following
condition is satisfied:

CONDITION LC. There exists a N-stage distinguished strategy 7, for player 1,
and two constants K, and K, such that

K,+K,<0 (5)
and

E., [ Br(si 1, a')]gzq +KE, B (6)
0

(=
for any se S, nell and integer n such that N<n<2N. |

If K, 0, then the return to player 1 is always negative. The return function can
take positive and negative values if K;>0 and K,< —K,<0. Condition LC
ensures that it is possible for player 1 to follow a policy under which, whatever the
other players do, the expected discount factor for the following N stages will be
smaller than ay<1. Hence, player 1 can force the sequence of discount factors
{f',t20} to converge to 0 with probability one. On the other hand, if the sequence
of discount factors does not converge to 0, then the return to player 1 is —co. In
terms of Markov renewal games, player 1 always has the possibility to move the
clock forward, and has no interest in using a strategy under which the clock will
never move. He may, however, use a strategy (possibly optimal for him) under
which the N-stage expected discount factor is equal to one for some of the states.

Obviously, condition LC does not imply (2) or (3). On the other hand, Whitt’s
assumption (3) implies LC under the model studied here, since one always has
E, J[B'1<1, and the cost function is bounded. More specifically, if N and «,
satisfy (3) and K is an upper bound on Ir(-, 1,-)|, then condition LC is satisfied for
instance by taking K;=2NK;(1+ao)/(1—ay) and K,=—4NK,/(1—a,). Also,
since Nowak’s model is in discrete time with a constant discount factor, all
strategies are distinguished under his model when «,<1, and in that case, LC is
satisfied. In general, however, (2) does not imply LC (for instance, if ay=1 and
r=0, then (2) is satisfied while LC is not).

3. VALUE FUNCTIONS AND SOME OF THEIR BASIC PROPERTIES

For every strategy vector n and integer n>0, we define: v2:Sx I >R as

s, i)=Em["f Br(s' i a')] )
t=0
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which represents the n-stage expected discounted return to player i under strategy
7 from initial state s, =s, and (when the limit exists):

v(s, i) = lim v}(s, i) (8)

which represents the total expected discounted return to player i over the infinite
horizon, from initial state s;=s.

An s-equilibrium point (¢-EP) in stationary strategies in the sense of Nash [9],
for €20, is a stationary strategy J in A such that no single player can improve his
expected return by more than ¢ by changing unilaterally his strategy. When ¢=0,
it is called an equilibrium point (EP). More specifically, let (when it exists):

So(s,i)=sup v[ﬁ“,'yi](s’ i) %)

yiedi

for each seS and iel. It represents the optimal return function for player i when
all other players use the stationary strategy &. Then, 6 is an ¢-EP if and only if
fi(s,0) Svg(s, i) +¢ for all seS and iel.

In the remainder of this section, we show that under condition LC, the
expression (8) is well defined for i=1, and we give an upper bound on this
expression. Notice however that for some strategies, it is possible that v,(s,1)=
— 0.

LeEMMA 1 Under condition LC, for every strategy mell and initial state seS,
ve(s, 1) is well defined by (8). One also has

U,:(S, l)émax(()’Kl): (10)
and for all integers k=1 and n2 kN,
va(s, 1) smax (0, K ) + k(K + K,) E, (") Smax (0, K). (1)

Proof Let nell, and for any seS and n=0, define the following conditional
expectations, given the state s” at stage n:
s":l

Notice that these expectations do not depend on s. For any realization of the
stochastic process and integer m=0, we have from (6):

U;’N(S", 1) =E1r,s|: —io (ﬁn+1/ﬁn)r(sn+t, l’an+t)

o Ms") =E, [/ |s"]

(V2 N(s™, 1)) =max (0, % V(s™, 1)) max (0, K| + K% ¥(s™)).

Let k=1 and n=kN. Define the set of integers ®={m|0<m<k—1 and K, +
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K,amN(s™™)>0}. Let v be the cardinality of ®@, let &(1),...,&(v) be the elements of
® ranked by increasing order, and define é(v+1)=k. If ® is not empty, then by
(5-6), we have K; >0 and K, <0, and

e E o ]

m=0 =

1A
]

A
“

[ Z (K ﬁé(J)N+K ﬂ({U)H)N):l

Lj=1

i(Klﬂ“f>~+K2ﬁw+“”)}
Li=1

IIA
]

lIA
t

ns| Ki+ K f"+(K; +K3y) Z ﬁww]

L j=2

<K,. (12)

If K, <0, then @ is empty and each (v"N(s™,1))* is equal to zero. In either case,
0
Z ﬂmN ", N mN 1))

converges P, ;-almost surely, and from the monotone convergence theorem,

k—1
lim E[ DI o G 1)]

k- o m=0
is well defined.

Now, let k=1 and n=(k—1)N +n/, where N <n’'<2N. As usual, we define } .1,
to mean the empty sum, which is always equal to zero. We have

n—1
vels, D)=E.| 2 Br(s', 1, a‘)]
| t=0

=E“_kz2 (m+§v 1/.‘I‘r(s 1,a")+ Z Bir(s', 1a)]

t=mN t=(k—1)N

éEm Z BN (v M(s™, 1)) + Z Br(s, la)]

t=(k—1)N
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IIA

k-1
En,s[Kn(Bo—ﬁ") +(K+Ky)p"+(K +K») Zl ﬂ"‘”]

=max(0,K,)+ k(K +K)E, (8"

<max(0,K,), (13)

where the second inequality follows from (6) and the last two inequalities follow
from (5). This yields (11).

If lim,_ , E[$]#0, then from (11) and since K, + K, <0, lim,_, , v}(s, 1)= — co.
If lim,_ , E[f*]=0, then the second sum in (13) goes to zero as n— o0, and since
the limit of the expectation of the first sum is well defined, (8) is also well
defined. |

From now on, we assume that condition LC holds.

4. SADDLE POINTS IN TWO-PLAYER ZERO-SUM GAMES

Two-player zero-sum stochastic games, also called duels, are a special case of the
general model, for which |I|=2 and r(,1,")= —r(+,2,"). At each stage of the game,
the returns to player 1 are paid by player 2. Hence, player 1 wishes to maximize
his total expected returns, while player 2 wishes to minimize the total expected
returns to player 1. We define the real-valued functions u and @, u<#, by

u(s)y= sup ( inf v,,(s,l)) and d(s)= inf (sup U8, 1)>. (14)

mielly \m2ell2 nzellz \miell

The game is said to have a value if u(-)=u("), and we define in that case its value
function ux by

ux(s) = u(s) = i(s).

In duels, an equilibrium point (EP) is also called a saddle point. If there exists a
saddle point meIl, then for all se S, v,(s, 1) =ux(s), the value of the game. When =
is also stationary, we say that the game has a saddle point in stationary strategies.
In this section, we prove the existence of a saddle point in stationary strategies for
a duel, under condition LC and some additional continuity assumptions (condition
C below). We show that the value function us is the unique fixed point of a
contracting operator and that the saddle point can be computed using dynamic
programming.

Let U be the space of all return functions u:S—[— o0, 0], endowed with the
supremum norm:

[lul| = sup [u(s)|- (15)
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Let U, be the subspace of all Borel-measurable functions in the Banach space of
all bounded functions in U. For the main results of this section, we will need the
following continuity condition, which corresponds to assumption (M) in [11].

CONDITION C. For each seS, a;€A,(s), a,€ Ay(s) and § Borel subset of S,
r(s,1,(-,a;)) is upper semi-continuous on A,(s), r(s,1,(a,,’)) is lower semi-
continuous on A,(s), q(S|s,(~,a,)) is continuous on A,(s) and ¢(5|s,(a,")) is
continuous on A,(s). ]

We define the local return function h by
1
h(s,a,u)=r(s,1,a)+— [ B(s')u(s')q(ds' | s, a) (16)
B(s) s

for seS, ae A(s) and ue U,. It represents the expected return to player 1 for a
fictive auxiliary one-stage game starting in state s, if the players use the action
vector a and if the expected returns to player 1 from the next stage on are
described by the function u. For every policy d €A, the associated return operator
Hs Uy—> U, is defined by:

H zu(s) = h(s, d(s), u). 17

We define the operator F: Uy —U,, by

Fu(s)= sup ( inf h(s,(al,a2),u)>. (18)

ajeAi(s) \az€ A2(s)

Recall that the modulus of an operator ¢ mapping a subset of a Banach space
into itself is the smallest number « such that ||@(uz) — d(u,)|| S allu, —u,|| for all u,
and u, in that subset. If a<1,¢ is said to be contracting with modulus «. The
operators H; and F are monotone, ie. if u; Su,, then Hsu; <Hsu, and Fu, < Fu,.
However these operators are not necessarily contracting on U,, or on one of its
proper subset. If §=(3,,8,) is such that §, is a distinguished policy for player 1,
then Hj is contracting. In what follows, we show that there exists a closed subset
of Uy and an integer ny>0 such that for all n=>n,, F”, the n-fold composition of
F, is contracting on that subset.

Let K be such that |r(-, 1,")| <K, and define

—~@2N-1K

Uc={ueUM 3§u§max(0,K1)} (19)

I —o
which is a closed subset of U,,.
LEMMA 2 For each nzN, U is closed under F".

Proof Each n=N can be written as n=kN +n’ where k20 and N <n'<2N are
integers, and F" can be viewed as the composition of F* with k times F¥. Hence, it
suffices to prove the result for N<n<2N. Let ue U, s€S and N<n<2N. From
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Theorem 4.1 in [11] (for the n-stage model, the discount factor need not be
bounded away from one), there exists a strategy n=(8°6?,...,6"...) such that

n—1
Fu(s)=(HgHj.,. .., Hg-1)u(s)= Eml: Y Br(s',1,a") +lf"u(s")}
t=0
Therefore, from (6),
Fnu(s) § Kl + KZEn,s[ﬁn] +max (07 Kl)En,s[ﬂ"] é max (Os Kl)

Conversely, let 7, be an N-stage distinguished strategy for player 1. Then,
n—1
F'u(s) zE(m,m,{ Y Br(s, 1,a) +ﬂ"u(S")]
t=0

_(2N-1)K, —(2N-1K,

g _(ZN_I)KS E(il.nz).s[ﬂn]%

1—o 1—a,

because Ez, r,) [B1SE, ny. [ 1= 0t 1
LeEMMA 3 Let o, €(0,1) and

=(2N— DK;/(1—-0y)+2max(0,K,)

T —(K,+Kj)a, 20

Then, under condition C, for any integer k=7, and n=kN, F" is contracting on
U with modulus <a,. Furthermore, F has modulus <1.

Proof For any positive integer n, u; €U, and u,eUg, from Theorem 4.1 in
[11], there exists strategies n=(8°6%,...,6"...) and 8=(y°9%,...,7"...) in II such
that

Fnul(s) =(H&°H6‘s ey H&"' 1)141(5) =U:(S, 1) + En.s(ﬂ"ul(sn))
and

Fruy(s)=(H ,oH 1, ..., H n- ) uy(s) = vj(s, 1) + Eg (B u,(s™).

Since the strategies n and 6 are n-stage equilibria when the terminal return
functions are respectively u; and u,, we obtain

Fru,(s)— F'uy(s)
é U?Gh nz)(s’ 1) + E(ol, ﬂz),x(ﬂ’lMZ(sn)) - U?ﬂl. uz)(sr 1) - E(G; ,nz).s(ﬂnul(s"))

< fJuz = w1[| Eqgy, e, o B- @21
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In particular, for n=1, we obtain
Fu,(s)— Fu,(s) < H“Z - ulH.

Let k=7, and n=kN. From (11) in Lemma 1, and since K, + K, <0, we have:

max (0, K;) —vfp,, z,)($, 1)

Eonmn sl STk (22)
On the other hand, using Lemma 2,
S S ) S 5 )+ B F0(5)
so that, since u,€ Ug,
— Vg, ma)(S: 1) __<_(~2——1\{_—i)K—3+max (0,K,). (23)

— 0
From (21-23), one obtains:

(2N - 1)K;/(1 —ag) +2max(0,K,)
—k(K; +K5)

Fu(s) — Fus(s) < |[uy —uy|

Sty ju |

Since u, and u, can be interchanged, the result follows. |

We have just shown that F has modulus not larger than one, and that for n
large enough, F" is a contraction mapping on U, which is a closed subset of U,,.
From the fixed point theorem on n-stage contraction mappings [4], there is a
unique fixed point #ix in U such that Fiix=1ix and, for all ue U,

lim || F"u— it =O.

n-— o

In the next proposition, we show that the game has a value (over the infinite
horizon), and that its value function us is equal to the fixed point ix of the
operator F.

ProposiTioN 4 Under condition C:

a) The infinite horizon game has a value ux€ U¢;
by For ueUc, Fu=uif and only if u=u*;
¢) For each ueUg, lim, ., ||[F"u—ux||=0.

Proof 1t suffices to prove that fix=u=ud=ux. Let a,, #,, k and n satisfy the
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conditions of Lemma 3. Let #=(y%7%,...,y"...)eIl be an n-stage equilibrium
when the terminal return function is zero:

(HyoH ..., Hon o )O(s) = uh(5) Z F70(s), (24)
and such that for all t=n, ;=7 where #,=(j%,71,73,...) is an N-stage

distinguished strategy for player 1. For any n,€ll,, from Lemma 2 and since
0e U, one has

and therefore, using Lemmas 1 and 2 as in (22-23),

max (0, K) — s, (s 1) _(2N = DKs/(1=30) + max(0.K,) _
—_— 1'

—k(K;+K3) - —k(K;+K>) B

E(Ol,nz),s(ﬁn) é

For t>n, Egp, ., {B) S~ Hence,

u(s)= inf [vfghm(s, 1) +E(91‘,,2,,5<}: Br(s, 1,a‘)>:|

n2¢€llz t=n

2 inf [vfy, np(s. D]+ inf [E(el,m‘s<z ﬁ‘r(s',l,a‘))]
t=n

n2ell; n2elly

(2N — 1)K,

2 Ui (s) -
— g

On the other hand, let

- —4NK
H1={n,el'[1}v(m'ez)(s,l)g-l > for all ses}.
s

The set I1, is not empty (it contains 8,) and for any m; ell,,

4NK
Vo8, DZ — 7

— max (0,K,).

(0]
From Lemma 1, this implies that for all s€ S,

max (0, K ;) — vfr, 02(5: 1)

<2a,.
kK, +Ky) =

E(m,()zl,s(ﬁ”) é

We then obtain
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IZ(S)§ sup v(m,ﬂz)(s’ 1)

nielly

IIA

u,’:‘(s) +max (O’ Kl) Sup E(m,ﬂz),s(ﬁ’l)

< uk(s) + 2o, max (0, K,). (26)
If we let oy =0, then n— oo, and from (25-26),

x(s) = lim uk(s) Su(s) Sa(s) < lim uk(s) =1dix(s).

n— o n—oc

This completes the proof. |

PrROPOSITION 5 Under condition C, there exists dx€ A such that Fus(s)=H; ux(s)
for all s€8, and each such 6x is a saddle point for the infinite horizon game.

Proof From Theorem 4.1 in [11], there exists a policy vector dx€A such that
for all sin §,

H ;s ux(s) = Fux(s) = ux(s).
Thus, for any s in S,

ux(s) = lim Hj ux(s)

n—+w

= lim (v3(s,1) + E;, (B ux(s")))

n—+w

=05(s,1)+ lim E;_ (B ux(s"). (27)

n—ow

Since ux is bounded, v,, is also bounded, and Eq. (11) in Lemma 1 implies that the
limit in the r.h.s. of (27) vanishes as n— c0. We then obtain:

v5,(5, 1) =ux(s)

so that d« defines a saddle point in stationary strategies for the infinite horizon
game. |

5. NON ZERO-SUM GAMES WITH MANY PLAYERS

In this section, we prove the existence of a Nash equilibrium in stationary
strategies for a non-zero sum stochastic game with a finite number of players,
under condition LC and some additional assumptions (condition D below). Let U,
Uy, Uc, h, Hs and K; be defined as in Section 4. The key to our analysis will be
to fix the policy for all the players, except for one of them, say player 1. Player 1
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thus faces a locally contracting discrete event dynamic programming problem
similar to the one analyzed by L’Ecuyer and Haurie [8].
For a fixed policy d € A, we define the operator G U,y — U,, by:

Gsu(s)= sup h(s,[(s)" ", a,],u) (28)

ar1e Ai(s)

where [6(s)™!,a,] denotes the action vector a' such that aj=a, and a;=4(s); for
j#1. Gsu(s) represents the expected return to player 1 for a fictive auxiliary
one-stage game with initial state s, if player 1 optimizes his action choice and all
players use policy 5. We will show that on some closed subset of U, the n-fold
composition Gj is contracting for n large enough, and that player 1 can restrict
himself, without any loss of generality, to a class of policies y, under which
H{;-: ,, is contracting for n large enough. We then show that there exists a Nash
equilibrium in stationary strategies for the infinite horizon game. For the rest of
this section we will need the following condition D, which corresponds to the
assumptions of Theorem 6.2 in [16]. We will make use of this theorem, whose
proof is itself based on the Kakutani-Glicksberg-Fan fixed point theorem for point
to set mappings.

CONDITION D. The state space S is countable, and for each s, s’ in S and i in
I, r(s,i,-) and q(s'|s,) are continuous on A(s).

LEMMA 6 For every policy € A and n= N, U, is closed under the operator Gj.
Proof Similar to the proof of Lemma 2. |
Lemma 7 Under condition D, let a, and n, be as in Lemma 3: 0<a; <1 and

_(2N—1)K;/(1 —ag) +2max (0, K,)
= —(K;+Kj)a,

(29)

then, for any integer k=n,,n=kN and 6 A, G} is contracting on U, with modulus
éal.

Proof Let k=n,, nZkN, u;eU¢, u,eUc and e A. Under condition D, there
exists for player 1 a strategy 6, =(y%,y},...,9%,...)€Il, such that

Hips yqHis- 11 Hig 1. - ytia(8) = Gty (5). (30)
Let n=[6"",6,]. Then, for all seS,
Giuy(s)=va(s, 1) + E; {B"uy(s")

Gluy(s) Zvr(s, 1) + E, (B"u(s"),
so that
Giuy(s) — Giu(s) < |Juy — us)| Ex, {(B7).
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It remains to prove that E_ (") S«, and, since u, and u, can be interchanged, the
result will follow.
For all sin §, from Lemma 6 and since u, € U, we have

~QN-DK; _ .,
—= 6

11—« MI(S)=H[5—1,),?]H[5—1‘y“...H[a~l‘y?vllu1(s)
— %o

n—1
=E. ( =ZO pr(s’,1,a) + ﬂ”ul(S")> =05(s, 1) + E, (B"u,(s")

§ 2 max (Os Kl) + k(Kl +K2)En.s(ﬁn)

where the last inequality follows from (11). Using (29) and since k=7,, we obtain
that E; (f)Sa;. |

We now select a, <1 and an integer K =#,, where #, satisfies (29). Let M=KN
and define the set of policies

A={6€A|E, (B")<a, forall seS}.

We will show that A is a nonempty subset of A and that when searching for an
EP, it is possible to restrain our attention to the set A. We will then be able to
exploit the M-stage contraction property of the operator G; on U, when deA.

LeEMMA 8 Under condition D,

a) A is nonempty;
b) If there exists a stationary equilibrium strategy vector d€ A, then there is one
such vector in A.

Proof For any deA, since Gj is a contraction mapping on U for n= M, there
is a unique fixed point u; in U such that Gsu;=u;, and for all ue Uy,

lim HGgu —u5|| =0.

Under condition D, there exists a policy 7, €A, for player 1 such that for all se S,

Hp;- 1,71]145(5) = Gsus(5) = uys).

Let §=[6"1,7,]€A. As in the proof of Lemma 7, we have

,_(ZIL_O(I)VKjg GYuy(s) = HY uy(s) = Ej, <MZ—1 Br(s', 1, ) + ﬂMua(sM)>
e t=0

£2max(0,K,)+K(K; +K)E5 (B%).
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From (29) and since K >7,, Es (f¥)<«,.
Now it remains to prove (b). If € A is an EP, then

us(8) =v4(s, 1) = sup vp-1 ,, (s, 1) = fi(s, 1).

y1€Ay

The policy & defined in the proof of (a) above satisfies

vg(s, 1) = lim (Hf‘;u‘;(s)+E5,s<i pir(s, 1,a'))>

n—w t=n

= lim (Gjuy(s)) = Gaus(s) = uy(s) = vy(s, 1).

n—oC

Hence, § is also an EP. ||

ProposITION 9 Under condition D, there exists d€ A such that for all seS and iel,

vg(s, 1) = sup (U[&— i m(S, i),
{7il[671, yileA)

ie. there exists a Nash equilibrium in stationary strategies for the infinite horizon
game.

Proof For each deA and iel, define the local return operator for player i
H; i Upy— Uy, by

1

H; u(s)=r(s,i,0(s)) +—ﬁ(s) gﬁ(S')u(S/)Q(dS’ 5,0(s))
and define the set
MK
UDz{ueUMHIuH_S_—I 4}
“a,

where K, is a bound on the absolute value of r:|r(s,i,a)| K for all seS, iel and
a€ A(s). Using similar arguments as in the proofs of Lemmas 2 and 3, it is
straightforward to show that for any deA and n=M, U, is closed under the
operator Hj ;, that Hj ; is a contraction mapping on U of modulus <a,, and that
for each iel, the function vys, i) is well defined by (8), with

vg(s, i) = lim Hj u(s)

n—=x

for any ue Uy,
By restricting the set of admissible strategies to A, we obtain the M-contracting
game of Whitt [16]. To prove the existence of a Nash equilibrium using a
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Kakutani-Glicksberg-Fan fixed point argument, it suffices to show that A is a
convex and compact subset of a Hausdorff topological space, and the result will
follow from Theorem 6.2 in [16]. For each se S, define the function e;: A—(0, 1] by

eJ(0)=E; (B(s™)).
That function is convex on A. Therefore, the set
A={6eA|e(d)Sa;}
is a closed and convex subset of A. Since S is countable,

A=N4,

seS

is also a closed and convex subset of A. Under the assumptions of Section 2, A is a
convex and compact subset of a Hausdorff topological vector space, so A is also
compact. |

For the case of uncountable state spaces, the existence of e-equilibria can be
obtained in the same way as in Whitt [16], by constructing a sequence of
approximating models, each of which satisfying condition D.

6. AN EXAMPLE

We now give a simple illustration of the locally contracting model. More
complicated examples, with larger state spaces, can also be considered.

Example Let I=X={1,2} and S=X x[0,c0). When the system is in state
(x,7)€S, player x is said to be in control of the game. He incurs a cost C>0, and
selects a value ¢ e[0, 1] which corresponds to the time until the next transition. He
also incurs a cumulative cost between the transitions, at rate ¢>0. All costs are
discounted at rate p>0, and the players try to maximize their total expected
discounted returns. Hence, f(x,7)=e"** for t1=0. The one-stage return function is
given by

g

—C—[ce™®dl
(.. 8) 0 if i=x;
nx,,Lc)= .

0 otherwise.
Given (x,7), the next state is s'=(x',t+¢), where x' is determined randomly
according to the conditional probability p(x’[x)= 1/2 for all x,x € X. The sets of
(pure) admissible actions can be defined by:
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[0,1] if i=x;
B =
{x.7) {{0} otherwise,

where when i#x,0 is a dummy action. The player in control can always select the
action zero, in which case the stage has zero duration. If both players always do
so, all stages will have zero duration, and the total discounted costs will be infinite
to both players.

Let ¥, be the following policy for player one:

5 (1) = 1 if x=1;

TS TUZ10 otherwise.

Under that policy, a stage can still have zero duration, e.g. when player 2 is in
control and selects ¢ =0. However, there is always a probability 1/2 that the next
state will be s'=(1,7), in which case player 1 will then select é=1. Hence, the
expected time for the next two stages is at least 1/2, the expected two-stage
discount factor is at most (1+e77)/2, and the stationary strategy j, is 2-stage
distinguished for player one. Also, for any strategy and initial state, the expected
two-stage reward to player one is bounded above as follows:

E, J[r(s°1,a%+ B*r(s*, 1,a")] £0+ e 2((1/2)(— C)+(1/2)(0)) < — Ce™?/2.

Therefore, Eqs (5-6) are satisfied with K, =—Ce™%/2 and K,=0, and condition
LC is satisfied with N=2.

We note here that in this example, only the discounting function depends on 1,
and that the ratio B(s')/B(s) =e~** does not depend on 1. Therefore, it is not really
necessary to keep 7 in the state description, and for practical purposes, we can
view X as the state space.

Let 9,(x,7)=0 for all xeX and t=0. If player 2 follows 7,, then player 1 will
always get back control at the same instant as he leaves it, because time can then
advance only when he is in control. Player 1 will incur a cost C every time he gets
control, and will always absorb the cumulative cost at rate c. Therefore, to
minimize his costs, he should always keep control as long as possible, i.e. adopt
strategy 7,. On the other hand, if player 1 follows §,, suppose player 2 always
selects £>0 when he is in control, and let v be this total expected discounted
reward under such a strategy. Then v obeys:

4
b= —C—fce Pdl+e " v+ve ?)2=—C — —(1—e ") +ve ?i(1+e )2
0 P

We can isolate v and derive with respect to & to obtain:

dv e *(—c+(pC+c)(1+e7%))2)
& (1—e1+e P22
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If c>(pC+c)(1+e7?)/2, then dv/dé <0 and v is maximized over £e[0, 1] by taking
£=0. Therefore, in that case, §=(§,,7,) is an EP. This is true if we take for
instance p=1,C=1 and ¢=10. Notice also that in that case, players 1 and 2 may
switch strategies and by symmetry, this yields another EP.
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