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A Simulation-based Decomposition Approach for

Two-stage Staffing Optimization in Call Centers

under Arrival Rate Uncertainty

Abstract

We study a solution approach for a staffing problem in multi-skill call centers. The

objective is to find a minimal-cost staffing solution while meeting a target level for the

quality of service to customers. We consider a common situation in which the arrival rates

are unobserved random variables for which preliminary forecasts are available in a first stage

when making the initial staffing decision. In a second stage, more accurate forecasts are

obtained and the staffing may have to be modified at a cost, to meet the constraints. This

leads to a challenging two-stage stochastic optimization problem in which the quantities

involved in the (nonlinear) constraints can only be estimated via simulation, so several

independent simulations are required for each first-level scenario. We propose a solution

approach that combines sample average approximation with a decomposition method. We

provide numerical illustrations to show the practical efficiency of our approach. The proposed

method could be adapted to several other staffing problems with uncertain demand, e.g., in

retail stores, restaurants, healthcare facilities, and other types of service systems.

Keywords: stochastic programming, simulation, stochastic optimization, sample average ap-

proximation, L-shaped decomposition

1 Introduction

Call centers play a major role in businesses and in public service systems. They are used

to provide information and assistance, order food, taxis, or other products or services, receive

emergency calls, etc. In multi-skill centers, calls are categorized by the type of service requested.

Each call type requires a specific skill and each agent has a subset of all the skills. The agents

are partitioned into groups in which all have the same skill set. See Gans et al. (2003) and

Koole (2013) for more details.

The quality of service (QoS) is often measured by the service level (SL), defined as the fraction

of calls answered within a given time limit, called the acceptable wait threshold (AWT). Selecting

a staffing means choosing how many agents of each skill set to have in the center. Each agent

has a cost that depends on its skill set. The staffing problem consists in finding a staffing

that minimizes the total cost, under a set of constraints on the QoS. In applications, the day

is usually divided into periods of 15 to 60 minutes and a staffing is selected for each period,

based on distributional forecasts of arrival rates or call volumes (Cez̧ik and L’Ecuyer, 2008,

Oreshkin et al., 2016). A closely related problem not considered here is the scheduling problem
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(Avramidis et al., 2010, Bodur and Luedtke, 2017), in which a set of admissible shift schedules

is first specified, and the decision variables are the number of agents of each group in each shift.

There are two important issues with most staffing methods proposed in the literature: (i) the

arrival rates are often assumed perfectly known, and (ii) the QoS targets (constraints) are usually

defined with respect to the long-term expected value, which is an average over an infinite number

of days. Perfect knowledge of the arrival rates leads to simpler optimization problems, but arrival

rates in real-life call centers are uncertain and their distributions depend on multiple factors,

such as the day of the week, time of the day, level of busyness, holidays and special events,

etc.; see for instance Channouf et al. (2007), Ibrahim et al. (2016b), and Oreshkin et al. (2016),

where actual data can be found. The QoS for a given day should then be modeled as a random

variable. A manager who wants to meet the QoS targets for a given proportion of the days,

or with a given probability, should impose distributional or chance constraints (Charnes and

Cooper, 1959). This is especially true if the distribution of the random variable is unbounded or

if the distribution is bounded but the upper bound would lead to far too conservative solutions.

In other terms, a solution that satisfies the QoS constraints for all scenarios would be much too

expensive. This motivates the use of chance constraints.

Often, the uncertainty in the arrival rates is reduced when we get closer to the target period. For

instance, the arrival rate forecasts are usually more accurate in the morning of the target day, or

in the evening before, than a week or two earlier when the staffing and work schedules are made.

Then it makes sense (and it can be necessary, e.g., for emergency services) to readjust the staffing

to account for the updated information. This leads to a two-stage stochastic optimization

problem with recourse. In the first-stage, typically several days in advance, one selects an initial

staffing based on the currently available forecast of the arrival rates. In the second-stage, closer

to the target period, a more accurate forecast becomes available, and recourse actions may be

applied to correct the initial staffing by adding or removing agents, at the price of penalty costs.

In this paper, we consider a two-stage model from Chan et al. (2016), in which chance constraints

are imposed on the QoS of the day: The recourse must (always) be chosen so that the QoS

meets its target with a minimum probability threshold, given the updated forecast. Solving

this problem is quite challenging, due to the nonlinearity of the chance constraints, the large

number of integer variables, and the fact that the QoS can only be estimated by Monte Carlo

simulation, separately for each scenario. Chan et al. (2016) propose to solve this problem via a

sample average approximation (SAA) approach, in which one generates a number of independent

scenarios for the realization of the updated forecast. For each scenario, the chance constraints

are approximated by linear cuts obtained by simulating the system for a number of replications

to estimate subgradients at several tentative solutions specified by a cutting-plane algorithm,

under distributions conditional on the updated forecast. They propose to solve the resulting

two-stage linear integer program directly with a standard mixed-integer program (MIP) solver

such as CPLEX. This works fine for small problem instances, but the computation time becomes

excessive when one increases the size of the problem.
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The aim of the present paper is to study a more effective simulation-based decomposition method

to solve this SAA. For this, we incorporate a way to strengthen the linear cuts by mixed-integer

rounding (MIR) inequalities (Nemhauser and Wolsey, 1990) and we decompose the mixed-

integer linear problems by using the L-shaped method (van Slyke and Wets, 1969). With this

method, instead of solving the complete MIP directly, we decompose it and iteratively solve a

master program that is enriched by linear cuts at each iteration. More linear cuts are added

whenever a solution does not satisfy the chance constraints. The problem is formulated for a

single time period, but it is not hard to extend the formulation to multiple periods.

We report numerical experiments for staffing problems over a single time period. Our objective

of this paper is not to solve realistic problems based on real data, but to explore the efficiency of

the decomposition approach. We solve problems ranging from a small example with 2 call types

and 2 agent groups to an example of moderate size with 15 call types and 20 agent groups. In

these examples, our simulation-based decomposition approach returns good staffing solutions

significantly faster than the deterministic equivalent approach examined in Chan et al. (2016).

The gain in speed is also larger for larger problem instances, which means that it can make a

real difference for large realistic problems.

In Section 2, we review some relevant literature on the staffing and scheduling of multi-skill

call centers. In Section 3, we define the two-stage staffing optimization problem and its SAA

formulation. We present our decomposition algorithm in Section 4. In Section 5, we compare the

performance of the proposed algorithm and the deterministic equivalent approach in multiple

numerical experiments. Conclusions are given in Section 6.

2 A Quick Review of Other Related Work

Much of the research on call centers has focused traditionally on single-skill centers, with a

single call type (Gans et al., 2003, Green et al., 2003). Multi-skill centers involve routing rules,

priorities, etc., and are analytically much more complex than a single queue with a single

type of customer. There are no known accurate approximation formulas for QoS measures

for them, so these measures must be estimated by computationally-costly simulation. For a

multi-skill staffing problem with known arrival rates, Cez̧ik and L’Ecuyer (2008) developed

a simulation-based MIP optimization method where linear cuts are added iteratively using

estimated subgradients of the SL function. Avramidis et al. (2010) extended this method to

solve a shift scheduling problem with multiple periods. These methods are in fact adaptions

and generalizations of the method of Atlason et al. (2004) for agent scheduling in single-skill call

centers with constraints on the expected SL over an infinite time horizon. The latter method

combines simulation with integer programming and cut generation, based on the concavity

property of the SL function in the Erlang C model, when the queue is in steady state. The

concavity property does not necessarily hold in the multi-skill context, so the methods are

heuristic, but they work well empirically. Avramidis et al. (2009), Pot et al. (2008), Wallace
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and Whitt (2005) proposed other algorithms for the single-period staffing problem that use

crude approximation formulas, search methods, and corrections by simulation. Call routing

is also an important aspect that interplays with staffing and scheduling in multi-skill centers:

changing the priorities and call routing rules often changes the optimal staffing solution, and

vice-versa; see Chan et al. (2014) and the many references given there.

Exact arrival rates in call centers are usually unknown, and it is now well recognized that the

rates should be modeled as random variables or stochastic processes (Avramidis et al., 2004,

Ibrahim et al., 2012, 2016a, Oreshkin et al., 2016, Steckley et al., 2009, Whitt, 1999). In the

simplest cases where a good approximating formula is available for the QoS of interest as a

function of the (constant) arrival rate, one can replace the QoS by this approximating formula

in the problem formulation and then solve the resulting problem. This requires no simulation.

Many have used this type of approach, often in the setting of two-stage stochastic programming;

see Bodur and Luedtke (2017), Gans et al. (2015), Green et al. (2001), Gurvich et al. (2010),

Harrison and Zeevi (2005), Pot et al. (2008), Robbins and Harrison (2010), for example. But

reliable QoS approximations are not always available, and in many cases one has to rely on

simulation to estimate the QoS for any given realization of the vector of arrival rates. In these

complicated settings where simulation is required, it suffices to generate the random arrival rates

at the beginning of the simulation (assuming we know how to generate those random rates), so

the fact that the arrival rates are random adds no serious difficulty to the simulation. Some

authors model the distributions of arrival counts instead of the rates, but this can make the

simulation more difficult (Ibrahim et al., 2012, Oreshkin et al., 2016).

Several authors consider stochastic optimization to capture this arrival-rate uncertainty. In

the single-skill setting, Liao et al. (2012, 2013) model the uncertain arrival rates by discrete

probability distributions, while Gurvich et al. (2010), Helber and Henken (2010), and Robbins

and Harrison (2010) use continuous distributions. Robbins and Harrison (2010) consider a

stochastic scheduling problem with a penalty cost for missing the SL target. Gans et al. (2015)

investigate a two-stage scheduling problem with recourse for a single-skill call center and use

Gaussian quadrature for scenarios generation. The forecast is updated during the day, and

the schedules can be corrected by adding or removing agents for the latter part of the day.

Both Robbins and Harrison (2010) and Gans et al. (2015) construct a MIP in which a set of

constraints are generated beforehand by the linearization of the SL and the abandonment ratio,

which are taken as the steady-state values given by the analytic formulas for an M/M/s queue

with abandonments, and then use a standard MIP solver. It is unclear if and how this type of

approach can be generalized to the multi-skill case, for which no analytic formula is available.

For multi-skill call centers with random arrival rates, Harrison and Zeevi (2005), Bassamboo

et al. (2006), and later Bodur and Luedtke (2017), approximate the level of abandonment by

a fluid system, and solve a two-stage staffing or scheduling problem. They seek to minimize

the scheduling cost function with a penalty cost on the abandonment ratio. The first-stage

decision variables are the schedules, and the second-stage ones control the work assignment of

each agent. Bodur and Luedtke (2017) also use a Benders decomposition with MIR inequalities

5



at the first stage, but no simulation. They assume that the number of arrivals is perfectly

known in the second stage (which is never the case in call centers and in our setting, but is

a by-product of the fluid approximation). A major drawback when optimizing a fluid system

is that it assumes implicitly some kind of idealistic fluid routing policy, which is impossible to

implement in a call center. Moreover, no good fluid approximation is available for the type

of QoS considered in this paper, and more generally for the SL in multiskill call centers. In a

similar vein, Gurvich et al. (2010) optimize a two-stage staffing problem with chance constraints

on the steady-state abandonment ratio, for stochastic arrival rates. The requirement is that the

QoS can be violated on at most a fraction δ of the arrival rate realizations, where δ represents

the level of risk tolerance.

Chan et al. (2016) propose an extension of the cutting-plane method presented in Cez̧ik and

L’Ecuyer (2008) to solve a two-stage staffing problem with chance constraints on the SL over

the day (not the long term SL). The second-stage decision variables are recourse actions to add

or remove agents. They construct an SAA, approximate its constraints by linear cuts, and solve

the resulting MIP with a standard solver. Ta et al. (2020) study the convergence properties of

the solutions of this SAA to those of the true problem. In this paper, we consider the same

model and we also use linear cuts, but we propose a better way to solve the SAA, based on a

decomposition approach.

3 Problem Formulation and Sample Average Approximation

We now formulate the two-stage optimization problem considered in this paper. We also give

an SAA formulation in which the constraints are approximated by sampling averages. These

formulations are similar to those in Chan et al. (2016) and Ta et al. (2020).

3.1 Call Center Model

Consider a call center with K call types indexed from 1 to K, and I agent groups numbered

from 1 to I. Agents in group i have the skill set Si ⊆ {1, . . . ,K}, which is the set of call types

they can serve. Conversely, Gk = {i : k ∈ Si} is the set of groups that can handle calls of type

k. Let z = (z1, . . . , zI)
T be the staffing vector, which gives the number of agents in each group.

We assume that calls of type k arrive from a time-homogeneous Poisson process with unknown

rate Λk over the entire period, where the Λk are independent random variables with bounded

support but otherwise arbitrary distributions. This models the forecasting uncertainty.

Agents in the same group are homogeneous and when an agent in group i serves a call of type

k, the service time has a known distribution, for each pair (i, k). A call abandons the queue

(and the call center) when its waiting time exceeds its patience time, which is a random variable

with known distribution that may depend on the call type k. Calls are assigned to agents by an

arbitrary routing policy whose details are not discussed here. In this paper, we do not optimize
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the routing policy; we assume it is fixed. One advantage of simulation-based optimization is

that there is no need to impose a specific form of routing policy or specific family of probability

distributions in the model, as long as it can be simulated easily. For example, the service

time can be exponential, lognormal, gamma, etc. As in Wallace and Whitt (2005), Cez̧ik and

L’Ecuyer (2008), and many others, we optimize the staffing for a single time period.

3.2 Service Level Constraints

We measure the QoS by the SL introduced in Section 1, defined as the proportion of callers who

wait less than an acceptable waiting time (AWT) parameter τ over a given finite time period.

This SL is a random variable and the constraints will be probabilistic: the SL must reach a

certain target l ∈ [0, 1] with probability at least 1− δ for a given δ > 0. The SL can actually be

defined in various ways, depending on how we count abandons, the calls that overlap two or more

periods, etc. Here we use a popular definition, implemented (among others) in ContactCenters

(Buist and L’Ecuyer, 2005). For a staffing vector z and AWT threshold τ , we define

SL = S(z) =
A(z)

T − L(z)
(1)

where T is the total number of calls that arrived in the period, A(z) is the number of those calls

served after waiting at most τ , and L(z) is the number of them that abandoned after waiting less

than τ . For other definitions, see Jouini et al. (2013). Several authors replace T , A, and L by

their (transient or steady-state) expectations; see for example Atlason et al. (2004), Avramidis

et al. (2010), Cez̧ik and L’Ecuyer (2008). Then the SL is a constant, defined as a ratio of

expectations, instead of a random variable, and the constraints are no longer probabilistic.

We define our chance constraints as follows. For each call type k, we select an AWT τk and

denote Sk(z) the SL for call type k during the selected period, given the staffing vector z. Let

S0(z) denote the aggregate SL for all calls, with AWT τ0, over the period. The random variables

S0(z), . . . , SK(z) have distributions that depend on z. The constraints are:

P[Sk(z) ≥ lk] ≥ 1− δk, k = 0, 1, . . . ,K,

where the lk are SL targets and the δk ∈ (0, 1) are given risk thresholds.

3.3 Staffing Problem with Recourse

We now describe the two-stage staffing problem. In the first stage, based on an initial forecast

that provides a prior distribution for the random arrival rate Λk for each call type k, the

manager must select an initial staffing x = (x1, . . . , xI)
T at the corresponding cost per agent of

c = (c1, . . . , cI)
T. Stage 1 can be days or weeks in advance of the target date. Close to the target

period (e.g., the previous day or a few hours before), additional information becomes available
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that can improve the forecast of the arrival rates Λk. Let ξ ∈ Ξ denote this new information. It

could be related to weather conditions, the observed number of arrivals in the preceding period,

etc. Let Eξ denotes the expectation with respect to ξ and P[· | ξ] be the probability distribution

conditional on ξ. In particular, the distribution of Λk conditional on ξ is not the same as the

unconditional one. It usually has a smaller variance.

In the second stage, the manager observes the realization of ξ and based on that, the initial

staffing can be modified by adding or removing agents at some penalty costs (by calling them

to work at the last minute or offering them to go back home, or canceling meetings, etc.). Note

that even in the extreme case where the Λk are known exactly conditional on ξ, there is still

uncertainty in the second stage and the SL is still a random variable. The recourse in Stage

2 consists in modifying the initial staffing by adding r+i (ξ) extra agents to group i at a cost

of c+i > ci per agent, or removing r−i (ξ) ≤ xi agents in group i to save c−i per agent, where

0 ≤ c−i < ci. After the recourse, the new number of agents in group i is zi(ξ) = xi+r
+
i (ξ)−r−i (ξ).

Let c, c+, c−, and z(ξ) be the vectors with components ci, c
+
i , c−i , and zi(ξ), respectively. We

define the recourse vectors as r+(ξ) = (r+1 (ξ), . . . , r+I (ξ))T, and r−(ξ) = (r−1 (ξ), . . . , r−I ξ))
T.

Given a staffing z(ξ), the SL for call type k and the aggregate SL are random variables Sk(z(ξ))

for k = 1, . . . ,K, and S0(z(ξ)), respectively. Let gk(z; ξ) = P[Sk(z) ≥ lk | ξ] for k = 0, . . . ,K.

With this, we have the following chance-constrained staffing problem with recourse:

(P1)



min
x∈X

cTx+ Eξ [Q(x, ξ)] ,

where Q(x, ξ) = min
r+,r−

{
(c+)Tr+(ξ)− (c−)Tr−(ξ)

}
subject to x+ r+(ξ)− r−(ξ) = z(ξ),

gk(z; ξ) ≥ 1− δk, k = 0, . . . ,K,

r+(ξ), r−(ξ) ≥ 0 and integer,

in which X ⊂ NI is the support set of first-stage solutions. The constraints in this formulation

are on the SL, but they could also be on other QoS measures such as average waiting times,

abandonment ratios, etc. We emphasize that in this formulation, for every realization of ξ,

the recourse must be selected so that the probabilistic constraints are satisfied. Without this

assumption, one could be tempted to put no staffing at all on certain days in which ξ takes a

bad value, to save costs. Under our model, this is not allowed.

3.4 The SAA Formulation

Instead of solving the two-stage problem (P1), we will solve an SAA version. We generate N

scenarios (realizations of ξ) by Monte Carlo. Let ξn denote the realization of ξ under scenario n.

Each scenario provides a different probability distribution of the Λk’s, conditional on ξn, for the

second stage. Then we define a discrete probability distribution over these N scenarios by

giving probability pn > 0 to scenario n, where
∑N

n=1 pn = 1. The usual and simplest approach

with independent random scenarios is to put pn = 1/N for all n, which gives the standard
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empirical distribution, and this is what we will do in our numerical examples. For scenario n,

we denote r+n = r+(ξn), r−n = r−(ξn), and zn = (z1,n, . . . , zI,n)T. For each ξn, we estimate the

probability gk(z; ξn) = P[Sk(z(ξn)) ≥ lk | ξn] in the constraints of (P1) by simulating the call

center M times independently, over the given period, conditional on ξn. These simulations are

also independent across the scenarios. We compute the empirical SL Ŝmk (zn; ξn) for each k and

each replication m generated conditional on ξn, and we estimate gk(z; ξn) by the proportion of

the M replications for which the SL constraint was met:

ĝk,M (zn; ξn) =
1

M

M∑
m=1

I[Ŝmk (zn; ξn) ≥ lk] for k = 0, . . . ,K, (2)

where I[·] is the indicator function. With these ingredients, the SAA can be written as

(P2)



min
x, r+n , r

−
n

cTx+
N∑
n=1

pn
[
(c+)Tr+n − (c−)Tr−n

]
,

subject to


x+ r+n − r−n = zn, for n = 1, . . . , N,

ĝk,M (zn; ξn) ≥ 1− δk, for k = 0, . . . ,K, n = 1, . . . , N,

x ∈ X, r+n , r−n ≥ 0 and integer, for n = 1, . . . , N.

Ta et al. (2020) investigate the convergence properties of this SAA problem. When N and

M increase to infinity, under the assumptions that the first and second stage feasible sets are

finite and that the sample average approximations of the constraints almost surely converge

the true function at any feasible point, they show that the optimal value and the solutions

of the SAA problem converge almost surely to the corresponding ones for the true problem

(P2). Such conditions hold in typical call center examples. They also study the convergence of

large-deviations probabilities.

Two important difficulties arise when solving the SAA (P2): (i) the expressions ĝk,M (zn; ξn) in

the constraints are nonlinear and (ii) (P2) is expensive to solve when N is large. To handle issue

(i), Cez̧ik and L’Ecuyer (2008) use a cutting-plane method in which the nonlinear constraints are

replaced by several linear cuts. This approach can work reasonably well in the simple situation

where there is no recourse. But in the two-stage setting, the SAA (P2) becomes much more

expensive to solve when there is a large number of scenarios. This motivates our introduction

of a decomposition method for (P2) in the next section.

4 General Methodology with a Decomposition Approach

We now introduce our proposed decomposition approach to solve the two-stage staffing optimiza-

tion problem. To deal with the chance constraints in the SAA, we use a cutting-plane approach,

but we also incorporate a way to strengthen the linear cuts, and we use a simulation-based

decomposition algorithm that allows us to efficiently find good staffing solutions.
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4.1 Cut Generation

We recall the cutting-plane method used by Atlason et al. (2008) and Cez̧ik and L’Ecuyer (2008)

to approximate the chance constraints by linear ones. The method relies on the hypothesis that

the SL function is concave in z, at least around the optimal solution. In this paper, instead of

being on the expected SL as in those previous papers, our constraints are on a tail probability

of the SL, P[S(z) ≥ l], and it is this probability function rather than the expected SL that

is assumed to be concave near the optimum. Chan et al. (2016) observe that in the single-

skill case, these probability functions typically have an S shape: they are convex for small

z and concave for large enough z, just like the expected SL. In multi-skill settings, however,

the multivariate concavity of gk(z; ξn) with respect to z can be very difficult to verify. And

even when it holds, the SAA counterpart ĝk,M (z; ξn) may very well fail to be concave near

the optimum. For this reason, this cutting-plane approach is really a heuristic. Moreover, we

have also observed empirically that the “S shape” tends to be more compressed (the S is less

elongated) for the probability function than for the expected SL, and the region of (approximate)

concavity tends to be smaller, which makes the problem harder to solve by the cutting-plane

approach. For this reason, we have to be more careful when selecting the initial constraints

with a fluid approximation as discussed below.

In our approach, we consider each scenario separately, and for each staffing solution that violates

a chance constraint for that scenario, we generate linear cuts based on an (tentative) estimation

of the sub-gradient at that staffing point. After adding enough cuts, we obtain a feasible staffing

solution for the chance constraints, for the given scenario. The result of this procedure is a set

of linear cuts that serve as an approximation of the chance constraints and which are used to

solve the two-stage problem.

The cutting-plane method is an iterative algorithm that starts at an infeasible solution z and

adds new linear cuts based on the sub-gradient of ĝk,M (z) until a feasible solution is obtained.

As in Cez̧ik and L’Ecuyer (2008), and Chan et al. (2016), to avoid starting the algorithm at a

null solution (z = 0) or with an initial staffing that is much too low for concavity to hold, we

rely on a heuristic that uses a fluid model approximation and adds linear constraints to impose

that the system has enough capacity (in the fluid model) to serve at least a fraction αk of the

expected number of arrivals for each call type k. We emphasize that this is usually not an

accurate approximation of the true constraints, it is only a crude approximation used to put

some initial “minimal requirements” (or lower bound) on the staffing. The constraints can be

written as ∑
i∈Gk

µk,iwk,i,n ≥ αk E[Λk,n | ξn], k = 1, . . . ,K

∑
k∈Si

wk,i,n ≤ zi, i = 1, . . . , I

wk,i,n ≥ 0, k = 1, . . . ,K, i = 1, . . . , I,
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in which the time unit is the length of the period, E[Λk,n | ξn] is the expected number of arrivals

for call type k in scenario n, 1/µk,i is the expected service time for call type k by agent group i,

wk,i,n ≥ 0 represents the (fractional) number of agents of group i assigned to calls of type k in

scenario n, and we want to select the parameters αk so that the initial solution is in a region in

which the ĝk,M are likely to be concave. If αk < 1, over an infinite time horizon it would mean

that at least a fraction 1−αk of the calls abandon, on average. Over a finite time horizon, this

fraction could be a little smaller because a few of these calls can be served after the end of the

period. So if we expect few abandons, it makes sense to take αk close to 1, then iteratively use

simulation to estimate the probability values in the constraints, and increase αk if they are too

small. But with the probability constraints, one must pay more attention to the choice of αk,

as explained earlier. To do this, we used the following heuristic in our experiments. We select

a threshold ρ > 0 (e.g., ρ = 0.5), and we add agents (by increasing αk) to the groups that serve

call type k if the estimated tail probability in (2) is smaller than ρ. We stop this procedure

when all the probability values are larger than ρ. We expect (and assume) that after this, the

staffing belongs to the concave region and the sub-gradient cuts are valid. In our experiments,

we encountered cases where αk went as large as 4; see Section 5.3. Such large values of αk are

often required when call k has a low volume or a very demanding SL requirement. In some

emergency call centers, for example, agents may be busy less than 25–30% of their time, to

make sure that almost all calls are answered immediately. Thus, reasonable choices for the αk’s

depend very much on the application.

Then we generate sub-gradient-based linear cuts independently for each scenario, as follows.

For scenario n with realization ξn, let z∗ denote the optimal solution under the current set of

linear constraints, let gnk (z) = ĝk,M (z, ξn) and let qnk(z
∗) denote the estimated sub-gradient of

gnk at z∗, which is a I-dimensional vector whose element i is defined as

qink(z
∗) = [gnk (z∗ + dei)− gnk (z∗)]/d,

where ei is the ith unit vector (with 1 at position i and 0 elsewhere), d ≥ 1 is an integer, and

the simulations required to compute gnk at the two different values to obtain the finite difference

are always made with well-synchronized common random numbers, as explained in L’Ecuyer

and Buist (2006). If the empirical function gnk (z) was guaranteed to be always concave in each

coordinate, we could always take d = 1, but this function is somewhat noisy, so it may fail to be

concave even where its expectation is concave, especially when M is small, and it is sometimes

safer to take d = 2 or 3 for this reason. This issue is discussed in Cez̧ik and L’Ecuyer (2008).

If qnk(z
∗) is a sub-gradient of gnk at z∗, then we have gnk (z∗) + qnk(z

∗)(z − z∗) ≥ gnk (z). Since

we want gnk (z) ≥ 1− δk, the following inequality must hold:

qnk(z
∗)z ≥ 1− δk − gnk (z∗) + qnk(z

∗)z∗. (3)

We add this inequality as a constraint (a linear cut) to the linear program for scenario n, which
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reads as:

min
(z,w)∈NI×RK×I

+

{cTz | Anz ≤ bn, Hnz +Knw ≤ hn} , (4)

where Anz ≤ bn refers to the set of sub-gradient cuts and Hnz+Knw ≤ hn are constraints given

by the fluid model. The cutting-plane procedure permits one to approximate (P2) by a mixed-

integer linear programming (MIP) model. Proposition 1 below states that under appropriate

concavity assumptions, by adding enough cuts to approximate the chance constraints, we can

obtain an optimal solution to (P2) by solving the corresponding MIP.

Let Q
∧

(x) = 1
N

∑N
n=1Q
∧

M (x; ξn) denote the value of the second stage of (P2) for a given x, where

Q
∧

M (x; ξn) = min (c+)Tr+ − (c−)Tr−

subject to ĝk,M (x+ r+ − r−, ξn) ≥ 1− δk k = 0, . . . ,K

r+, r− ∈ NI .

For each scenario ξn, we denote by QM (x; ξn) the value of the second stage after replacing the

constraints ĝM (z; ξn) ≥ 0 by the linear cuts, i.e.,

(P3)


QM (x; ξn) = min

r+,r−
(c+)Tr+ − (c−)Tr−

subject to An(x+ r+ − r−) ≤ bn

Hn(x+ r+ − r−) +Knw ≤ hn r+, r− ∈ NI

where An(x + r+ − r−) ≤ bn are the linear cuts added for scenario n. By incorporating these

replacements in (P2), we obtain the following large MIP, whose solution approximates the

solution of (P2):

(P4) min
x∈NI

{
f̄(x) = cTx+

1

N

N∑
n=1

QM (x; ξn)

}
.

The next proposition says that if the linear cuts are always upper bounds on the chance con-

straints and we add enough of them, we obtain an optimal solution for (P2) by solving (P4).

Proposition 1 Suppose that each time a linear cut of the form (3) is added to (P4), qnk(z
∗)

is a sub-gradient of the function gnk within the current feasible set, so that the inequality (3) is

valid. If (x∗, f̄∗) is an optimal solution and the optimal value of (P4) and if (r∗+n , r∗−n ) is an

optimal solution to (P3) such that ĝk,M (x∗ + r∗+n − r∗−n ; ξn) ≥ 1 − δk for all n and k, then

(x∗, f̄∗) is also an optimal solution and the optimal value to (P2).

Proof. Under the given assumption, given a first-stage solution x, we always have

{
(r+, r−)

∣∣∣∣∣ ĝM (x+ r+ − r−; ξn) ≥ 0

r+, r− ∈ NI

}
⊆

(r+, r−)

∣∣∣∣∣∣∣∣
An(x+ r+ − r−) ≤ bn

Hn(x+ r+ − r−) +Knw ≤ hn

r+, r− ∈ NI , w ≥ 0

 , (5)
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whereAn(z) ≤ bn is the collection of all linear cuts of the form (3). We denote by {x∗1, r
∗+
1n , r

∗−
1n , n =

1, . . . , N} an optimal solution to (P2) and by {x∗2, r
∗+
2n , r

∗−
2n , n = 1, . . . , N} an optimal solution

to (P4). According to (5) we have

cTx∗1 +
1

N

N∑
n=1

(c+)Tr∗+1n − (c−)Tr∗−1n ≥ c
Tx∗2 +

1

N

N∑
n=1

(c+)Tr∗+2n − (c−)Tr∗−2n . (6)

Moreover, if ĝk,M (x∗2 + r∗+2n − r
∗−
2n ; ξn) ≥ 1− δk for all n, k, then {x∗2, r

∗+
2n , r

∗+
2n , n = 1, . . . , N} is

also a feasible solution to (P2), so

cTx∗1 +
1

N

N∑
n=1

(c+)Tr∗+1n − (c−)Tr∗−1n ≤ c
Tx∗2 +

1

N

N∑
n=1

(c+)Tr∗+2n − (c−)Tr∗−2n . (7)

From (6) and (7) we can deduce that {x∗2, r
∗+
2n , r

∗+
2n , n = 1, . . . , N} is also an optimal solution

to (P2). This completes the proof.

So in principle, we can obtain an optimal solution to the SAA problem (P2) by adding enough

linear cuts to the second-stage problems and then solve the MIP (P4) via a standard solver such

as CPLEX. However, in a large scale setting and as the number of scenarios increases, (P4)

would be too large and too hard to solve directly. We can then rely on the L-shaped algorithms

presented next.

4.2 L-shaped Algorithm

For any first-stage solution x of (P4), evaluating this solution requires solving N second-stage

sub-problems of the form (P3). This suggests a Benders decomposition approach for the two-

stage problem, also known as L-shaped in stochastic programming. Introduced by Benders

(1962), the method has received a lot of attention and improvements, and is now a standard

approach in many applications, as reflected in the survey of Rahmaniani et al. (2017). However,

the usual L-shaped algorithm exploits strong duality at the second stage, a property that does

not hold for our problem as it involves integer variables at both first and second stages. Solving

the SAA in our setting also requires expensive simulation runs to evaluate the constraints at

the second stage, and therefore solving it exactly, even with a decomposition method, is very

challenging when N and M are large. The absence of general efficient methods for this type of

problem reflects this difficulty (see Birge and Louveaux, 2011, Chapter 7). Several techniques

have been proposed over the years, but these techniques are either expensive, or developed under

specific restrictions on the two-stage problem, e.g., that the recourse matrix has only integer

coefficients, which is not the case in our context. In what follows, we present a simple integer

L-shaped algorithm that can be combined with mixed-integer rounding inequalities (in Section

4.3) to efficiently find good integer solutions for the two-stage problem.

The general idea of the L-shaped method is to build a master problem in x and add a first-

stage variable capturing the value of the recourse objective, considerably reducing the problem
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size. We then reconstruct the second-stage information by deriving linear constraints (cuts) on

the master problem variables. Here, we do this by considering a continuous relaxation of the

second-stage problem and using the duality properties of this relaxation that allow us compute

subgradients of the recourse objective.

For any first-stage solution x, to get a feasible solution for the second stage, we just need to add

a large enough vector r+ of agents and set r− = 0. This means that the problem (P1) has a

relatively complete recourse, i.e., that the second-stage problems always have feasible solutions,

for any given first-stage solution x (see Birge and Louveaux, 2011, Page 113). In addition, under

the concavity assumption, the linear cuts generated from the cutting-plane method (Section 4.1)

are upper bounds on the chance constraints. In other terms, the linearized second-stage problem

will be a relaxation of the true second-stage problem, and consequently, any feasible solution of

the true second-stage problem will be feasible for the relaxed second-stage problem. Therefore,

(P4) is also relatively complete. Thus, when applying an L-shaped method to solve (P4),

we only need to add optimality cuts, i.e., linear cuts to build a piecewise linear function that

approximates the recourse function, to the master problem.

We can write the master problem of (P4) as

(MP1)


min
x,θ

cTx+ θ

subject to Πx− 1θ ≤ π0
x ∈ X

(8)

where the variable θ ∈ R serves as an underestimation of the second-stage objective function,

while the constraints (8) are optimality cuts obtained on the continuous relaxation of the second-

stage problems. Suppose the constraints of the second-stage problem for scenario n can be

written as Tnx + Wny = rn, where y is the vector of second-stage variables. In our context,

y contains r+, r−, and w (coming from the fluid model). The continuous relaxation of the

second-stage problem associated to scenario n is

min
y

{
qTy

∣∣∣ Tnx∗ +Wny = rn, y ≥ 0
}
.

Let σn be a solution of the dual of the continous relaxation, i.e.

σn ∈ arg max
σ

{
(rn − Tnx∗)Tσ

∣∣∣ (Wn)Tσ ≤ q
}
.

It is easy to show that the optimality cut

θ ≥ 1

N

N∑
n=1

σT
n(rn − Tnx),

is a valid cut for the stochastic integer program (P4) (Birge and Louveaux, 2011, Section 7.1).

It is also possible to add several cuts per master iteration as we can partition the set of all
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scenarios into L disjoint subsets N1, . . . , NL and reformulate (MP1) as

(MP2)


min

x,θ1,...,θL
cTx+

L∑
l=1

θl

subject to Πlx− 1θl ≤ πl0, l = 1, . . . , L

x ∈ X,

(9)

where the constraints (9) are optimality cuts given by L subsets of scenarios. For each subset

Nl, the following optimality cut can be added to the master problem:

− 1

Nl

∑
n∈Nl

σT
nT

n

x− θl ≤ −
1

Nl

∑
n∈Nl

σT
nr

n. (10)

We summarize this L-shaped approach in Algorithm 1. If L = 1, we have a single-cut L-shaped

algorithm in which only one cut is generated per iteration. The multi-cut L-shaped algorithm

is obtained by setting L = N , as we generate cuts for each scenario (Birge and Louveaux, 2011,

Page 198). The L-shaped algorithm produces a sequence of first-stage candidates {x0, x1, . . .},
and based on the properties of the optimality cuts, the algorithm stops when it finds a candidate

solution that was already seen previously (van Slyke and Wets, 1969).

Algorithm 1: L-shaped algorithm

repeat
Select L clusters of scenarios that form a partition of all scenarios
Solve (MP2) to obtain a solution (x∗, θ∗1, . . . , θ

∗
L)

Compute

Q(x∗) =
N∑
n=1

min
y

{
qTy

∣∣∣ Tnx∗ +Wny = rn, y ≥ 0
}

if
∑L

l=1 θ
∗
l < Q(x∗) then

Add L optimality cuts to (MP2)

until
∑L

l=1 θ
∗
l ≥ Q(x∗);

Return x∗ as a first-stage solution

4.3 Strengthening the Cutting Planes

In this section we present a way to strengthen the sub-gradient cuts defined in (3) by using

mixed-integer rounding (MIR) inequalities. This approach plays a central role in the develop-

ment of strong cutting planes for mixed-integer programming. MIR inequalities can be derived

from a single mixed-integer constraint, and have been shown to be able to generate all facets

inducing valid inequalities for any mixed 0-1 integer program (Nemhauser and Wolsey, 1990).

Bodur and Luedtke (2017) exploit such MIR inequalities for the first-stage decisions, the second-

stage problems being continuous. In our case, we only focus on the second-stage problems, the

master problem computational cost being negligible compared to the second-stage programs
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that require simulation.

Consider a sub-gradient cut of the form
∑I

i=1 aizi ≥ b. Since the sub-gradients are always

generated to be non-negative, we have ai ≥ 0 for all i = 1, . . . , I. Let P = {z ∈ NI |
∑I

i=1 aizi ≥
b} be the set of feasible solutions under the sub-gradient cuts.

Proposition 2 The following inequalities hold for all z ∈ P:

∑
t=1,...,I
t6=i

atzt + diaizi ≥
⌈
b

ai

⌉
diai, ∀ i = 1, . . . , I, (11)

where di = b/ai − db/aie+ 1.

Proof. Given i ∈ {1, . . . , I} such that ai > 0, we can write the inequality
∑I

i=1 aizi ≥ b as

∑
t=1,...,I
t6=i

atzt
ai

+ zi ≥
b

ai
,

which can be written as ∑
t=1,...,I
t6=i

atzt
ai
≥ b

ai
+ 1−

⌈
b

ai

⌉
+

⌈
b

ai

⌉
− zi − 1. (12)

Since zi ∈ N, we consider the two cases zi ≥ db/aie and zi ≤ db/aie − 1. If zi ≥ db/aie then

∑
t=1,...,I
t6=i

atzt
ai
≥
(

1 +
b

ai
−
⌈
b

ai

⌉)(⌈
b

ai

⌉
− zi

)
= di

(⌈
b

ai

⌉
− zi

)
, (13)

as the left side of the inequality is non-negative and the right side is non-positive. Moreover, if

zi ≤ db/aie − 1, given that b/ai − db/aie+ 1 ≤ 1, from (12) we obtain

∑
t=1,...,I
t 6=i

atzt
ai
≥ di + di

(⌈
b

ai

⌉
− zi − 1

)
= di

(⌈
b

ai

⌉
− zi

)
. (14)

We obtain (11) by combining (13) and (14).

We now consider a set of feasible staffing solutions at scenario n after adding sub-gradient cuts

and fluid constraints Pn =
{
Anz ≤ bn, Hnz + Knw ≤ hn

}
. Let J be the number of rows of

matrix An, anij its element on row i and column j, and bnj the jth element of vector bn. The

constraints given by the sub-gradient cuts can be strengthened using Proposition 2 as follows.

We will use these stronger inequalities in our method.
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Corollary 1 The following inequalities hold for all z ∈ Pn∑
t=1,...,I
t6=i

anjtzt + dni a
n
jizi ≤

⌈
bnj /a

n
ji

⌉
dni a

n
ji, i ∈ {1, . . . , I}, j ∈ {1, . . . , J}, anji 6= 0, (15)

where dnji = bnj /a
n
ji − dbnj /anjie+ 1.

4.4 The Simulation-based Algorithm

Algorithm 2 summarizes our complete simulation-based method. The algorithm has two main

parts. In the first part, we solve the staffing optimization problem for each scenario separately

to approximate the corresponding chance constraints by linear cuts. In the second part, we

iteratively solve the two-stage stochastic linear programs in which the chance constraints are

replaced by linear cuts. If the second-stage solution is found to be unfeasible for the chance

constraints, we use simulation to generate more linear cuts (3) to better approximate the chance

constraints. This iterative procedure stops when we find first-stage and second-stage solutions

that satisfy all the chance constraints. Proposition 3 states that under reasonable conditions,

this will happen after a finite number of steps.

Given that the arrival rates are assumed to be bounded, we can always choose a staffing large

enough such that all the probability constraints are satisfied. So, without loss of generality we

can assume that the set of feasible staffing solutions at the first stage is finite. Steps 1 and 2

of Algorithm 2 are basically a procedure to separately solve the staffing optimization problem

for each scenario, i.e., we iteratively generate cuts and solve the corresponding linear programs

until getting a staffing solution satisfying all the chance constraints. An important step of the

algorithm is that when there is a call type for which the corresponding probability value in

(2) is too small, then we need to adjust the staffing, as the current staffing does not belong to

the concave region of the probability function and would result in bad cuts. Moreover, since

the linear cuts added after Steps 1 and 2 of Algorithm 2 might be not sufficient to accurately

approximate the chance constraints, in Step 3 we need to solve the approximate problem (P4)

to get first- and second-stage solutions and add more cuts if these solutions do not satisfy the

chance constraints. (P4) can be solved directly as a, potentially large, MIP problem, as in Chan

et al. (2016), as presented in Algorithm 3. Alternatively, we can use the L-shaped decomposition

method (Algorithm 1). As the algorithm relaxes the integrality condition on the second-stage

variables, we have to solve all second-stage subproblems again after the L-shaped execution in

order to obtain integer solutions, as presented in Algorithm 4. We also use the cut strengthening

technique discussed in Section 4.3. We now prove that Algorithm 2 is well defined.

Proposition 3 Assuming that the arrival rates are always bounded from above and the support

set X of first-stage solutions is finite, Algorithm 2 stops after a finite number of iterations.

Proof. Since X is finite, this implies that the algorithm must stop after a finite number of
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Algorithm 2: Simulation-based two-stage staffing with recourse

# 1. Initialization
– Select a threshold ρ > 0 to determine a “concave region” for the functions ĝM , e.g., ρ = 0.5
– Add preliminary constraints using the fluid model approximation
– Select a step size d ∈ N∗ for the sub-gradient estimations and s ∈ N∗

# 2. Construction of piecewise linear approximations of second-stage chance constraints
For each scenario n = 1, . . . , N
repeat

Solve the corresponding second-stage problem (4)

min
z,w

{
cTz | Anz ≤ bn,Hnz +Knw ≤ hn

}
to obtain a solution z∗

# 2.1 For each k with too small probability value, add s agents to a group that can serve call
type k
repeat

Run the simulation with staffing z∗ to obtain ĝM (z∗; ξn)
k̄ = argmink ĝk,M (z∗; ξn)
if ĝk̄,M (z∗; ξn) < ρ then

Select i randomly and uniformly in Gk̄ and set z∗i = z∗i + s

until ĝk̄,M (z∗; ξn) ≥ ρ for all k;
# 2.2 Add sub-gradient cuts
for k = 0, . . . ,K do

if ĝk,M (z∗; ξn) < 1− δk then
Add sub-gradient cut (3) to the set {Anz ≤ bn}

until ĝk,M (z∗; ξn) ≥ 1− δk for all k;
– Add valid inequalities for each sub-gradient cuts initialized (as per Corollary 1)
# 3. Iteratively solving the linear problem and adding more linear cuts
repeat

# 3.1. Solve the two-stage problem with recourse
– Solve sub-problem (P4) and add linear cuts to obtain a first-stage solution x∗ as well as
recourse solutions (r∗+

n , r∗−n ), n = 1, . . . , N .
# 3.2. Add more linear cuts if there are unsatisfied chance constraints
for n = 1, . . . , N ; k = 0, . . . ,K do

z∗n = x∗ + r∗+
n − r∗−n

if ĝk,M (z∗n; ξn) < 1− δk, add linear cuts to the set {Anz ≤ bn}
until ĝk,M (x∗ + r∗+

n − r∗−n ; ξn) ≥ 1− δk for all n and k # Stop when all constraints are satisfied;

steps. In Steps 2 and 3 of Algorithm 2, for each scenario, each time when a staffing solution

is infeasible, this solution is removed by sub-gradient cuts. Since the arrival rates are bounded

from above, the number of infeasible solutions (r+, r−) for the second-stage problem is finite,

so the number of added cuts for each scenario must be finite. Therefore, Algorithm 2 converges

in a finite number of iterations.
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Algorithm 3: Simulation-based deterministic equivalent (DE) algorithm

– Solve the MIP sub-problem (P4) and obtain a solution x∗

# Add more linear cuts if there are unsatisfied chance constraints
for n = 1, . . . , N ; k = 0, . . . ,K do

z∗n = x∗ + r∗+n − r∗−n
if ĝk,M (z∗n; ξn) < 1− δk then

Add sub-gradient cut (3) to the set {Anz ≤ bn}

Algorithm 4: Simulation-based L-shaped (LS) algorithm with strengthened cuts

– Solve the second-stage relaxation of (P4) using the L-shaped (Algorithm 1) and obtain a
first-stage solution x∗

# Compute integer second-stage solutions
– Compute (r∗+n , r∗−n ) = argminr+,r−∈NIQM (x∗; ξn), n = 1, . . . , N
# Add more linear cuts if there are unsatisfied chance constraints
for n = 1, . . . , N ; k = 0, . . . ,K do

z∗n = x∗ + r∗+n − r∗−n
if ĝk,M (z∗n; ξn) < 1− δk then

Add sub-gradient cut (3) and corresponding MIR inequalities (11) to the set
{Anz ≤ bn}

5 Numerical Illustrations

5.1 Algorithms and Experimental Setting

We evaluate the performance of the proposed simulation-based decomposition algorithm using

three call center models of different sizes: a small one, a medium one, and a large one. We

compare our approach with a direct solution of (P4) via a MIP solver such as CPLEX, as in

Chan et al. (2016). Problem (P4) can be formulated as the following deterministic equivalent:

(MIP)



min
x,r+n ,r

−
n

cTx+
1

N

N∑
n=1

(c+)Tr+n − (c−)Tr−n

subject to An(x+ r+n − r−n ) ≤ bn, ∀n = 1, . . . , N

Hn(x+ r+n − r−n ) +Knw ≤ hn, ∀n = 1, . . . , N

x ∈ X, r+n , r−n ∈ NI , w ≥ 0.

When reporting our results, we denote Algorithm 2 by LS and the approach in which (P4)

is solved directly by CPLEX by DE (deterministic equivalent). In our experiments with the

three examples, we use the multi-cut LS (Algorithm 1). We will show in Section 5.7 that this

multi-cut version outperforms the single-cut one, especially for medium and large call centers.

When running the algorithms, we use independent random numbers across the scenarios for both

the first-stage and second-stage simulations. When estimating subgradients, on the other hand,

we use common random numbers across the two terms of the finite difference, as in Cez̧ik and
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L’Ecuyer (2008). We also use common random numbers between LS and DE, when comparing

them. We use step sizes d = 1 and s = 1, and take M = 1000 for all examples. To assess the

quality of the solutions returned by the algorithms, we perform an out-of-sample evaluation of

each returned first-stage solution, on an independent set of scenarios. For this, we take 1000

scenarios for the small example, and 100 scenarios for the medium and large examples. For each

scenario, we fix the first-stage solution and we estimate the expected cost of the recourse by

doing second-stage simulations and solving the second-stage problem in the same way as when

we solve the entire two-stage SAA. We take the average over all scenarios and add the cost

of the initial staffing, to obtain an estimate of the total expected cost for the given first-stage

solution. We compute and report the “out-of-sample” costs given by the first-stage solutions

returned by the LS and DE approaches for these new sets of scenarios.

In our experiments, the cost ci of an agent of group i is taken as an affine function of its number

of skills:

ci = 1 + 0.05(|Si| − 1)

where |Si| is the cardinality of Si, for all i, and c = (c1, . . . , cI)
T. For the costs of adding or

removing agents, we consider three cases, labeled R1, R2, and R3, as defined in Table 1.

Test case c+ c−

R1 2c 0.5c
R2 1.5c 0.75c
R3 1.1c 0.9c

Table 1: Costs of adding and removing agents

The arrival rate λk for call type k (for the entire period) is the realization of a random variable

Λk of the form Λk = ξkβk (a product of two random variables), where the realization of ξk is

unveiled at the beginning of the second stage, while βk remains unknown, but has a smaller

variance than Λk. This product form agrees with standard random arrival-rate models discussed

in Avramidis et al. (2004), Ibrahim et al. (2012), Oreshkin et al. (2016), for example. Realistic

models for actual call centers are likely to be more complicated, but for our purpose of showing

the ideas, we prefer to keep the setting simple. For our illustrations, we take simple choices

of distributions: we suppose that ξk has a truncated normal distribution with parameters that

generally depend on k and that βk follows a symmetric triangular distribution of mean and

mode 1, minimum 0.9, and maximum 1.1 (see Avramidis et al., 2004). The normal distribution

is truncated to satisfy the assumptions of Proposition 3, although the truncated part has a

very small probability and the impact of the truncation is negligible (we checked this with

additional experiments). To select the parameters αk in the initialization stage, we used the

method described in Section 4.1, with ρ = 0.5.

The experiments were conducted on a machine running Debian 8 with Intel(R) Xeon(R) E5620

CPUs running at 2.40GHz. This computer has two CPUs with a total of 8 cores (or 16 threads)

and 98GB of memory. The simulations were made using the ContactCenters simulation software
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(Buist and L’Ecuyer, 2005), developed in Java with the SSJ simulation library. The algorithms

were coded in MATLAB and linked to IBM ILOG CPLEX 12.6 optimization routines under

default settings. To speed up the computations, the steps of performing simulations and adding

sub-gradient cuts for each scenario were run in parallel using all CPU cores.

5.2 Example 1: A Small Call Center

We first consider a small call center with K = 2 call types and I = 2 agent groups, with

S1 = {1} and S2 = {1, 2}. Agents in group 2 prioritize calls of type 2 over those of type 1, and

arriving calls of type 1 are first routed to idle agents in group 1, if any. This small example will

permit us to use more scenarios than the larger ones. We assume that for the two call types:

(i) each caller abandons immediately with probability 2% if it has to wait, (ii) patience times

are exponential with means 10 and 6 minutes, (iii) the “mean” arrival rate ξk follows a normal

distribution with means 100 and 70 calls per hour, with standard deviations that are 15% of

the means, and truncated to 2.5 standard deviations, and (iv) all service times are exponential

with means 10 and 7.5 minutes. The length of the period is one hour. The parameters in the

SL constraints are τ1 = τ2 = τ0 = 120 (seconds), l1 = l2 = 80%, and l0 = 85%. For each case

(R1, R2, and R3), we generate 5 independent sets of 100, 200, 300, 400, 500 scenarios. The

parameters αk for the initial constraints with the fluid model are taken as α1 = α2 = 1.

Steps 1 and 2 of Algorithm 2 are shared by the LS and DE methods, so only the computation

time for Step 3 differs between the two approaches. We report the latter to compare the two

methods, and we also report the total CPU time for the three steps, so one can judge the relative

contribution of Step 3. We will find that Step 3 takes only a small fraction of the total CPU

time for the small examples, and takes most of the time for the large examples. We note that

most of the computations for Step 3 used Java code and CPLEX, whereas the first two steps

were implemented in MATLAB and could probably be made more efficient. For DE, the MIP

problem (MIP) is typically very large because of the large number of scenarios, and CPLEX

cannot find an optimal solution even with a time budget of several hours. We set the time limit

to 200 seconds and the optimality gap to 0.05% for CPLEX when solving (MIP). In practice,

the time limit was always reached. In contrast, LS solved each linear problem in less than a

second, and Algorithm 1 ran in a few seconds only, so we did not set a time limit for CPLEX.

The results for the three cost structures R1, R2, and R3 are reported in Table 2. The smallest

costs and CPU times are in bold. For this small example, the “in-sample” objective values

returned by both approaches are similar. Out of 30 cases, LS wins 9 times, DE 9 times and the

other cases give an equality. However, LS runs significantly faster than DE (for Step 3) for all

instances. In the out-of-sample evaluation, the two methods return solutions having the same

cost in 14 cases, LS wins in 9 cases, and DE in 7 cases. Overall, LS performs better for this

example, because it returns its solution faster, and the quality of the solution is comparable.

In all cases, the out-of-sample costs given by the two methods are quite close in value.
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Table 2: Value of the best solution found for (P4) (Cost), CPU time for Step 3, total CPU time
(both in seconds), and cost of the retained first-stage solution of (P4) estimated out-of-sample,
for the small call center
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5.3 Example 2: A Medium-Size Call Center

We now consider a medium-size call center with K = 6 call types and I = 8 agent groups. We

assume that (i) the callers do not abandon immediately in case they have to wait, (ii) patience

times are exponential with means between 36 and 52 minutes, (iii) for the different k, we suppose

that ξk follows a normal distribution with mean from 0.45 to 9.15 calls per minute and standard

deviation which is 10% of the mean, truncated to 2.5 standard deviations on each side of the

mean, and (iv) all service times have a lognormal distribution with mean between 5.1 and 11.3

minutes. We take 10 hours for the period length. This corresponds to an oversimplified situation

in which the arrival rate is constant over a day. We also ran experiments with a period length

of one hour. We take τk = 120 (seconds) and lk = 80% for k = 0, . . . ,K. We try two sets of

targets for the chance constraints: (i) 1 − δ0 = 85% and 1 − δk = 80%, k = 1, . . . ,K, and (ii)

1 − δ0 = 95% and 1 − δk = 90% for k = 1, . . . ,K. The parameters αk in the fluid model are

taken as 1, 4, 1, 1.2, 1, 3. The values of αk = 4 and 3 may appear surprisingly large (we impose a

capacity that is 3 or 4 times the load for certain call types), but this is often required for some

low-volume call types, and may depend on call priorities and routing rules. For this reason,

the initialization step in Section 4.1 in which we increase αk by moving a threshold ρ, is very

important in multiskill settings. It is also a good idea to increase αk faster for call types having

a lower contribution to the overall load.

Since the simulation here is more expensive than for the small call center of the previous ex-

ample, we only consider instances with less than 100 scenarios. For each cost structure, we

independently generate instances of 20, 50, 70 scenarios and we use the sample size M = 1000

to estimate the chance constraints. We solve each instance and report the corresponding first-

stage solutions. For the out-of-sample validation, we use 100 independent scenarios. We set a

time budget of 10 minutes for CPLEX.

Table 3 reports the results. As in the previous example, the smallest costs and shortest CPU

times are indicated in bold. The solutions returned by the two methods have similar costs, both

in-sample and out-of-sample, although LS is slightly better more often than DE. However, LS

runs significantly faster. Better solutions are obtained when increasing the number of scenarios

from 20 to 70 for the cost structures R2 and R3, but not for R1, for which the difference between

c+ and c− is larger.

Table 4, gives the first-stage solutions, the first-stage costs as well as the averages of the numbers

of added or removed agents for the three cases with N = 70 scenarios. As for the small call

center, we see that the first-stage costs under R1 and R2 are higher than under R3, and the

average value of r+ under R1 and R2 is much smaller than under R3. In the latter case, the

recourse costs are smaller, especially the addition of agents, leading to a smaller initial staffing.

We also ran this medium-sized model for a period of one hour, with targets (0.80, 0.85), and

the results are in Table 5. They are very similar to the 10-hour case. Of course, the CPU times

are much smaller for the one-hour case (we have much less to simulate). We see that LS wins
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Cost
Step 3

CPU time
(hours)

Total
CPU time
(hours)

Out-of-sample
cost

(1− δk, 1− δ0) Cases N LS DE LS DE LS DE LS DE

(0.80,0.85)

R1
20 186.90 186.90 0.26 0.54 0.36 0.64 188.25 188.11
50 188.10 188.15 1.95 3.43 2.18 3.66 188.02 188.09
70 184.35 184.63 1.55 3.94 1.91 4.30 188.6 188.91

R2
20 179.39 179.47 0.74 3.61 0.84 3.71 186.99 187.26
50 179.94 179.90 1.87 3.10 2.10 3.33 185.60 185.22
70 183.86 183.87 3.32 5.45 3.68 5.81 183.17 183.32

R3
20 180.10 180.13 1.44 2.57 1.54 2.67 187.41 188.10
50 177.43 177.48 1.61 5.25 1.84 5.48 184.15 184.15
70 175.31 175.41 3.57 10.08 3.93 10.44 183.32 183.64

(0.90,0.95)

R1
20 191.43 191.34 1.31 2.94 1.42 3.05 194.68 194.65
50 193.64 193.78 1.17 2.69 1.42 2.94 194.32 194.57
70 191.16 191.17 2.39 2.33 2.78 2.72 195.32 195.46

R2
20 185.77 185.75 0.37 0.87 0.48 0.98 193.20 193.34
50 186.40 186.46 2.07 3.84 2.32 4.09 191.21 191.32
70 190.33 190.34 1.44 4.63 1.83 5.02 189.71 189.89

R3
20 185.03 185.00 2.06 4.00 2.17 4.11 195.62 194.89
50 183.21 183.30 2.54 4.43 2.79 4.68 190.72 190.72
70 180.47 180.61 3.38 10.65 3.77 11.04 189.28 189.28

Table 3: Value of best solution found for (P4) (Cost), CPU time for Step 3, total CPU time (in
hours), and cost of retained first-stage solution estimated out-of-sample, for the medium-size
call center

both ways: shorter CPU times and also lower out-of-sample costs in almost all cases.

5.4 Example 3: A Larger Call Center

We now consider a larger call center with K = 20 call types and I = 15 agent groups. We

assume that (i) the callers abandon with probability 0.1 in case they have to wait, (ii) all

patience times are exponential with means 6 minutes, (iii) for each call type k, the arrival

rate ξk follows a normal distribution with mean from 130 to 260 calls per hour and standard

deviations which is 10% of the mean, truncated to 2.5 standard deviations, and (iv) all service

times are exponential with means 7.5 minutes. We take τk = τ0 = 20 (seconds), lk = 50% for

k = 1, . . . ,K, and l0 = 80%. The length of the period is one hour. For the chance constraints,

we try (i) 1− δ0 = 85% and 1− δk = 80%, k = 1, . . . ,K, and (ii) 1− δ0 = 95% and 1− δk = 90%

for k = 1, . . . ,K. For each cost structure R1, R2 and R3, we test LS and DE with 20, 50, and

70 scenarios. For DE, we give CPLEX a time budget of 10 minutes and a MIP gap of 0.05%.

We take αk = 1 for all k.

Table 6 reports the results. Both in-sample and out-of-sample, the costs of the retained solutions

are slightly better for LS than for DE. However, LS requires much less CPU time for all instances.

The out-of-sample costs are also improved when we increase the number of scenarios.

The computing time for one iteration of Step 3 of Algorithm 2 for the LS and the DE can be

approximated as (νLS +ν) and (νDE +ν), respectively, where νLS stands for the total computing

time to solve (P4) by the LS method (Algorithm 2), νDE is the total computing time required

24



(1− δk, 1− δ0) Case Algorithm xT cT x Avg. r+ Avg. r−
Total
cost

Out-of-
sample
cost

(0.80, 0.85)

R1
LS

(33, 26, 88, 6,
0, 0, 4, 11)

181.30 4.11 10.64 184.35 188.60

DE
(34, 26, 88, 6,
0, 0, 5, 10)

182.40 3.78 11.27 184.63 188.91

R2
LS

(34, 26, 92, 6,
0, 0, 6, 10)

187.70 4.30 14.40 183.86 183.17

DE
(33, 26, 92, 5,
0, 0, 6, 11)

186.60 3.99 11.34 183.87 183.32

R3
LS

(33, 23, 84, 7,
0, 0, 3, 4)

165.90 15.36 9.24 175.31 183.32

DE
(33, 23, 84, 8,
0, 0, 2, 5)

167.10 14.06 8.67 175.41 183.64

(0.90, 0.95)

R1
LS

(37, 25, 91, 4,
3, 0, 6, 7)

186.70 4.71 10.69 191.16 195.32

DE
(36, 26, 92, 4,
2, 0, 6, 7)

186.55 4.76 10.63 191.17 195.46

R2
LS

(32, 27, 93, 7,
2, 0, 4, 12)

190.90 5.21 11.04 190.33 189.71

DE
(32, 27, 94, 6,
2, 0, 4, 13)

192.00 4.63 11.20 190.34 189.89

R3
LS

(32, 24, 86, 8,
0, 0, 3, 5)

170.15 17.33 10.66 180.47 189.28

DE
(32, 24, 86, 8,
0, 0, 3, 5)

170.15 17.03 10.11 180.61 189.28

Table 4: First-stage solutions, first-stage costs and average number of additions and removals
of agents for N = 70 for the medium call center

by CPLEX to solve (MIP), and ν is the CPU time required to perform the simulation and add

more sub-gradient cuts for unsatisfied chance constraints (Step 2.2 in Algorithm 2). For the

medium and large examples, νLS is very small (a few seconds, see Table 10 below) compared to

νDE (set to 10 minutes). The number of iterations at Step 3 is always smaller for LS than for

DE. This is why LS is faster than DE in all instances.

Table 7 reports the first-stage solutions, first-stage costs, the average numbers of added or

removed agents for R1, R2, R3, the optimal value of the respective stochastic programs, and

the out-of-sample costs. As for the smaller call centers, we observe that in all three cases, LS

generally gives a slightly lower first-stage cost than DE. The costs for R1 and R2 are larger than

for R3, and we also obtain a larger first-stage cost when the SL targets are higher. Moreover,

the average numbers of added or removed agents is smaller for R1 and R2 than for R3.

5.5 Consistent Values of Returned Solutions

Given that our approach is partly heuristic, there is always a risk that once in a while, it returns

a poor solution due to a bad cut. To have an idea of how often this may happen, we made

further experiments in which we ran Algorithm 2 several times independently, and compared the

out-of-sample costs of the returned solutions. To illustrate the type of results we found, Table 8

reports the out-of-sample costs over 10 independent runs, for the medium and large call center
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Cost
Step 3

CPU time
(seconds)

Total
CPU time
(seconds)

Out-of-sample
cost

case N LS DE LS DE LS DE LS DE

R1 20 169.66 169.66 285 1030 542 1287 175.39 175.56
50 167.33 167.38 454 1675 1029 2250 176.13 176.94
70 169.70 169.73 757 1396 1673 2312 175.20 175.67

R2 20 165.41 165.48 138 1337 395 1594 169.83 170.31
50 168.80 168.78 249 1617 824 2192 168.80 169.18
70 166.82 166.82 735 1042 1651 1958 169.76 170.10

R3 20 164.38 164.38 295 829 552 1086 169.63 169.63
50 165.76 165.73 475 2269 1050 2844 169.51 169.59
70 166.51 166.50 824 2152 1740 3068 169.42 169.59

Table 5: Results for a one-hour period, for the medium-size example

Cost
Step 3

CPU time
(hours)

Total
CPU time
(hours)

Out-of-sample
cost

(1− δk, 1− δ0) Case N LS DE LS DE LS DE LS DE

(0.80,0.85)

R1
20 156.62 156.75 1.08 5.20 1.24 5.36 159.77 158.64
50 157.13 157.20 2.44 7.98 2.73 8.27 158.59 159.39
70 157.66 158.65 2.29 9.90 2.67 10.28 158.52 158.75

R2
20 157.47 158.31 1.07 5.24 1.23 5.40 157.85 158.50
50 156.54 156.67 1.98 7.27 2.27 7.56 156.98 157.07
70 154.86 156.11 2.67 6.34 3.05 6.72 156.78 156.96

R3
20 161.61 164.37 1.12 4.89 1.28 5.05 158.43 157.58
50 154.65 154.86 2.37 10.48 2.66 10.77 158.03 158.09
70 155.72 159.18 2.76 9.01 3.14 9.39 158.02 159.43

(0.90,0.95)

R1
20 170.23 170.18 0.04 1.17 0.27 1.40 174.85 174.83
50 171.55 171.68 0.41 1.93 0.84 2.36 174.44 174.66
70 172.44 172.61 0.82 1.82 1.40 2.40 174.57 174.78

R2
20 172.02 171.95 0.29 1.28 0.52 1.51 173.82 173.92
50 169.97 170.01 0.16 0.96 0.59 1.39 172.46 172.57
70 169.63 169.77 0.58 1.19 1.16 1.77 172.68 172.70

R3
20 168.37 168.44 0.40 3.95 0.63 4.18 175.56 175.07
50 167.17 167.64 0.96 5.19 1.39 5.62 173.60 174.79
70 167.38 167.80 1.19 5.04 1.77 5.62 171.02 171.77

Table 6: Value of the best solution found for (P4) (Cost), CPU time for Step 3, total CPU time
(in hours), and cost of retained solution estimated out-of-sample, for the large call center
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(1− δk, 1− δ0) Models Algo. xT cT x Avg. r+ Avg. r−
Total
cost

Out-of-
sample
cost

(0.80, 0.85)

R1
LS

(20, 0, 3, 15, 0, 0, 21,
12, 15, 7, 12, 5, 5, 6, 8)

156.05 1.44 2.92 157.66 158.52

DE
(21, 0, 2, 16, 0, 4, 22,

13, 14, 10, 11, 2, 4, 5, 6)
157.50 1.35 3.50 158.65 158.75

R2
LS

(20, 0, 5, 15, 0, 0, 22,
12, 13, 10, 11, 6, 5, 5, 5)

156.10 1.33 3.87 154.86 156.78

DE
(19, 0, 5, 16, 0, 0, 23,
12, 11, 7, 12, 4, 8, 6, 7)

157.05 1.70 4.39 156.11 156.96

R3
LS

(19, 0, 6, 17, 0, 0, 21,
13, 15, 7, 11, 5, 3, 2, 7)

151.85 4.94 3.50 155.72 158.02

DE
(19, 0, 4, 16, 0, 0, 22,
16, 13, 7, 12, 0, 4, 6, 7)

151.95 4.58 2.94 159.18 159.43

(0.90, 0.95)

R1
LS

(21, 0, 7, 18, 0, 3, 23,
11, 15, 6, 11, 6, 7, 3, 10)

170.35 1.93 4.17 172.44 174.57

DE
(20, 0, 8, 18, 0, 3, 23,

11, 16, 6, 12, 6, 6, 3, 10)
170.40 1.64 4.59 172.61 174.78

R2
LS

(22, 0, 6, 17, 0, 1, 22,
14, 15, 7, 12, 3, 7, 4, 10)

168.00 2.79 4.83 169.63 172.68

DE
(22, 0, 6, 17, 0, 1, 22,

13, 15, 7, 13, 3, 7, 4, 10)
168.00 2.76 4.60 169.77 172.70

R3
LS

(19, 0, 6, 18, 0, 0, 22,
14, 15, 4, 13, 4, 4, 4, 10)

159.60 10.99 7.14 167.38 171.02

DE
(20, 0, 6, 18, 0, 0, 22,

14, 15, 4, 13, 4, 5, 4, 10)
162.00 10.16 7.87 167.80 171.77

Table 7: First-stage solutions, first-stage costs and average number of added or removed agents
for N = 70, for the large call center

examples, with the LS and DE methods, for the case R1 with N = 70 and targets (0.80, 0.85).

We see that there is very little variation between the values of the returned solutions.

5.6 A Comparison with Mean Value and Robust Approaches

Some may argue that the two-stage stochastic model considered in this paper is too much work,

in particular with large-scale call centers, as the model involves a set of solutions instead of

one solution as in one-stage models. To illustrate the worth of this additional complexity, we

compare our approach with two alternatives, namely, the mean value problem and a robust

model. The mean value (MV) problem or expected value problem is obtained by replacing all

the random variables, in our case the the random factor ξ, by their expected values (Birge and

Louveaux, 2011, Section 4.2). Denoting E[ξ] by ξ̄, this leads to the problem

(MV)


min
x

cTx

subject to P[Sk(x) ≥ lk | ξ̄] ≥ 1− δk, k = 0, . . . ,K,

x ≥ 0 and integer.

(16)

Let xMV denote the solution of (16). The Value of the Stochastic Solution (VSS) is defined as

VSS = EEV−RP where RP is the optimal value of (P1) and EEV = cTxMV + Eξ[Q(xMV, ξ)].
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Medium Large
Runs LS DE LS DE

1 188.60 188.91 158.52 158.75
2 188.87 188.67 158.52 158.75
3 188.60 188.91 158.52 158.75
4 188.60 188.91 158.62 158.85
5 188.60 189.12 158.52 158.85
6 188.60 189.12 158.52 158.61
7 188.45 188.91 158.52 158.75
8 188.87 188.67 158.52 158.75
9 188.60 188.91 158.62 158.75
10 188.87 188.91 158.52 158.75

Average 188.67 188.90 158.54 158.76

Table 8: Out-of-sample costs of returned solutions for 10 independent runs, for the medium and
large call center examples, for case R1 with N = 70 and targets (0.80, 0.85).

If xMV is feasible for (P1), which is the case if ξ̄ is a possible realization of ξ as (P1) is relatively

complete, the VSS is positive.

Alternatively, we define a robust program by setting r+(ξ) = r−(ξ) = 0 for all ξ ∈ Ξ, leading to

the one-stage problem

(RO)


min
x

cTx

subject to P[Sk(x) ≥ lk | ξ] ≥ 1− δk, ∀ξ ∈ Ξ, k = 0, . . . ,K,

x ≥ 0 and integer.

We denote by xRO the solution of (RO) and ERO = cTxRO + Eξ[Q(xRO, ξ)]. Similarly to the

VSS, we define the quantity VRO = ERO − RP. Since (P1) is relatively complete, if ξ̄ ∈ Ξ,

VRO is positive. In practice, we cannot impose that the SL constraint is satisfied for all ξ, and

we approximate the robust problem a sample of N scenarios:

(RON)


min
x

cTx

subject to P[Sk(x) ≥ lk | ξn] ≥ 1− δk, ∀n = 1, . . . , N, k = 0, . . . ,K,

x ≥ 0 and integer.

(MV) requires the evaluation of one chance constraint only, and therefore is the fastest to

solve. (RON) requires all the chance constraints to be satisfied for all scenarios, and therefore

is more expensive. As before, we approximate the chance constraints using simulation over 1000

days, and we use the same scenarios to construct the robust problem as in (P4). We use the

same random numbers between all the programs, and the standard cutting-plane method to

solve (MV) and (RON). We denote the solutions of the approximate mean value and robust

problems by x̂MV and x̂RO respectively, and use these solutions to estimate the VSS et VRO,

using an out-of-sample of 70 scenarios, kept the same for the three problems. The value RP is

28



Cost gap
Total CPU time

(hours)
Example Targets Model VSS VRO MV RO (P4)

Medium

(0.80, 0.85)
R1 4.69 (2.55 %) 7.80 (4.13 %)

0.13 0.64
1.91

R2 12.86 (7.00 %) 9.05 (4.94 %) 3.68
R3 17.07 (9.74 %) 4.05 (2.25 %) 3.93

(0.90, 0.95)
R1 6.89 (3.60 %) 6.37 (3.26 %)

0.16 1.95
2.78

R2 15.37 (8.08 %) 5.83 (3.07 %) 1.83
R3 19.88 (11.02 %) 8.29 (4.95 %) 3.77

Large

(0.80, 0.85)
R1 8.79 (5.58 %) 6.23 (3.93 %)

0.01 0.77
2.67

R2 10.28 (6.64 %) 5.89 (3.76 %) 3.05
R3 13.01 (8.35 %) 8.22 (5.20 %) 3.14

(0.90, 0.95)
R1 10.25 (5.94 %) 2.70 (1.55 %)

0.07 1.22
1.40

R2 11.98 (7.06 %) 5.80 (3.36 %) 1.16
R3 15.16 (9.06 %) 8.20 (4.75 %) 1.77

Table 9: Gaps and CPU times for the Mean Value and Robust approaches, for the medium and
large examples

estimated using our LS approach, noting that the costs given by the DE are also quite similar.

We compute the gaps for the three instances of 70 scenarios with two sets of targets (0.80, 0.85)

and (0.90, 0.95), as in the previous sections. Table 9 reports the CPU times for solving the

mean value, robust and two-stage problems, and the gaps in nominal value as well as in relative

value. The CPU times reported for solving the two-stage instances include the times for the

initialization step, so they correspond to the “total CPU time” in Tables 3 and 6. The gaps

are significant, while smaller for the robust model, suggesting that for the considered model, it

is more interesting to staff against the worst case and pay a penalty to remove agents than to

consider the average scenario. On the other hand, the CPU times for solving the robust model

are slightly less than those required by the LS approach, except for large instances with targets

(0.80, 0.85) for which the robust model is solved three times faster approximately. As expected,

the computing time reduction is impressive for the mean value problem, as only one scenario is

considered, but the VSS shows that it leads to a much more costly solution.

5.7 A Comparison of the Single-cut and Multi-cut LS Approaches

We provide a brief comparison of the performance of the multi-cut and single-cut L-shaped

approaches on our three call center examples. While the multi-cut approach usually decreases

the number of master iterations, i.e., the number of master problems to solve, the generation of

many cuts can however significantly slow down the master problem solving, and some authors,

e.g., Bodur and Luedtke (2017), have obtained better results using a single cut approach. In our

case, the second-stage problems are however expensive to solve due to the presence of chance-

constraints, approximated by simulation, so we expect that the multi-cut L-shaped algorithm

(with L = N) will perform better. We try the three cost structures R1, R2, and R3 for the

recourse. We also set a limit of 300 iterations per call of Algorithm 1. Table 10 reports the

average number of iterations and the average total CPU times in Algorithm 1 per call to this
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algorithm, with each of the two LS approaches. Again, the smallest numbers are in bold. The

symbol “–” indicates that the corresponding approach failed to converge within 300 iterations.

We find that for all call center sizes, the multi-cut approach requires fewer iterations. The CPU

time is slightly larger with the multi-cut for the small call center (and also increases with the

number N of scenarios, because there are then more constraints in the master problem), but

becomes much smaller than for the single-cut when the size of the model increases. For the

largest model, the single-cut approach fails to converge within 300 iterations in all instances,

while the multi-cut converges in about 20 to 60 iterations, and the average CPU times are

reasonable (20 to 200 seconds). The results show the superiority of the multi-cut approach for

our simulation-based decomposition algorithm, in particular for large instances.

Case
Small call center Medium call center Large call center

# scenarios 300 600 800 20 50 70 20 50 70

R1
single-cut

# iterations 7.4 6.6 6.6 71.2 111.5 99.6 – – –
CPU time (s) 3.6 6.5 8.9 59.5 98.9 190.0 – – –

multi-cut
# iterations 4.7 4.4 3.9 26.2 26.2 24.0 54.2 26.6 23.6
CPU time (s) 4.3 17.9 20.2 17.7 21.1 29.5 156.6 31.6 29.7

R2
single-cut

# iterations 9.1 8.5 9.3 79.2 82.5 98.4 - - -
CPU time (s) 7.5 15.7 20.4 65.2 95.6 181.3 - - -

multi-cut
# iterations 8.1 7.9 7.5 25.3 24.5 23.7 62.2 55.6 58.1
CPU time (s) 11.7 42.3 82.4 16.3 21.0 27.9 70.1 65.3 72.3

R3
single-cut

# iterations 8.2 9.4 9.1 58.8 72.3 70.2 - - -
CPU time (s) 9.6 16.3 26.6 51.2 79.3 145.2 - - -

multi-cut
# iterations 7.5 8.1 8.9 19.3 20.1 18.9 43.4 38.2 35.7
CPU time (s) 11.9 48.2 98.7 13.3 17.2 21.2 53.3 45.3 56.2

Table 10: Comparison of the single-cut and multi-cut approaches

6 Conclusion

We have proposed and tested a simulation-based SAA method combined with a decomposition

algorithm for staffing optimization under arrival rate uncertainty. The problem is formulated

as a two-stage stochastic program with integer recourse and chance constraints on the service

levels at the second stage. While such a representation improves the model realism, it requires

expensive simulations for each arrival rate scenario. Our proposed approach, based on a Benders

decomposition with strengthened cuts, nevertheless provides good solutions with a reasonable

computing effort. Our numerical results, based on call center models of three different sizes, show

that the decomposition method outperforms a direct approach that does not use decomposition

to solve the approximating MIP problem, especially for the large call center example.

These results open several interesting directions for future research, e.g., the extension of the

method from staffing to scheduling problems. The proposed methodology might also be useful

for other similar workforce management problems, such as staffing and scheduling in hospitals,

clinics, and retail stores, for example, and especially for applications in which the constraints

are constructed based on complex queuing models, for which the performance needs to be

approximated by simulation.
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