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Analysis and Improvements of Path-Based
Methods for Monte Carlo Reliability Evaluation
of Static Models ∗

Héctor Cancela, Pierre L’Ecuyer, Matı́as Lee, Gerardo Rubino and Bruno Tuffin

Abstract Many dependability analyses are performed using static models, that is,
models where time is not an explicit variable. In these models, the system and its
components are considered at a fixed point in time, and the word “static” means
that the past or future behavior is not relevant for the analysis. Examples of such
models are reliability diagrams, or fault trees. The main difficulty when evaluating
the dependability of these systems is the combinatorial explosion associated with
exact solution techniques. For large and complex models, one may turn to Monte
Carlo methods, but these methods have to be modified or adapted in the presence
of rare important events, which are commonplace in reliability and dependability
systems. This chapter examines a recently proposed method designed to deal with
the problem of estimating reliability metrics for highly-dependable systems where
the failure of the whole system is a rare event. We focus on the robustness properties
of estimators. We also propose improvements to the original technique, including
its combination with randomized quasi-Monte Carlo, for which we prove that the
variance converges at a faster rate (asymptotically) than for standard Monte Carlo.
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1.1 Introduction

Dependability analysis of complex systems is sometimes performed using dynamic
stochastic models. The system is represented by some type of stochastic process
such as a Markov or a semi-Markov one, and different dependability metrics (reli-
ability, point availability, interval availability, etc.) are evaluated as functions of the
process at a fixed point in time (e.g., reliability or point availability), over a finite in-
terval (e.g. interval availability), or in equilibrium (e.g. asymptotic availability). But
in many cases, the system is considered in a context where the time variable plays
no specific role. These models are called static, and are widely used in engineer-
ing, taking the form of specific mathematical objects such as reliability networks,
reliability diagrams, fault trees, etc.

The basic scheme is the following. The system is composed of M components
which typically are subsystems of the original one, and are considered as atoms in
the modeling effort. Each component and the whole system can be in two differ-
ent states, either operational or failed. The set of states of the M components is a
configuration or state-vector of the system (hence, there are at most 2M such config-
urations, since not all configurations are necessarily possible in the model of a spe-
cific system). We assume that the probability of each configuration is known. The
main system dependability metric is the reliability R of the system, the probability
that the whole system is operational, or equivalently, its unreliability U = 1−R, the
probability that the whole system fails. The reliability is the sum of the probabilities
of all the configurations leading to an operational state for the whole system, and
the unreliability is the corresponding sum of the probabilities of all the configura-
tions leading to a failed system. In such a static context, R is sometimes also called
the availability of the system. The function Φ mapping the configurations into one
of the two possible system states is called the structure function of the system. It
provides the information about the way the M components are organized from the
dependability point of view, that is, the way the combination of operational and
failed components lead to an operational or failed system. The different modeling
frameworks (reliability networks, fault trees...) can be seen as different languages
that allow for a compact representation of structure functions.

Suppose that the components behave independently, and that for each component
we know the probability that it is in the operational state. We number the compo-
nents from 1 to M, and ri is the probability that component i is working. Coding
by 1 the operational state (of a component, or of the whole system) and by 0 the
failed state, we have that

R = ∑
x:Φ(x)=1

p(x),

where x denotes a configuration and p(x) its probability, x = (x1, · · · ,xM), and xi is
the state of component i in configuration x. The independence assumption on the
states of the components means that for any configuration x we have

p(x) = ∏
i:xi=1

ri ∏
j:x j=0

(1− r j).
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We are interested in the case where R ≈ 1, or equivalently, U ≈ 0, the usual situa-
tion in many areas, typically in the analysis of critical systems. These are systems
where a failure may produce losses in human lives (transporting facilities, nuclear
plants...) or huge losses in monetary terms (information systems, telecommunication
networks...), so that system design is extremely conservative ensuring very low fail-
ure probability. This is a rare event context, the rare event being the system failure. If
X is a random configuration (randomness coming from the fact that the component
state is assumed to be a random variable), then, the rare event is “Φ(X) = 0”, and
P(Φ(X) = 0) = 1−R = U . Since these are binary random variables, R = E(Φ(X))
and U = E(1−Φ(X)).

In this chapter, we address the problem of estimating U (or R) using Monte Carlo,
where the structure function is given by means of a graph. Think of a communication
network represented by an undirected graph G = (V,E), where V is the set of nodes
and E is the set of edges, also referred to as links in this context. The graph is
supposed to be connected and without loops. The components are, for instance, the
edges, and recall they are assumed to operate independently. Associated with edge i
we have its (elementary) reliability ri (or equivalently, its unreliability ui); if Xi is
the binary random variable “state of component i”, we have ri = P(Xi = 1), and
ui = P(Xi = 0), ri +ui = 1. A configuration is a vector x = (x1, · · · ,xM), where xi is
the state of component (here, edge) i. We denote by E(x) the subset of operational
edges in configuration x, that is, E(x) = {i ∈ E : xi = 1}, and by G(x) the graph
G(x) = (V,E(x)). It remains to specify when the whole system works, that is, to
define the structure function. For this purpose, two nodes are selected in V , denoted
by the letters s (as source) and t (as terminal). The system (the network) works under
the configuration x if nodes s and t belong to the same connected component of the
random graph G(X). That is, Φ(x) = 1 iff in G(x), nodes s and t are connected.
This model is the basic one in the network reliability area, and it corresponds to the
typical model in reliability block diagrams. Computing R = P(Φ(X) = 1) is an NP-
complete problem, even in very restricted classes of graphs. More specifically, the
use of the many combinatorial approaches for computing R or U cannot deal with
models of moderate size (around, say, one hundred components) and simulation is
the only available evaluation tool.

For general presentations about the computation of the reliability or the unrelia-
bility in these static contexts, or about bounding them, as well as complexity issues,
see [1], [2], [3], [4]. In these references the reader can also find material about Monte
Carlo estimation of these basic dependability metrics.

1.2 Standard Monte Carlo reliability evaluation

The standard estimation procedure for U (or R) simply consists in building a se-
quence X (1), X (2), · · · , X (n) of independent copies of the random configuration X ,
and checking in each graph of the corresponding sequence G(X (1)), · · · ,G(X (n)) if s
and t are connected. The ratio between the number of times s and t are not connected
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and n, is then an unbiased estimator Û of U . Formally,

Û =
1
n

n

∑
i=1

1(Φ(X (i)) = 0),

where 1(A) is the indicator function of event A. The variance of Û being V(Û) =
σ2

n =U(1−U)/n, a confidence interval for U , with level α ∈ [0,1], is obtained from
the central limit theorem (CLT):

U ∈
(

Û− z1−α/2
√

U(1−U)/n, Û + z1−α/2
√

U(1−U)/n
)

with probability 1−α , where z1−α/2 is the 1−α/2 quantile of the normal law with
mean 0 and variance 1. In many interesting and important systems, the reliability
of the components is close to one and the path redundancy in the graph makes that
the probability of the existence of at least a path between the two selected nodes is
extremely high. Both factors make that unreliability of the whole network is very
small. This precludes the use of the standard estimation approach, since we have to
wait for a long time (on average) before observing a system failure. In other words,
the cost in time of the standard procedure is very high.

To formalize this situation, assume that the unreliability of link i is ui = aiε
bi

with ai,bi > 0 and 0 < ε� 1. Recall that a cut in the graph (with respect to nodes s
and t) is a set of edges such that if we delete them from the graph, s and t become
unconnected. A mincut is a cut that does not contain strictly another cut. Nodes s
and t are unconnected if and only if for at least one (min)cut in the graph, all the
edges that compose it are down. If γ is a mincut, we can denote by Cγ the event “all
the edges in γ are down”, and write

U = P

( ⋃
all mincut γ

Cγ

)
.

Observing that, due to the independence of the components’ states, P(Cγ) = ∏i∈γ ui,
we see that U is a polynomial in ε and that U = Θ(εc) for some c > 0 (recall that
the graph is connected, so, there is at least one cut separating nodes s and t).

The real number ε is a way to parameterize rarity: as ε goes to zero, the system
failure event becomes increasingly rare. The relative error [9, 11] when estimating U
using Û , defined as the ratio between the square root of the variance of the estimator
and its mean, i.e.

√
U(1−U)/n/U (also called relative variance, or coefficient of

variation) is ≈ (nU)−1/2 when ε is small, and increases as ε decreases. We want
this relative error to be small, but not at any price! This means that we would like
to avoid using an important computing effort in order to obtain specific error levels.
That is, the CPU time required to compute the estimator from a sample of size n
must also be taken into account. For this purpose, we consider the work-normalized
relative variance (WNRV) of the estimator Û , defined by
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WNRV(Û) =
σ2

n τn

U2 ,

where τn is the mean time needed to compute Û using a sample of size n. Here, this
time is essentially linear in n. What we want now is that this ratio remains bounded
when ε → 0. In other words, no matter how rare the system failure is, we would
like to be able to estimate it accurately with “reasonable” effort. This property is
called bounded WNRV (BWNRV), and it does not hold for Û , because WNRV(Û)
is proportional to 1/U , and 1/U → ∞ when ε → 0.

In this work we discuss efficient Monte Carlo methods for the estimation of the
unreliability U of the network, by combining two approaches. First, as in other
works, we use easy-to-get knowledge about the network, namely its path structure,
to follow a conditional approach allowing to bound the target metrics (this is based
on ideas presented in [5]). We show, in particular, how to derive methods having
BWNRV in the homogeneous-components case. We also exhibit a counter-example
in the heterogeneous case, that is, a case of unbounded WNRV. Secondly, we ex-
plore the randomized quasi-Monte Carlo (RQMC) technique in this context, in or-
der to further reduce the variance of the estimators. These methods are usually ef-
fective mostly to estimate the integrals of smooth functions over the unit hypercube,
when the function depends only or mostly on a few coordinates. They often perform
poorly for discontinuous integrands. However, in our case, RQMC performs very
nicely both theoretically (with a provably faster convergence rate) and empirically.
Numerical results illustrate and compare the effectiveness of the different techniques
considered, as well as their combination.

For general material about Monte Carlo approaches in this area, in addition to
some general references [2, 3, 4] given earlier, the reader can see [8] where many
different procedures are described. In the same book [7], completely devoted to
rare event estimation using Monte Carlo techniques, other chapters contains related
material focused on other aspects of the problems and the methods available to solve
them.

1.3 A path-based approach

In [5] a technique for facing the problem of rarity is proposed. The idea is to start by
building a set P = {P1,P2, · · · ,PH} of elementary paths (no node appears more than
once in the path) connecting nodes s and t, such that any pair of paths does not share
any link (that is, P is a set of edge-disjoint paths between source and terminal). As
we will recall later, this is not a computationally expensive task (compared to the
cost of Monte Carlo procedures), that can be performed in polynomial time.

Let ph = ∏i∈Ph
ri denote the probability that all links of path Ph work. Assume

X (1),X (2), · · · is a sequence of independent copies of the random configuration X ,
and that G(X (1)),G(X (2)), · · · is the associated sequence of random partial graphs
of G. The main idea of the method is to consider the random variable F equal to the
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index of the first graph in this list where every path in P has at least one link that
does not work. Clearly, F is geometrically distributed with parameter q = ∏

H
h=1(1−

ph): that is, P(F > f ) = (1−q) f , f ≥ 1. In particular, E(F) = 1/q.
Let us write Ph = (ih,1, · · · , ih,Mh) for Ph ∈P , and let bh = min1≤m≤Mh bih,m be

the order (in ε) of the most reliable edge of Ph. We then have 1− ph = Θ(εbh) and
q = Θ(εb) where b = ∑

H
h=1 bh > 0. Observe that q→ 0 as ε → 0. The fact that

E(F) = 1/q means that, on the average, we have to wait for 1/q samples to find
a graph where at least a link is failed in each path of P . This suggests to sample
first from F . If the value f is obtained for F , then we assume that in a “virtual”
sequence of copies of G(X), in the first f − 1 elements nodes s and t are always
connected. It remains to deal with the f th copy. Let Y be a binary random variable
defined as follows: if C is the event “every path in P has at least one link that does
not work”, then P(Y = 1) = P(Φ(X) = 1 |C). According to this “interpretation” of
the sampling of F , the state of the network in the f th graph is modeled by Y .

We need now a sampling procedure for Y . Consider a path Ph =(ih,1, ih,2, · · · , ih,Mh)
belonging to P . Call Wh the r.v. giving the index of the first failed edge of Ph in
the order of the links in the path, Wh ∈ {1,2, · · · ,Mh}. For each path Ph in P , we
have [5]

Pr(Wh = w) =
rih,1rih,2 · · ·rih,w−1(1− rih,w)

1− rih,1rih,2 · · ·rih,Mh

,

which simply translates the definition of Wh into a formula. Sampling Y consists in
first sampling the state of every link in the model, and then checking by a standard
procedure, typically a DFS (Depth First Search) or a BFS (Breadth First Search)
method, if s and t are unconnected or not. Since we are assuming that in every path
of P , at least one link is failing, we first sample the states of the components of Ph
for h = 1,2, · · · ,H, then the states of the remaining edges in the graph. To sample
the states of the links in Ph, we first sample from the distribution of Wh. Assume we
get value w. We set the states of edges ih,1, ih,2, · · · , ih,w−1 (that is, random variables
Xih,1 , · · · ,Xih,w−1 ) to 1 and that of edge ih,w to 0. The states of the remaining edges
in Ph, if any, are sampled from their a priori original Bernoulli distributions, and
the same for the edges not belonging to any path in P . Then, we sample from Y ,
obtaining either 1 or 0 according to the fact that nodes s and t are respectively not
connected or connected, and we interpret this as a sample of the state of a network
where we know that in every path in P at least one link is failed.

Resuming, we will build, say, K independent copies F1, · · · ,FK of F together with
K independent copies Y1, · · · ,YK of Y , and will use as an estimator of U the number

Ũ = ∑
K
k=1 Yk

∑
K
k=1 Fk

.

To illustrate the gain obtained with this algorithm, let us consider the “dodec-
ahedron” shown in Figure 1.1, a structure often used as a benchmark for network
reliability evaluation techniques. We consider the homogeneous case, where all links
have the same unreliability ε . The source and the terminal are nodes 1 and 20.
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Fig. 1.1 A “dodecahedron” (20 nodes, 30 links). All links have reliability 1− ε .

The gain in efficiency with respect to the standard procedure is captured by the
ratio between the WNRV values for Û and Ũ . We call relative efficiency of Ũ with
respect to Û the ratio σ2

n τn/(σ̃2
n τ̃2

n ) with σ̃2
n and τ̃2

n the variance and the mean com-
putation time of Ũ for a sample of size n. We estimated the system unreliability for
n = 107 replications, for three cases: ε = 0.1, 0.01 and 0.001. The estimated relative
efficiency was, respectively, of 18.9, 188.3 and 3800.2 respectively. This illustrates
the power of the approach.

1.4 Robustness analysis of the algorithm

In [5], it is pointed out that we can still use a fixed number of samples n, by calling F
a random number W of times, where W = max{K ≥ 1 : ∑

K
k=1 Fk ≤ n}, and using the

unbiased estimator

U∗ =
1
n

W

∑
k=1

Yk.

In other words, we are “wasting” some results (the last ones) of the virtual sampling
process associated with Ũ . The variance of U∗ is then V(U∗) = σ2

n = U(1−U)/n,
because this is simply an efficient way of implementing the standard estimator.

The point is that while we have not modified the variance with respect to the
standard estimator, we did obtain an important gain in time. Let us denote by τ∗n the
average cost in time for the sampling process (that is, sampling W times from the
geometric distribution and sampling W times r.v. Y ). The WNRV of this procedure
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is σ2
n τ∗n /U2. Here, τ∗n is proportional to E(W ), that is, to nq, leading to

WNRV (U∗) = Θ(εb−c)

where we recall that U ∼ aεc for some constant a > 0, and that b = b1 +b2 + · · ·+bH
where the most reliable edge in path Ph has unreliability ∼ dεbh for some constant
d > 0.

Recall that the desirable property (BWNRV) is to have WNRV(U∗) bounded
when ε gets small. This means that the estimation remains “efficient” for a given
computational time budget, no matter how small ε is. We see that the estimator U∗

does not always have this property, and that a sufficient condition for BWNRV is
then b≥ c, as pointed out in [6].

In Figure 1.2 we see a trivial example where a 3-node model is analyzed using
the U∗ estimator. We assume homogeneous edges, i.e., edges with reliabilities of
the same order of magnitude. In this case, the BWNRV property holds. Indeed, the
reader can check that U = 2ε2− ε3 ≈ 2ε2 (we are setting all the unreliabilities to
the same value ε) and that the variance for a single crude estimation is U(1−U) =
2ε2− ε3− 4ε4 + 4ε5− ε6 ≈ 2ε2. Calling P1 the path (s, t) and P2 the path (s,u, t),
the probabilities that all links of P1 and P2 work are p1 = 1− ε and p2 = (1− ε)2

respectively. Thus q = (1− p1)(1− p2), which here is exactly equal to the target, the
system unreliability U , and then q≈ 2ε2. As a consequence, the BWNRV property
is verified. We see that c = 2 and that b = 2 as well, so that the given sufficient
condition is satisfied.

s

u

t

ε ε

ε

Fig. 1.2 A simple “triangle” illustrating the path-based method leading to bounded relative effi-
ciency. The unreliabilities are all equal to ε . There are 2 paths between s and t, path P1 = (s, t)
and path P2 = (s,u, t). The probability p1 that all links in P1 work is 1− ε and, for P2, we have
p2 = (1−ε)2, dealing to q = (1− p1)(1− p2)≈ 2ε2. We have U = 2ε2−ε3 ≈ 2ε2. Finally, WNRV
= σ2τ/U ≈ 1, thus bounded.

Consider now the “bridge” in Figure 1.3, where the links are no longer homoge-
neous with respect to their reliabilities (or unreliabilities). In the picture, the unreli-
abilities of the links are indicated.

The unreliability of the system is

U = ε
4(2+ ε

4−2ε
5−2ε

6 +2ε
7) = 2ε

4 +o(ε4).

The computations are longer here, but we can check that whatever the set of disjoint
paths between s and t, we always have b < 4. So, in this case, the path-based method
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Fig. 1.3 A “bridge” illustrating the path-based method leading to unbounded WNRV

has not the BWNRV property. For the details, there are three possible sets of dis-
joints minpaths: P1 = {(s,u,v, t)}, P2 = {(s,v,u, t)} and P3 = {(s,u, t),(s,v, t)}.
For each set Pi, let us denote by qi the corresponding probability that at least one
link in each path is not working. We have:

q1 = 1− (1− ε
2)(1− ε)(1− ε) = 2ε−2ε

3 + ε
4 ≈ 2ε

q2 = 1− (1− ε
2)(1− ε)(1− ε

5)≈ ε

q3 = (1− (1− ε
2)(1− ε

5))(1− (1− ε
2)(1− ε

1))≈ ε
2
ε

1 = ε
3.

Then, for the three cases, BWNRV is not verified because we respectively have for
the three cases WNRV = Θ(ε−3) for P1, WNRV= Θ(ε−3) for P2 and WNRV=
Θ(ε−1) for P3.

Coming back to the homogeneous case, illustrated by the elementary example of
Figure 1.2, let us show that it is always possible to find a set of paths P leading
to the BWNRV property of the corresponding estimator U∗. This has been briefly
stated in [6]. We provide a more detailed proof here.

Theorem 1. Assume that the unreliabilities of the links are homogeneous in ε , that
is, that for any link i in the graph, we have ui = aiε . Then, it is always possible to
find a set of minpaths P such that the corresponding estimator U∗ has the BWNRV
property.

Proof. First, observe that it is useless to put the same exponent, say β , to the ε factor
in the link unreliabilities, since we can then rename εβ as the new ε in the analysis.

The breadth of a graph is the size of a minimal size mincut. Let K be the number
of mincuts in the graph, which we arbitrary order and number from 1 to K. Let Ck
be the event “all links in the kth mincut are failed”. Writing

U = Pr(C1∪·· ·∪CK),

and using Poincare’s formula for expanding this expression, we see that the term
with the lowest power in ε is of the form aεc where c is precisely the breadth of
the graph. For this, just observe that for each mincut Ck of minimal size c, P(Ck) =
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Θ(εc), and that for any other P(C j) and for all terms of the form P(Ci∩C j∩ . . .) we
obtain Θ(εd), d > c.

The second observation comes from the theory of flows in graphs, where a basic
result states that if c is the breadth, then there exist c disjoint paths from s to t. For
an effective way to find them, they come for instance directly as a byproduct of the
marking process in Ford-Fulkerson algorithm (for finding a maximal flow from s to
t), which runs in time polynomial in the size of the graph [16]. Then, we just see that
with the previous notation, for each of the H = c minpaths, bh = 1 and thus b = c,
which is sufficient for having the BWNRV property. ut

1.5 Improvement

The estimator Ũ does not have the same variance as U∗ and is more difficult to
analyze; it actually has a (slightly) smaller variance and the same computational
cost. The goal in [5] is to point out that the standard estimator can still be very
useful when dealing with rare events if an efficient implementation is possible. That
means, in particular, to keep F as a geometric random variable.

Looking now for efficiency improvements, we can replace the random variable
F by its mean (instead of sampling it). Let us look at what happens in this case.
If F is replaced by its expected value, then exactly one in 1/q independent graphs
will have at least one failed link on each path of P . Recall that Y is a Bernoulli
random variable that is 1 if the graph is failed and 0 otherwise, conditioned on
the fact that at least one link on each selected path is failed. The random variable
Z = qY is then an (unbiased) estimator of U over such a block. This is known as
a conditional Monte Carlo estimator [12]: the usual estimator has been replaced
by its conditional expectation given Y . A confidence interval for U is obtained by
considering independent copies of Z and applying standard procedures.

Define p as the probability that Y = 1. Obviously, U = qp, and V(Z) = q2V(Y ) =
q2 p(1− p). If we look at the ratio of the WNRV of Z (considering the expected value
of F) over the WNRV of the estimator U∗ (obtained by employing the geometric
distribution) and if we neglect the time to generate the geometric r. v., we get the
following relative efficiency:

WNRV(Z)
WNRV(U∗)

=
qU(1−U)
q2 p(1− p)

=
1−qp
1− p

> 1. (1.1)

This shows that the conditional Monte Carlo estimator always yields an efficiency
improvement that we are able to characterize, by reducing the WNRV. The cost (in
CPU time) is also reduced because there is no longer a need for sampling from
a geometric law. Note that in general, conditional Monte Carlo always reduce the
variance.

Let us illustrate this improvement on a few examples. Consider first the bridge
shown in Figure 1.3, but with all its links identical. For the path-based method, we
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use the two symmetric paths between s and t of size 2: P = {(s,u, t),(s,v, t)}. In
Table 1.1 we see that the improvement roughly doubles the efficiency of the original
approach.

ui, for all link i estimation variance rel. efficiency (relation (1.1))
0.1 2.1 e-2 3.1 e-11 2.4
0.01 2.0 e-4 3.9 e-14 2.0

0.001 2.0 e-6 4.0 e-19 2.0

Table 1.1 For three cases, where the system failure event becomes rarer (ε going from 0.1 to
0.001), we show the result of the estimation, the variance of the estimator and the relative efficiency
with respect to the original method. The model is the “bridge” described in Figure 1.3.

Now, we evaluate the unreliability in the case of the topology given in Fig-
ure 1.4 with homogeneous links, where s = 1 and t = 14. The breadth of the
graph is c = 3, so, to use an estimation procedure having the BWNRV property,
we need three disjoint elementary paths between s and t. The three paths chosen are
P1 = (1,2,6,8,9,13,14), P2 = (1,3,7,10,14) and P3 = (1,4,7,11,12,14).

14

1

2

5
8

6

3

4

7

9

13

10

11 12

Fig. 1.4 We call this example a “reducible” topology, because there are many series-parallel sim-
plifications possible here, when s = 1 and t = 14. After those reductions, the result is a bridge
(see [4] for instance). In the homogeneous case, we can easily see, after some algebra, that when
every link has the same unreliability ui = ε , the system unreliability is U = 24ε3 + o(ε3). The
model is the “reducible” architecture, Figure 1.4.

In Table 1.2 we show the relative efficiency of the proposed improvement for this
“reducible” architecture. As we can see, the efficiency improvement is still signifi-
cant, while less than in the previously presented small bridge example.

Finally, we consider in Table 1.3 the more challenging dodecahedron structure
given in Figure 1.1. We performed the same experiments as with previous examples,
in order to show that in this case there is no improvement over the original method
(relative efficiency close to 1). The reason is that given the density of the graph, the
probability p = P(Y = 1) is small, leading to a relative efficiency of (1−qp)/(1−
p)≈ 1.
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ui, for all link i estimation variance rel. efficiency
0.1 1.9 e-2 8.9 e-11 1.4
0.01 2.0 e-5 3.7 e-16 1.3

0.001 2.0 e-8 2.0 e-22 1.2

Table 1.2 We evaluate the graph given in Figure 1.4 when the elementary unreliability of all links
is equal to 0.1, 0.01, 0.001.

ui, for all link i estimation variance rel. efficiency
0.1 2.9 e-3 2.9 e-12 1.02
0.01 2.0 e-6 4.1 e-18 1.01

0.001 2.0 e-9 4.3 e-25 1.01

Table 1.3 We evaluate the graph given in Figure 1.1 when the elementary unreliability of each
links is equal to 0.1, 0.01, 0.001.

In the next section, we show that the efficiency can be improved further by using
RQMC on top of the method proposed earlier.

1.6 Acceleration by Randomized Quasi-Monte Carlo

The previous sections make use of Monte Carlo methods. Very roughly, the basic
idea is to choose sample points randomly and independently according to a given
distribution. This random choice of points ensures that asymptotically, the empirical
distribution of the estimator converges to the theoretical one at a speed of O(n−1/2)
for a sample size n. This rate can be improved thanks to better spreading of points
(which are then no longer independent). This is the basic principle of quasi-Monte
Carlo (QMC) methods [13]. In practice, randomized versions called RQMC are
often used in order to obtain an unbiased estimator and allow error estimation. We
will now explain briefly the QMC and RQMC methods before applying them to our
static reliability problem.

Note that RQMC is not an appropriate method to handle the problem of rare
events, but once that problem is handled (in our case via a path-based conditional
Monte Carlo approach), RQMC can improve the efficiency by an additional order
of magnitude.

1.6.1 Quasi-Monte Carlo methods

In most simulation studies by computer (including ours), a single (random) realiza-
tion of the model is defined as a function of a uniform random variable over (0,1)M ,
or equivalently from M independent unidimensional uniform random variables over
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(0,1), where M is possibly unbounded; those uniform random variates are actually
replaced in practice by the output of a pseudorandom generator in Monte Carlo
methods. To describe QMC and RQMC techniques, we will therefore use (without
loss of generality) the framework of an estimation over the hypercube (0,1)M .

Suppose we want to estimate

E[ f (U)] =
∫

[0,1]M
f (u)du,

where U is uniformly distributed over [0,1]M . While Monte Carlo methods use a
sample {Ui, 1≤ i≤ n} of n independent random variables with the same distribution
than U to get (1/n)∑

n
i=1 f (Ui) as the estimator, QMC methods [10, 13] replace the

independent Ui’s by a sequence of deterministic points Ξ = {ξn, n≥ 1} in [0,1]M . A
basic requirement is that the sequence is asymptotically uniformly distributed, in the
sense that the proportion of points among the first n in the sequence Ξ falling in any
(multivariate) interval B, namely An(B,Ξ) = #{ξi,1≤ i≤ n : ξi ∈ B}/n, converges
to λ (B) as n→ ∞, where λ (B) is the Lebesgue measure of B. There exist several
different measures of the discrepancy between the empirical distribution of the n
first points of the sequence and the uniform distribution. One of them is the star
discrepancy, defined as

D∗n(Ξ) = sup
[0,x)⊂[0,1)M

∣∣∣∣An([0,x),Ξ)
n

−λ ([0,x))
∣∣∣∣ ,

which takes the sup over all intervals with one corner at the origin. A sequence Ξ is
actually asymptotically uniformly distributed if and only if D∗n(Ξ)→ 0 as n→ ∞.

Discrepancy measures are helpful to bound the error in the estimation of the
integral

∫
[0,1]M f (u)du. Using the star discrepancy, the Koksma-Hlawka bound [13]

is ∣∣∣∣∣1n n

∑
k=1

f (ξ (k))−
∫

[0,1]M
f (u)du

∣∣∣∣∣≤V ( f )D∗n(Ξ)

where V ( f ) is the variation of the function f in the sense of Hardy and Krause [13].
For the best known sequences Ξ , we have D∗n(Ξ) = O(n−1(logn)M) [13]; these are
named low discrepancy sequences. In this paper we use one class of low-discrepancy
sequences called the Sobol’ sequences [17]. Those sequences are instances of (t,M)-
sequences in base 2, which means that for a certain integer t ≥ 0, ∀m ≥ t, if we
consider a set of 2m successive points of the form {ξ ( j) : k2m ≤ k < ( j +1)2m}, for
any k ≥ 0 and m > t, and any dyadic interval

E =
M

∏
i=1

[ai2−di ,(ai +1)2−di ], where ai,bi ∈ N, di ≥ 0, ai ∈ {0,1},

of size λ (E) = 2t−m with m ≥ t, then the number of points in E is exactly 2t . This
means that for any function f which is constant in each dyadic interval of size 2t−m,
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the integration error by a set of 2m successive points of the above form is always
zero.

QMC methods therefore asymptotically outperform MC, but from the practical
side, evaluating the error is a very difficult task in general. The worst-case error
bounds such as the Koksma-Hlawka bound are too hard to compute in practice and
are often much too large to be useful anyway. Even if the bound converges asymp-
totically at rate O(n−1(logn)M), it often takes an astronomically large value of n
before this bound becomes meaningful, as soon as the dimension M exceeds 10
or so [18]. Nevertheless, QMC methods are typically more effective than what the
bounds tell us. RQMC methods permit one to estimate the error without relying on
these bounds.

1.6.2 Randomized quasi-Monte Carlo methods

RQMC methods randomly perturb a low-discrepancy sequence without loosing its
good distribution over [0,1]M . A simple illustration of this is when all the points are
shifted by the same uniform vector U . That is, Ξ is replaced by its randomly-shifted
version {Vk := (ξk +U) mod 1, k ≥ 1}, where “mod 1” means that we retain only
the fractional part of each coordinate. Thus, the whole sequence is somehow just
translated over the interval. Other types of randomization exist [10]; some of them
are adapted to the structure of the low-discrepancy sequence. For the Sobol’ se-
quence, a random digital shift generates a uniform point in [0,1]M , expands each
if its coordinates in base 2, and adds the digits modulo 2 to the corresponding dig-
its of each point of the sequence. This randomization preserves the (t,M)-sequence
property. With this particular sequence and randomization, if we assume that f has
bounded variation, the variance of (1/n)∑

n
k=1 f (Vk) is O(n−2(logn)2M), which con-

verges faster than the Monte Carlo rate of O(1/n). The convergence speed can be
even faster for specific classes of smooth functions (with square-integrable high-
order partial derivatives, for example) and adapted randomized sequences [10, 14].

To estimate the error, one can make m of independent replicates of the random-
ization, and estimate the variance in a classic way by the sample variance of these m
replicates. The central limit theorem applies when m→ ∞. In practice, confidence
intervals are often computed by assuming (heuristically) that the average is approx-
imately normally distributed even when m is small.

QMC/RQMC error bounds degrade rapidly when the dimension M increases,
because the (logn)M term becomes more important and a much larger value of n is
required before this term is dominated by the 1/n term. As a general rule of thumb,
QMC/RQMC is more effective when the dimension M is small, but sometimes it
also works well in practice even when M is large [10]. This happens when the inte-
grand f depends mostly on just a few coordinates, or can be decomposed (approx-
imately) as a sum of terms where each term depends only on a small number of
coordinates [15]. We then say that the integrand has low effective dimension.
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1.6.3 Application to our static reliability problem

We now examine how to apply RQMC to our static reliability problem, starting
with a crude implementation. We need to sample the status of M links. The state
of the jth link in the ith replicate is sampled from the jth coordinate of the ith
point of the low-discrepancy sequence: if this coordinate is less than r j, then the
state is 1, otherwise it is 0. Let ψ be the indicator function mapping each point
y = (y1, · · · ,yM) ∈ [0,1]M to a vector state x = (x1, · · · ,xM) in {0,1}M , defined by
x j = 1 if y j < r j, and x j = 0 otherwise. This mapping partitions the unit hypercube
[0,1]M into 2M rectangular boxes, each one sharing one corner with the hypercube.
The indicator function Φ ◦ψ , where ‘◦’ denotes the composition operator, takes a
constant value over each of those boxes: It is equal to 0 for states in which the system
is failed, and 1 for the other states. The reliability is therefore R =

∫
[0,1]M Φ ◦ψ(y)dy

and the unreliability U =
∫
[0,1]M (1−Φ)◦ψ(y)dy. We call minimal state vector any

vector z ∈ {0,1}M such that Φ(z) = 1, and Φ(x) = 0 for all x < z. Let Np be the
number of minimal state vectors (they correspond to elementary paths in the graph).
We similarly define a maximal state vector as any vector z ∈ {0,1}M such that (1−
Φ)(z) = 1, and (1−Φ)(x) = 0 for all x > z. Let Nc be the number of maximal state
vectors (corresponding to minimal cuts in the graph). Observe that the estimation
error is the same when estimating the reliability or the unreliability, i.e.,∣∣∣∣∣1n n

∑
i=1

Φ ◦ψ(yi)−
∫

[0,1]M
Φ ◦ψ(y)dy

∣∣∣∣∣=
∣∣∣∣∣1n n

∑
i=1

(1−Φ)◦ψ(yi)−
∫

[0,1]M
(1−Φ)◦ψ(y)dy

∣∣∣∣∣ . (1.2)

Theorem 2. We have the worst-case error bound∣∣∣∣∣1n n

∑
i=1

Φ ◦ψ(yi)−
∫

[0,1]M
Φ ◦ψ(y)dy

∣∣∣∣∣≤ (2min(Np,Nc)−1)D∗n(Ξ).

Proof. Let {π1, · · · ,πNp} be the set of minimal state vectors. For each π`, we define
the corresponding sub-interval P̀ of [0,1]M by

P̀ =
M

∏
i=1

[0,αi) where
{

αi = ri if `-th coordinate of π` is 1,
αi = 1 otherwise.

Note that these P̀ ’s are not disjoint. The subset of [0,1]M on which Φ ◦ψ(y) = 1 is
B = ∪Np

`=1P̀ . Furthermore,∣∣∣∣∣1n n

∑
k=1

Φ ◦ψ(ξ (n))−
∫

[0,1]M
Φ ◦ψ(y)dy

∣∣∣∣∣=
∣∣∣∣∣1n n

∑
k=1

1B(ξ (k))−λ (B)

∣∣∣∣∣ .
Applying the Poincaré formula and the triangular inequality,
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∑
k=1

Φ ◦ψ(ξ (k))−
∫

[0,1]M
Φ ◦ψ(y)dy

∣∣∣∣∣
=

∣∣∣∣∣∣∣
Np

∑
`=1

(−1)`−1
∑

1≤h1<···<h`≤Np

1
n ∑

ξ (k)∈∩`
j=1Ph j

1∩`
j=1Ph j

(ξ (k))−λ (∩`
j=1Ph j)


∣∣∣∣∣∣∣

≤
Np

∑
`=1

∑
1≤h1<···<h`≤Np

∣∣∣∣∣∣∣
1
n ∑

ξ (k)∈∩`
j=1Ph j

1∩`
j=1Ph j

(ξ (k))−λ (∩`
j=1Ph j)

∣∣∣∣∣∣∣
≤

Np

∑
`=1

∑
1≤h1<···<h`≤Np

D∗n(Ξ)

= (2Np −1)D∗n(Ξ).

Proceeding exactly in the same way for computing the error when estimating the
unreliability from the set of maximal states instead of minimal ones, we get∣∣∣∣∣1n N

∑
k=1

(1−Φ)◦ψ(ξ (k))−
∫

[0,1]M
(1−Φ)◦ψ(y)dy

∣∣∣∣∣≤ (2Nc −1)D∗n(Ξ).

From (1.2) and combining the two above inequalities, we obtain the theorem. ut

This result provides a worst-case error bound that converges asymptotically as
O(n−1(logn)Np). The corresponding RQMC variance is O(n−2(logn)2Np). We may
nevertheless need a very large n before this RQMC approach beats MC when Np is
large.

To apply RQMC with our path-based technique based on conditional Monte
Carlo, the random variable Y for the ith replicate is sampled by first generating the
first non-working link on each path from the initial coordinates of the point ξi, and
then sampling all the other links (whose state is not yet known) from the remaining
coordinates of ξi. The overall dimension of the integrand is again M, because in the
worst-case we may need to sample all links, if the first link on each path is failed.
Nevertheless, the number of required coordinates (or uniform random numbers) is
often smaller than M, and the first few coordinates are more important. As a result,
the RQMC method tends to be more effective. A worst-case error bound in terms
of the discrepancy D∗n(Ξ) can also be obtained, as for the crude implementation of
RQMC discussed earlier.

1.6.4 Numerical results

We made an experiment to compare MC and RQMC for our three typical examples,
the bridge, the dodecahedron, and the reducible topology, in each case with three
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values of the links reliability ε: 0.9, 0.99 and 0.999. For RQMC, we use the first n
points of a Sobol’ sequence with a random digital shift and we perform m = 500
independent randomizations. For MC, we make nm independent replications (same
total sample size). In both cases, we compute the half-width of a 95% confidence
interval on the unreliability, using the path-based technique with conditional Monte
Carlo. We then compute the ratio of the confidence interval half-width of MC over
that of RQMC. The results are in Table 1.4, where “Half-width MC” is the half-
width for MC, “Half-width RQMC” is that for RQMC, and “Ratio” is the ratio
between the two.

We see that RQMC brings a significant variance reduction in all cases, even on
reasonable-size topologies such as the dodecahedron. Also, the larger the cardinality
n of the RQMC point set, the more the variance is reduced.

Topology ε n Half-width MC Half-width RQMC Ratio
Bridge 0.9 210 9.70E-5 1.61E-5 0.166
Bridge 0.9 214 2.43E-5 1.55E-6 6.41E-2
Bridge 0.9 220 3.03E-6 4.21E-8 1.39E-2
Bridge 0.99 210 1.08E-6 1.05E-7 9.68E-2
Bridge 0.99 214 2.71E-7 8.15E-9 3.01E-2
Bridge 0.99 220 3.39E-8 2.20E-10 6.48E-3
Bridge 0.999 210 1.09E-8 7.25E-10 6.62E-2
Bridge 0.999 214 2.74E-9 3.17E-11 1.16E-2
Bridge 0.999 220 3.42E-10 1.19E-12 3.47E-3
Dodecahedron 0.9 210 9.30E-5 6.89E-5 0.741
Dodecahedron 0.9 214 2.33E-5 1.29E-5 0.556
Dodecahedron 0.9 218 5.81E-6 2.58E-6 0.444
Dodecahedron 0.99 210 1.10E-7 5.28E-8 0.479
Dodecahedron 0.99 214 2.77E-8 7.62E-9 0.275
Dodecahedron 0.99 218 6.93E-9 1.37E-9 0.197
Dodecahedron 0.999 210 1.13E-10 4.84E-11 0.430
Dodecahedron 0.999 214 2.83E-11 5.45E-12 0.193
Dodecahedron 0.999 218 7.07E-12 7.92E-13 0.112
Reducible 0.9 210 1.64E-4 8.18E-5 0.499
Reducible 0.9 214 4.09E-5 1.58E-5 0.386
Reducible 0.9 218 1.02E-5 2.49E-6 0.244
Reducible 0.99 210 2.36E-7 5.57E-8 0.236
Reducible 0.99 214 5.91E-8 9.96E-9 0.168
Reducible 0.99 218 1.48E-8 1.63E-9 0.111
Reducible 0.999 210 2.44E-10 3.70E-11 0.152
Reducible 0.999 214 6.10E-11 5.07E-12 8.31E-2
Reducible 0.999 218 1.53E-11 7.38E-13 4.83E-2

Table 1.4 Confidence interval half-widths for MC and for RQMC using the same total computing
budget, and their ratio. The RQMC estimates are based on 500 independent replicates with n points.
All edges in the network have reliability ε .
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The fact that the improvements are smaller as the model size increases is due
to the sensitivity of QMC methods with respect to the dimension of the problem.
Basically, when the dimension is higher, the low discrepancy sequence needs more
time to “distribute” its points well [10].

1.7 Conclusion

We have proposed and examined simulation techniques for static rare event models.
Our discussion emphasizes the importance of an efficiency measure that account
for both the accuracy of Monte Carlo methods and the cost (in CPU time) of the
estimation procedures. A key concept that captures these ideas in the context of
rare-event simulation is the notion of bounded work-normalized relative variance
(BWNRV). The application that we considered is the analysis of a reliability metric
in a static model. Our analysis was completed by proposals designed to improve
efficiency in the considered estimation algorithms.

A last technical remark now on the BWNRV property: the computing time used
in the definition may have unbounded relative variance itself, which may lead to a
noisy work-normalized variance [9, 11]. In that case, we cannot assert that the prob-
ability that the estimator is within a value δ of its mean for a given computational
budget c, goes to 0 uniformly in ε when c increases. Our definition only looks at the
first moment of the computational time, which is less stringent. Considering also the
second moment is a subject of further research.
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