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Approximate Zero-Variance Importance
Sampling for Static Network Reliability

Estimation
Pierre L’Ecuyer, Gerardo Rubino, Samira Saggadi and Bruno Tuffin

Abstract—We propose a new Monte Carlo method, based
on dynamic importance sampling, to estimate the probability
that a given set of nodes is connected in a graph (or network)
where each link is failed with a given probability. The method
generates the link states one by one, using a sampling strategy
that approximates an ideal zero-variance importance sam-
pling scheme. The approximation is based on minimal cuts in
subgraphs. In an asymptotic rare-event regime where failure
probability becomes very small, we prove that the relative
error of our estimator remains bounded, and even converges
to 0 under additional conditions, when the unreliability of
individual links converges to 0. The empirical performance
of the new sampling scheme is illustrated by examples.

Index Terms—Monte Carlo methods, network reliability,
vari- ance reduction.

ACRONYMS
BRE bounded relative error
CLT central-limit theorem
IS importance sampling
MC Monte Carlo
VRE vanishing relative error

NOTATION

N set of nodes
L set of links {1, . . . ,m}
m number of links
G undirected graph (N ,L)
K set of target (destination) nodes
qi unreliability of link i
u graph unreliability
Xi (random) state of link i: 1 if operational, 0

otherwise
X (X1, . . . , Xm): (random) configuration of the

graph
x = (x1, . . . , xm): one realization of X
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φ(X) structure function associated with the K-terminal
unreliability: φ(X) = 1 if the nodes in K are not
connected, 0 otherwise

ε rarity parameter
n number of independent replications
X(j) j-th independent replication of X
P original probability law of the network
E expectation under P
q̃i IS unreliability of link i
P̃ IS probability law
Ẽ expectation under P̃
ui(·) ui(x1, . . . , xi−1) is the unreliability of the graph

when (x1, . . . , xi−1) are fixed
ûi(·) ûi(x1, . . . , xi−1) is an approximation of

ui(x1, . . . , xi−1)
Li(xi)= xi(1− qi)/(1− q̃i)+(1−xi)qi/q̃i: likelihood

ratio associated with step i
L(x)

∏m
i=1 Li(xi): global likelihood ratio

o For two functions f, g : (0,∞)→ R, we say that
f(ε) = o(g(ε)) if limε→0+ f(ε)/g(ε) = 0

O f(ε) = O(g(ε)) if |f(ε)| ≤ c1g(ε) for some
constant c1 > 0 for all ε sufficiently small

O f(ε) = O(g(ε)) if |f(ε)| ≥ c2g(ε) for some
constant c2 > 0 for all ε sufficiently small

Θ f(ε) = Θ(g(ε)) if f(ε) = O(εd) and f(ε) =
O(εd)

I. INTRODUCTION

THE STATIC network reliability problem, which con-
sists in computing the probability that a given set of

nodes in a graph is connected when each individual link
is failed with a given probability, occurs in a wide range
of applications [3], [6], [10]. Examples are easily found
in telecommunications, where we may want to assess the
probability that a selected group of nodes (which can be
just a pair) can communicate, or in power supply systems,
where we may want to estimate the risk that electricity is
not provided to certain nodes, or in transportation systems,
where links represent the roads and are subject to damages.
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In all these settings, a disconnected set of nodes may have
critical implications, either financially or security-wise, and
an accurate reliability estimate is needed. For large graphs,
exact computation of the unreliability (the probability
of system failure, which happens when the considered
set of nodes is not connected) is impractical, since the
problem is NP-hard in general; for all known algorithms
the required computational effort increases exponentially
with the number of links [2], [9], [24].

Monte Carlo methods can estimate unreliability for very
large graphs. In its crude form, the Monte Carlo algorithm
samples n independent realizations of the graph, and
estimates the unreliability u by the proportion of these n
realizations for which the selected nodes are not connected.
However, this simple approach becomes useless when the
network is highly reliable (u is very close to 0), because
one would need an excessively large value of n to obtain
enough realizations where the nodes are not connected.
For example, if u = 10−10, we expect one such realization
per ten billion runs on average and we need many more
than that to estimate u even with only a single digit of
accuracy. Such small values of u are commonplace in
critical applications.

Special variance reduction techniques have been devel-
oped to address this type of rare-event estimation problem.
Some of them are based on the importance sampling
(IS) principle, which consists in changing the sampling
probabilities of the links so that system failure is no longer
a rare event, and multiplying the original estimator by an
appropriate likelihood ratio to recover unbiasedness [1],
[15], [18], [26]. Specific IS methods have been proposed
for estimating the unreliability in static graphs; see [14],
[23], or [6] and the references given there. The main
difficulty with IS is to find an effective way of changing the
sampling probabilities. If the probabilities of realizations
that lead to failure are inflated unevenly, or if some of them
are decreased too much, then the likelihood ratio may have
a huge variance and this may result in a badly behaved
estimator even if system failure is no longer a rare event
[18]. This pitfall is hard to avoid in general and is often
amplified when the failure probabilities approach 0.

Robustness of estimators in this type of situation is
usually studied by examining the behavior of the relative
error (the standard deviation divided by the mean) as a
function of rarity [11], [12], [15], [17], [18]. Two char-
acterizations examined in this paper are the widely-used
bounded relative error (BRE) property, which holds when
the relative error remains bounded regardless of the rarity
[12], [15], and the stronger vanishing relative error (VRE)
property, which says that the relative error converges to
zero when the unreliability u goes to zero [17]. These
properties are particularly relevant in situations where u

is very small: the relative width of a confidence interval
on u based on the central-limit theorem (CLT) for a fixed
sample size n when u→ 0 remains bounded if BRE holds
and converges to zero if VRE holds [17].

The aim of this paper is to propose and study a new
way of applying IS to address the static network reliability
problem. The proposed IS strategy is based on a (theo-
retical) zero-variance IS scheme, which exists in principle
whenever the original estimator cannot take negative values
[1], [15], [18], [19]. We represent the sampling process of
all links of the graph by a Markov chain that determines
one new link at each step, and whose state is the states
of all links that have already been sampled. We show how
the transition probabilities of this Markov chain can be
changed (at least in principle) to obtain a zero-variance
IS estimator of u. Under this ideal IS scheme, the system
always fails and the likelihood ratio is always equal to
u, so the IS estimator is a constant, with probability 1.
Unfortunately, implementing this scheme directly is not
practically possible unless we can compute everything
exactly in the first place. But it can be approximated, and
this is what we do here.

We propose an approximation based on minimal cuts
having (relatively) high failure probability in the subgraph
that remains after removing the links already known to be
failed, and enforcing the states of the links known to be
operational, at each step of the Markov chain. These cuts
are used to approximate the unreliability conditional on the
current state, at each step. We prove that our estimators
enjoy the BRE property, and that under an additional
condition on the approximation of the conditional unre-
liability at each step, the VRE property is also verified.
This type of asymptotic analysis as a function of a rarity
parameter has been done extensively for queuing systems
[4], [12] and for highly reliable Markovian systems [15],
[20], [21], [25], [28]. For static network reliability, as
far as we know, the only proposed estimator with the
BRE property is the path-based estimator described in [7],
[8], which was shown to have this property but under
more restrictive conditions than those made here, and no
estimator with the VRE property has been proposed so far.
Our numerical results on various examples show that the
method introduced here performs quite well even on large
graphs with extremely small unreliabilities, and the VRE
property can be observed empirically.

The paper is organized as follows. Section II presents
the mathematical model. In Section III, we recall the crude
Monte Carlo method, we show its inefficiency, and we
explain how IS can be applied in general for this model.
In Section IV, we construct an ideal (zero-variance) IS
estimator. Its implementation would require the knowledge
of the conditional unreliability (function) given the status



3

of arbitrary subsets of links, which is how course utopian,
but an estimate of this conditional unreliability can be
plugged into the formula in place of the exact one. We
prove that this yields an estimator with BRE under ap-
propriate conditions on the conditional reliability estimate,
and with VRE under an additional condition. In Section V,
we propose a specific (crude) approximation method for
this conditional unreliability, based on the probability of
a minimal cut. We prove that the resulting IS estimator
always has the BRE property, and the VRE property
under additional conditions that are often verified in our
examples. In Section VI we illustrate numerically the
efficiency of the method on several examples. Section VII
provides a conclusion and discusses issues worthy of future
work.

II. MODEL

We consider an undirected graph G = (N ,L) where
N is the set of nodes and L = {1, . . . ,m} the set of
links. We focus here on a static model, where time plays
no explicit role. Nodes never fail but links are subject to
independent failures, link i ∈ L failing with probability qi,
where 0 < qi < 1. A configuration [24] of the graph is
given by the random vector

X = (X1, . . . , Xm)

where for all i ∈ L, Xi = 1 if link i works, and Xi = 0
if link i is failed. By retaining only the set of operational
links L′ ⊆ L, we end up with a (random) partial graph
G′ = (N ,L′) of G. Knowing the vector X is equivalent
to knowing G′.

Our goal is to estimate the probability u that a given
set of nodes K are connected in the random graph G′,
or equivalently for the random configuration X . Formally,
we define φ(X) by φ(X) = 1 if the set of nodes K is not
connected in G′, that is, they do not belong to the same
connected component when the configuration is X , and
φ(X) = 0 otherwise. The expectation u = E[φ(X)] is the
K-terminal unreliability. (For convenience, here we define
φ(X) differently from the structure function that usually
represents the reliability and is equal to 1−φ(X) [6]). The
most frequent case is when estimating the two-terminal or
source-to-terminal unreliability, where K is comprised of
only two nodes.

This unreliability metric can be written as

u = E[φ(X)] =
∑

x∈{0,1}m

φ(x)P[X = x]

=
∑

x∈{0,1}m

φ(x)
m∏
i=1

(qi(1− xi) + (1− qi)xi)

where x = (x1, . . . , xm). The state space (the set of all
possible configurations) is of cardinality 2m. This means
that computing u directly from this formula requires a time
that increases exponentially with m, the number of links.
As we said earlier, this problem is NP-hard in general [2],
so for large graphs, approximation techniques are required,
and Monte Carlo simulation becomes the method of choice
when the graph is large enough.

We are interested mainly in the situation where the
failure probabilities qi of the individual links are very close
to 0. We will capture this by studying the performance of
our algorithm in an asymptotic regime where the qi’s are
polynomial functions of a rarity parameter ε� 1, as done
for example in [17], [22], [29]. More specifically, we shall
assume that for each i ∈ L, there are positive constants ai
and bi (independent of ε) such that

qi = aiε
bi . (1)

Under this assumption, it is easy to verify (because the
configuration space is finite and the probability of any
configuration is a polynomial in ε) that the system
unreliability (which depends on ε) is

u = u(ε) = Θ(εc) (2)

for some constant c > 0 (for similar remarks, see [9] or
[24], for instance).

III. MONTE CARLO SIMULATION

The crude Monte Carlo (MC) method simulates n
independent realizations of X , say X(1), . . . , X(n), and
estimates u by the proportion of those realizations where
the nodes in K are not connected:

Ū
(n)
MC =

1
n

n∑
i=1

φ(X(i)).

When n is large enough, thanks to the central-limit the-
orem (CLT), we can in principle compute a confidence
interval on u, say at confidence level α, by assuming that
Ū

(n)
MC is approximately normally distributed. This gives the

confidence interval(
Ū

(n)
MC − cαS

(n)/
√
n, Ū

(n)
MC + cαS

(n)/
√
n
)

(3)

with confidence 1−α, where cα is the 1−α/2 quantile of
the standard normal distribution (with mean 0 and variance
1) and (S(n))2 = Ū

(n)
MC(1−Ū (n)

MC)n/(n−1) is the empirical
variance of φ(X(1)), . . . , φ(X(n)).

The expected relative half-width of this confidence in-
terval is

cα
(Var[φ(X)]/n)1/2

E[φ(X)]
= cα

(
1− u
un

)1/2

,
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which increases to ∞ when u → 0 for fixed n. To keep
it under control, we need n = O(1/u). This means that
in the asymptotic regime defined by (1), we would need
n = n(ε) = O(ε−c).

Our aim in this paper is to replace φ(X) by an alterna-
tive unbiased estimator Y with smaller variance. Numerous
techniques have been designed to do that; we refer the
reader to [6] for an overview. For fixed n and φ(X)
replaced by Y , the half-width of the confidence interval
above is proportional to the relative error of Y , defined as
RE[Y ] = (Var[Y ])1/2/E[Y ]. For Y = φ(X), the relative
error is Θ(u−1/2). We are interested in having an estimator
Y with bounded relative error (BRE), which means that
RE[Y ] remains bounded when u→ 0, or in our framework
when ε→ 0. It would be even better if Y has the stronger
property of vanishing relative error (VRE), which means
that RE[Y ]→ 0 when ε→ 0. To our knowledge, no VRE
estimator has been constructed so far for this problem.

IV. IMPORTANCE SAMPLING AND ZERO-VARIANCE
APPROXIMATION

A. Importance Sampling

IS consists in replacing the probabilities of the 2m

possible configurations X by another set of probabilities
[1], [15], [18]. If we denote the original probabilities by
P and the new ones by P̃, we have

u = E[φ(X)] =
∑

x∈{0,1}m

φ(x)P[X = x]

=
∑

x∈{0,1}m

φ(x)L(x)P̃[X = x]

where
L(x) = P[X = x]/P̃[X = x],

provided that P̃[X = x] > 0 whenever φ(x)P[X = x] >
0. This L(x) is the likelihood ratio of the old and new
probabilities for outcome x. The unreliability can then be
rewritten as

u = Ẽ[φ(X)L(X)] (4)

where Ẽ[·] is the expectation under P̃. We thus have the
following unbiased IS estimator of u:

Ū
(n)
IS =

1
n

n∑
j=1

φ(X(j))L(X(j)),

where X(1), . . . , X(n) are independent copies of X all
distributed according to P̃. A confidence interval on u

can be computed as in (3), but with Ū
(n)
MC and (S(n))2

replaced by the sample mean and the sample variance of
the φ(X(j))L(X(j)).

It is well known that the optimal change of probabilities
in this setting inflates all the probabilities by a factor
proportional to φ(x) [1], [18]. This gives

P̃[X = x] = φ(x)P[X = x]/u

for all x ∈ {0, 1}m. That is, the realizations where the
system does not fail are given zero probability, and the
probabilities of the other realizations are rescaled accord-
ingly (divided by u). Under these new probabilities, with
probability 1, the system fails and the likelihood ratio is
u, so the estimator always takes the value u. Thus, this
estimator has zero variance. However, implementing this
IS scheme requires knowing u in the first place.

B. A Sequential Version of Zero-Variance Importance
Sampling

We now reformulate the sampling of X as a Markov
chain process and we define a zero-variance IS scheme
for that process by adapting the techniques described in
[16], [18], [19]. The link states X1, . . . , Xm are generated
successively in this order. At step i of the chain, we
generate the coordinate Xi of X , over the set {0, 1}. Under
P, these probabilities are P[Xi = 0] = 1−P[Xi = 1] = qi,
and the Xi’s are independent. Under IS, we will change
the probability qi at each step and let it depend on the
previously generated values X1, . . . , Xi−1. We will see
that by doing this optimally, one can obtain a zero-variance
estimator.

We define

ui(x1, · · · , xi−1) = E[φ(X)|X1 = x1, . . . , Xi−1 = xi−1],

which represents the unreliability of graph G′ conditional
on the states of links 1 to i − 1, which are already
determined before step i. The unconditional unreliability
of the graph can be written as u = u1(∅). We will often
use the fact that

ui(x1, · · ·, xi−1) = qiui+1(x1, . . . , xi−1, 0)
+ (1− qi)ui+1(x1, . . . , xi−1, 1). (5)

Suppose that for i = 1, . . . ,m, we replace qi by

q̃i
def= P̃[Xi = 0 | X1 = x1, . . . , Xi−1 = xi−1]

=
qiui+1(x1, . . . , xi−1, 0)

ui(x1, . . . , xi−1)
. (6)

This gives

1− q̃i =
(1− qi)ui+1(x1, . . . , xi−1, 1)

ui(x1, . . . , xi−1)
. (7)
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Using (6) and (7), we find that for a given realization x =
(x1, . . . , xm), the likelihood ratio for step i is

Li(xi) = xi
1− qi
1− q̃i

+ (1− xi)
qi
q̃i

=
ui(x1, . . . , xi−1)

ui+1(x1, . . . , xi−1, xi)
.

The overall likelihood ratio is

L(x) =
m∏
i=1

Li(xi)

and the final estimator is φ(X)L(X). The following theo-
rem says that this sequential (state-dependent) IS scheme
gives a zero-variance estimator. It is a consequence of
the general results on zero-variance sampling for Markov
chains, given in [16], [18], [19]. We give a direct proof
from first principles.

Theorem 1: Under the sequential IS algorithm where
the probabilities qi are replaced by the conditional prob-
abilities q̃i defined in (6), with probability 1, we have
φ(X) = 1 and L(X) = u, so the IS estimator has zero
variance.

Proof: We first show that P̃[φ(X) = 1] = 1. Let
x be a configuration for which the system works, that
is, φ(x) = 0, and suppose that k is the index of the
first coordinate such that φ(x1, . . . , xk, . . . ) = 0 whatever
be the values of (xk+1, . . . , xm), for the given (fixed)
values of x1, . . . , xk. In this case, uk+1(x1, . . . , xk) = 0,
which implies from (6) that conditional on x1, . . . , xk−1,
this particular xk has zero probability. Therefore, every
configuration x with φ(x) = 0 has zero probability. We
also have

L(x) =
m∏
i=1

Li(xi) =
m∏
i=1

ui(x1, . . . , xi−1)
ui+1(x1, . . . , xi−1, xi)

=
u1(∅)

um+1(x1, . . . , xm)
=

u

um+1(x1, . . . , xm)
.

For any configuration x with φ(x) = 1, we have
um+1(x1, . . . , xm) = φ(x1, . . . , xm) = 1, and therefore
L(x) = u. This means that with probability 1, we have
φ(X) = 1 and φ(X)L(X) = u.

Implementing this zero-variance IS scheme would re-
quire the perfect knowledge of all the functions ui, and
in particular the knowledge of u1(∅) = u, so it is not
practical. In the next subsection we study the situation
where each ui is replaced by some approximation ûi. One
way to obtain such an approximation will be proposed in
Section V.

C. Zero-Variance Approximation and Robustness Proper-
ties

The idea of zero-variance approximation is to replace
the functions ui(·) in (6) by some easy-to-compute ap-
proximations ûi(·). This gives

eqi = eP[Xi = 0]

=
qibui+1(x1, . . . , xi−1, 0)

qibui+1(x1, . . . , xi−1, 0) + (1 − qi)bui+1(x1, . . . , xi−1, 1)
.

(8)

The intuition is that if ûi+1(·) is not too far from ui+1(·)
for each i, the sampling will be done with probabilities that
are not too far from the optimal ones, and the variance can
then be reduced by large factors. Observe that the network
unreliability u will not change if we modify the index of
the edges of the graph, but the type of change of measure
proposed here does depend on that index.

The next two theorems characterize that intuition in an
asymptotic regime where ε→ 0, while the graph remains
fixed. They give sufficient conditions on the approxima-
tions ûi(·) for the BRE or VRE property to hold.

Theorem 2: Suppose that for each i and (x1, . . . , xi) ∈
{0, 1}i, 1 ≤ i ≤ m, there is a constant ai+1(x1, . . . , xi)
independent of ε such that

ûi+1(x1, . . . , xi) = ai+1(x1, . . . , xi)ui+1(x1, . . . , xi)
+ o(ui+1(x1, . . . , xi)). (9)

Then the estimator provided by the IS scheme with change
of probabilities defined by (8) has the BRE property.

Proof: We need to show that under the IS
scheme, Var[φ(X)L(X)] = O(u2), or equivalently that
Ẽ[φ(X)L2(X)] = O(u2). From (5), we see that

(1− qi)ui+1(x1, · · · , xi−1, 1) = O(ui(x1, · · · , xi−1))

and

qiui+1(x1, · · · , xi−1, 0) = O(ui(x1, · · · , xi−1)),

with at least one of these two terms being
Θ(ui(x1, · · · , xi−1)). Using this and given that
ai+1(x1, . . . , 1) and ai+1(x1, . . . , 0) are constants
independent of ε, one can verify that there is a positive
constant bi(x1, . . . , xi−1) independent of ε and such that

(1 − qi)bui+1(x1, · · · , xi−1, 1) + qibui+1(x1, · · · , xi−1, 0)

= (1 − qi)ai+1(x1, . . . , 1)ui+1(x1, · · · , xi−1, 1)

+ qiai+1(x1, . . . , 0)ui+1(x1, · · · , xi−1, 0)

+ o(ui+1(x1, . . . , 1) + ui+1(x1, . . . , 0))

= bi(x1, . . . , xi−1)ui(x1, · · · , xi−1) + o(ui(x1, · · · , xi−1)).

For example, if

(1− qi)ui+1(x1, · · · , xi−1, 1) = o(ui(x1, · · · , xi−1)),
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then

ai+1(x1, . . . , 0)ui(x1, · · · , xi−1)
= qiai+1(x1, . . . , 0)ui+1(x1, · · · , xi−1, 0)

+ o(ui+1(x1, . . . , xi−1),

so we have bi(x1, . . . , xi−1) = ai+1(x1, . . . , 0). The other
cases are similar.

The likelihood ratio for the sampling of link i is then

Li(Xi) =
(1− qi)ûi+1(X1, · · · , Xi−1, 1)

ûi+1(X1, · · · , Xi−1, Xi)

+
qiûi+1(x1, · · · , xi−1, 0)
ûi+1(X1, · · · , Xi−1, Xi)

=
bi(X1, . . . , Xi−1)
ai+1(X1, . . . , Xi)

ui(X1, . . . , Xi−1)
ui+1(X1, . . . , Xi)

+ o(1).

Let

d = max
{(x1,··· ,xi):1≤i≤m}

bi(x1, . . . , xi−1)
ai+1(x1, . . . , xi)

.

We have d <∞, because this maximum is over a finite set,
and the likelihood ratio for the whole sample path satisfies

L(X) =
m∏
i=1

Li(Xi)

≤
m∏
i=1

d
ui(X1, . . . , Xi−1)

ui+1(X1, . . . , Xi−1, Xi)
+ o(u)

≤ dmu+ o(u).

Therefore,

Ẽ[φ(X)L2(X)] ≤ Ẽ[L2(X)] ≤ d2mu2 + o(u2),

due to the finite sum in the expectation, which completes
the proof.

In the next theorem, we additionally require that for all
configurations x that are not rare under IS, at each step i of
the method, the unreliability estimations lead to a sampling
probability asymptotically equivalent to the zero-variance
one, and we show that VRE holds under these conditions.
We define

S1 = {x ∈ {0, 1}m : φ(x) = 1 and P̃[X = x] = Θ(1)}

and

S0 = {x ∈ {0, 1}m : φ(x) = 1 and P̃[X = x] = o(1)}.

These are the sets of configurations where the system fails
and which are no longer rare and still rare, respectively,
under IS. Our additional conditions for VRE will involve
only the configurations x ∈ S1.

Theorem 3: Let the assumptions of Theorem 2 hold, and
suppose also that for all x = (x1, . . . , xm) ∈ S1 and for
each i, one of the following three conditions is satisfied:

ûi+1(x1, . . . , xi−1, 1)
ui+1(x1, . . . , xi−1, 1)

=
ûi+1(x1, . . . , xi−1, 0)
ui+1(x1, . . . , xi−1, 0)

+ o(1), (10)

or xi = 0, ai+1(x1, . . . , xi) = 1, and

(1 − qi)bui+1(x1, . . . , xi−1, 1) = o(qibui+1(x1, . . . , xi−1, 0))
(11)

or xi = 1, ai+1(x1, . . . , xi) = 1, and

qibui+1(x1, . . . , xi−1, 0) = o((1 − qi)bui+1(x1, . . . , xi−1, 1)).
(12)

Then the estimator from the IS scheme defined via (8)
has the VRE property. In particular, if the assumptions of
Theorem 2 hold with ai+1(x1, . . . , xi) = 1 for all x ∈ S1

and all i, then Condition (10) always hold.
Proof: We decompose the second moment in two

terms as follows:eE[φ(X)L2(X)] =
X
x∈S1

φ(x)L2(x)eP[X = x]

+
X
x∈S0

φ(x)L2(x)eP[X = x]. (13)

For the second term, following the same argument as in
the proof of Theorem 2, we find that there exists a constant
d > 0, independent of ε, such that L2(x) ≤ d2mu2+o(u2),
and, because S0 is finite,∑

x∈S0

φ(x)L2(x)P̃[X = x]

≤ (d2mu2 + o(u2))
∑
x∈S0

φ(x)P̃[X = x].

But this last sum is o(1), because it is a finite sum of o(1)
terms. Consequently,∑

x∈S0

φ(x)L2(x)P̃[X = x] = o(u2).

We now focus on the first term on the right side of (13).
For the special case where the conditions of Theorem 2
hold with ai+1(x1, . . . , xi) = 1 for all x ∈ S1 and all i,
we can take bi(x1, . . . , xi−1) = 1 and d = 1 in the proof
of that theorem and it gives∑

x∈S1

φ(x)L2(x)P̃[X = x] = u2 + o(u2). (14)

For the more general case, when (10) holds, we have
bi(x1, . . . , xi−1) = ai+1(x1, . . . , 1) = ai+1(x1, . . . , 0).
When either (11) or (12) holds, we find from (9) and (5)
that bi(x1, . . . , xi−1) = ai+1(x1, . . . , xi) = 1. So in all
three cases, we can take d = 1, and we also obtain (14).
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Combining the results for the two terms, we have

Ṽar[φ(X)L(X)] ≤ Ẽ[L2(X)]− u2 = o(u2),

and this concludes the proof.
The next question is how to construct approximations

ûi+1(·) for which these theorems apply. We make one
proposal in the next section.

V. AN APPROXIMATION BASED ON MINIMAL CUTS

We introduce a method to approximates ûi+1(·) based
on the probabilities of certain minimal cuts in subgraphs
obtained at each step. We call this method the mincut-
maxprob approximation. This approximation has the ad-
vantage of being relatively simple and easy to compute,
and it always satisfies the condition of Theorem 2. It is
not the only possibility; other approximations based on
other types of cuts or on combinations of cuts might also
work well.

We need some definitions and notation. A cut (or K-cut)
in the graph G is a set of edges such that if we remove
them from G, the nodes in K are not in the same connected
component of the resulting graph. A mincut (minimal cut)
is a cut that contains no other cut than itself. With any cut
γ we associate the event E(γ): “all links in γ are failed.”
Observe that the system unreliability u can be expressed
as

u = P [∪all mincuts γE(γ)] , (15)

because the system is non-operational if and only if at
least one of its mincuts has all its links failed. If the
edge unreliabilities have the form (1), then for any cut γ,
P(E(γ)) =

∏
i∈γ qi has also the same form. The inclusion-

exclusion formula applied to u immediately leads then
to (2).

A mincut with maximal probability is a mincut γ such
that

γ = arg max
γ′
{ P[E(γ′)] : γ′ is a mincut of G }.

If we denote p = P(E(γ)) and if H is the number of
mincuts with maximal probability p, we have, using (15)
and (2), p = Θ(εc) and u = Hp+ o(εc).

For each i, given x1, . . . , xi (assumed fixed), consider
the graph Gi = Gi(x1, . . . , xi) obtained from G by remov-
ing all links j ≤ i for which xj = 0 and forcing the links
j such that xj = 1 to be operational. Let Ci be the set of
mincuts in Gi that contain no link j ≤ i for which xj = 1.
Let γi be a mincut of maximal probability in Ci. That is,

P[E(γi)] = max {P[E(γ)] : γ ∈ Ci} .

We propose to use P[E(γi)] as an approximation of
ui+1(x1, . . . , xi). The idea is that when E(γi) occurs, all

links in γi are failed so K is necessarily disconnected, and
γi is a cut of largest probability having this property. We
disallow γi to contain links j ≤ i with xj = 1 because we
already know that these links are operational.

At step i of the Markov chain, we need
ûi+1(x1, . . . , xi−1, 0) and ûi+1(x1, · · · , xi−1, 1) to
compute q̃i via (8). For this, we find a mincut γ−i = γi
as above for x1, . . . , xi−1 fixed and xi = 0, and put
ûi+1(x1, . . . , xi−1, 0) = P[E(γ−i )]. We do the same
with xi = 1 to find a mincut γ+

i = γi and put
ûi+1(x1, . . . , xi−1, 1) = P[E(γ+

i )]. Note that these
mincuts can be computed in polynomial time [27] (a
typical way of doing this is by defining as the cost of
link i the number − ln qi). Then we generate Xi using
this probability q̃i and we compute the corresponding
term of the likelihood ratio.

Of course, these computations add overhead to the
algorithm compared with crude MC, but this computational
burden can be more than compensated by the huge variance
reduction, as our experiments will show. We now show
that this proposed approximation always gives an estimator
with BRE.

Theorem 4: The mincut-maxprob approximation de-
scribed above always satisfies the condition of Theorem 2.
Consequently it gives an IS scheme with the BRE property.

Proof: Recall that the unreliability of link i is qi =
aiε

bi . Fixing the state of links 1 to i to x1, . . . , xi, there
exists a constant ci+1(x1, . . . , xi) independent of ε such
that ui+1(x1, . . . , xi) = Θ(εci+1(x1,...,xi)). This comes
from

ui+1(x1, . . . , xi) =
∑

(xi+1,...,xm)∈{0,1}m−i

φ(x)P[X = x],

which is a finite sum of polynomials in ε, therefore a
polynomial too, and ci+1(x1, . . . , xi) is the minimum
value of the exponents of this polynomial. Note that we
also have

ci+1(x1, . . . , xi) = min{d : P[E(γ)] = Θ(εd) for some
mincut γ of Gi+1(x1, . . . , xi) }.

As a consequence, the mincut-maxprob approximation
gives

ûi+1(x1, . . . , xi) = Θ(εci+1(x1,...,xi))
= Θ(ui+1(x1, . . . , xi)).

The assumptions of Theorem 2 are thus verified.
Theorem 5: Under an IS scheme based on the mincut-

maxprob approximation, suppose that for each x =
(x1, . . . , xm) ∈ S1 and for each i ∈ {1, . . . ,m − 1},
the graph Gi(x1, . . . , xi) contains only one mincut with
probability Θ(ui+1(x1, . . . , xi)) and one of the following
three conditions is satisfied:
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(i) the graph Gi(x1, . . . , xi−1, 1−xi) contains only one
mincut having probability Θ(ui+1(x1, . . . , xi−1, 1− xi)),
or

(ii) xi = 0 and

(1 − qi)bui+1(x1, . . . , xi−1, 1) = o(qibui+1(x1, . . . , xi−1, 0)),
(16)

or
(iii) xi = 1 and

qibui+1(x1, . . . , xi−1, 0) = o((1 − qi)bui+1(x1, . . . , xi−1, 1)).
(17)

Then the assumptions of Theorem 3 are satisfied, and con-
sequently we have an IS scheme with the VRE property.

Proof: Because there is only one mincut with prob-
ability Θ(ui(x1, . . . , xi−1)) in Gi−1, the (finite) sum of
probabilities of the other cuts is o(ui(x1, . . . , xi−1)). Thus
for all i ∈ {1, . . . ,m− 1},

ûi+1(x1, . . . , xi−1, xi)
ui+1(x1, . . . , xi−1, xi)

= 1 + o(1).

Similarly the condition that there is also one mincut with
probability Θ(ui+1(x1, . . . , 1− xi)) corresponds to

ûi+1(x1, . . . , xi−1, 1− xi)
ui+1(x1, . . . , xi−1, 1− xi)

= 1 + o(1),

implying that (10) holds, while conditions (16) and (17)
correspond exactly to (11) and (12). Then the result follows
from Theorem 3.

Our next and final result gives sufficient VRE condi-
tions for the special case where G has homogeneous link
reliabilities.

Theorem 6: Suppose that the graph G is homogeneous,
which means (without loss of generality) that qi = ε for
all i. Suppose also that we have an IS scheme based on
the mincut-maxprob approximation, under which for each
x ∈ S1 and each i ∈ {1, . . . ,m− 1}, one of the following
two conditions holds:

(i) the number of mincuts of probability
Θ(ui+1(x1, . . . , xi−1, 0)) in Gi+1(x1, . . . , xi−1, 0) is
the same as the number of mincuts of probability
Θ(ui+1(x1, . . . , xi−1, 1)) in Gi+1(x1, . . . , xi−1, 1), or

(ii) the graph Gi(x1, . . . , xi) contains only one mincut
with probability Θ(ui+1(x1, . . . , xi)) and either xi = 0
and

(1 − qi)bui+1(x1, . . . , xi−1, 1) = o(qibui+1(x1, . . . , xi−1, 0)),
(18)

or xi = 1 and

qibui+1(x1, . . . , xi−1, 0) = o((1 − qi)bui+1(x1, . . . , xi−1, 1)).
(19)

Then the assumptions of Theorem 3 are satisfied, and con-
sequently we have an IS scheme with the VRE property.

Proof: Let fi+1(x1, . . . , xi) be the number of
mincuts with probability Θ(ui+1(x1, . . . , xi)). Under
the first condition we have fi+1(x1, . . . , xi−1, 0) =
fi+1(x1, . . . , xi−1, 1). Similarly to the proof of Theorem 4,
ui+1(x1, . . . , xi) = fi+1(x1, . . . , xi)εci+1(x1,...,xi) +
o(ui+1(x1, . . . , xi)) while ûi+1(x1, . . . , xi) =
εci+1(x1,...,xi). Then,

ûi+1(x1, . . . , xi−1, 1)
ui+1(x1, . . . , xi−1, 1)

=
1

fi+1(x1, . . . , xi−1, 0)
+ o(1),

ûi+1(x1, . . . , xi−1, 0)
ui+1(x1, . . . , xi−1, 0)

=
1

fi+1(x1, . . . , xi−1, 1)
+ o(1),

which corresponds to (10). In the second set of conditions,
(18) and (19) correspond to (11) and (12), respectively. The
conditions of Theorem 3 are therefore verified.

We now give small examples to illustrate the mincut-
maxprob approximation. In all our examples, the links are
sampled by order of their number.

Example 1: Consider the tiny graph of Figure 1. The
aim is to compute the probability that the gray nodes A
and C are disconnected. The links are homogeneous with
unreliability qi = ε for i = 1, 2, 3, for some small real
number ε. For this model, only three configurations lead

A

B

C

q1 = ε q2 = ε

q3 = ε

Fig. 1. A graph with three links

to disconnected nodes: (0, 0, 0), (0, 1, 0) and (1, 0, 0) and
the system unreliability is u = ε3 + 2ε2(1− ε) = 2ε2− ε3.
We can check that u2(0) = ε, u2(1) = ε2, u3(0, 0) = ε,
u3(0, 1) = ε, u3(1, 0) = ε and u3(1, 1) = 0. At step 1, we
need to compute û2(0) and û2(1) to find q̃1 and sample
the first link. For x1 = 0, the mincut γ−1 contains only
link 3 and its failure probability is û2(0) = ε = u2(0).
For x1 = 1, the mincut γ+

1 contains links 2 and 3, and we
have û2(1) = ε2 = u2(1). This gives

q̃1 =
q1û2(0)

q1û2(0) + (1− q1)û2(1)
=

ε2

ε2 + (1− ε)ε2
=

1
2− ε

.

Continuing in this way, we get û3(0, 0) = ε, û3(0, 1) = ε,
û3(1, 0) = ε, and û3(1, 1) = 0, which are all equal to the
corresponding values of ui(·). The values of u4 and û4

are also both equal to those of φ. As a consequence, for
this example, our approximate zero-variance estimator is
exactly the zero-variance one.
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Example 2: Consider the graph represented in Figure 2,
where we want to compute the probability that the gray
nodes A and D are disconnected. The links are again
assumed homogeneous, with unreliabilities qi = ε for
i = 1, . . . , 4. There are 16 possible configurations of

A

B

C

D

q1 = ε

q2 = ε

q3 = ε

q4 = ε

Fig. 2. A graph topology with four links and two nodes (A and D) that
require to be connected

the 4 links, and one can verify that A and D are dis-
connected for 9 of them, and that the unreliability is
u = 4ε2 + o(ε2). The reader can verify in this case
that u2(0) = 2ε− ε2, u2(1) = 2ε2 − ε3, u3(0, 0) = 1,
u3(0, 1) = ε, u3(1, 0) = ε, and u3(1, 1) = ε2, for in-
stance, whereas the mincut-maxprob approximation gives
û2(0) = ε, û2(1) = ε2, û3(0, 0) = 1, û3(0, 1) = ε,
û3(1, 0) = ε, and û3(1, 1) = ε2. The values of û4 are
exactly the same as those of u4. Observe that û2(0) ≈
u2(0)/2 and û2(1) ≈ u2(1)/2, whereas ûi(·) = ui(·) in
the other cases. Thus, the conditions of Theorem 2 are
satisfied, but not with ai+1(x1, . . . , xi) = 1 for all i,
because a2(0) = a2(1) = 1/2. However, the conditions
of Theorem 3 are also satisfied, because û2(0)/u2(0) =
û2(1)/u2(1) + o(1), so we have VRE. In fact, one can
also verify for this particular example that the IS scheme
with our approximation gives exactly zero variance. The
reason is that even when sampling the first link, the mincut-
maxprob approximation yields

q̃1 =
q1û2(0)

q1û2(0) + (1− q1)û2(1)

=
ε2

ε2 + (1− ε)ε2
=

1
2− ε

,

which is exactly the same as when using zero-variance IS:

q̃1 =
q1u2(0)

q1u2(0) + (1− q1)u2(1)

=
ε(2ε− ε2)

ε(2ε− ε2) + (1− ε)(2ε2 − ε3)
=

1
2− ε

.

The next two examples illustrate a situation where The-
orems 5 applies and we have VRE, and another situation
where only BRE holds.

Example 3: Consider the graph of Figure 3, where we
again want to compute the probability that the gray nodes
A and D are disconnected. Links are assumed homoge-
neous, with unreliability qi = ε for i = 1, . . . , 5.

A

B

C

D

q1 = ε

q2 = ε

q4 = ε

q5 = ε

q3 = ε

Fig. 3. Graph topology with five links and two nodes requiring to be
connected

TABLE I
UNRELIABILITIES AND CORRESPONDING MINCUT-MAXPROB

APPROXIMATIONS FOR EXAMPLE 3.

State (x1, . . . xi) ui+1(x1, . . . xi) bui+1(x1, . . . xi)
(0) ε+ o(ε) ε
(1) ε2 + o(ε2) ε2

(0, 0) 1 1
(0, 1) 2ε2 − ε3 ε2

(1, 0) 2ε2 − ε3 ε2

(1, 1) ε2 ε2

(0, 1, 0) ε ε
(0, 1, 1) ε2 ε2

(1, 0, 0) ε ε
(1, 0, 1) ε2 ε2

(1, 1, 0) ε2 ε2

(1, 1, 1) ε2 ε2

(0, 1, 0, 0) ε ε
(0, 1, 0, 1) ε ε
(0, 1, 1, 0) ε ε
(0, 1, 1, 1) 0 0
(1, 0, 0, 0) 1 1
(1, 0, 0, 1) 0 0
(1, 0, 1, 0) ε ε
(1, 0, 1, 1) 0 0
(1, 1, 0, 0) ε ε
(1, 1, 0, 1) 0 0
(1, 1, 1, 0) ε ε
(1, 1, 1, 1) 0 0

Table I compares the unreliabilities and mincut-maxprob
approximations at the different steps of the method. To
simplify, we only list the states in which the final outcome
(being connected or not) is not yet known. Table II, on the
other hand, lists the 16 out of 32 configurations leading
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TABLE II
PROBABILITIES OF THE 16 CONFIGURATIONS X THAT GIVE φ(X) = 1 UNDER THE ORIGINAL AND MODIFIED PROBABILITIES, AND THE

CORRESPONDING CONTRIBUTIONS TO THE SECOND MOMENT UNDER IS, FOR EXAMPLE 3.

Configuration P[X = x] eP[X = x] L2(x)eP[X = x]

(0, 0, 0, 0, 0) ε5 ε3

(2−ε)(1+ε−ε2)
ε7(2− ε)(1 + ε− ε2)

(0, 0, 0, 0, 1) ε4(1− ε)
ε2(1−ε)

(2−ε)(1+ε−ε2)
ε6(1− ε)(2− ε)(1 + ε− ε2)

(0, 0, 0, 1, 0) ε4(1− ε)
ε2(1−ε)

(2−ε)(1+ε−ε2)
ε6(1− ε)(2− ε)(1 + ε− ε2)

(0, 0, 0, 1, 1) ε3(1− ε)2
ε(1−ε)2

(2−ε)(1+ε−ε2)
ε5(1− ε)2(2− ε)(1 + ε− ε2)

(0, 0, 1, 0, 0) ε4(1− ε)
ε2(1−ε)

(2−ε)(1+ε−ε2)
ε6(1− ε)(2− ε)(1 + ε− ε2)

(0, 0, 1, 1, 0) ε3(1− ε)2
ε(1−ε)2

(2−ε)(1+ε−ε2)
ε5(1− ε)2(2− ε)(1 + ε− ε2)

(0, 0, 1, 0, 1) ε3(1− ε)2
ε(1−ε)2

(2−ε)(1+ε−ε2)
ε5(1− ε)2(2− ε)(1 + ε− ε2)

(0, 0, 1, 1, 1) ε2(1− ε)3
(1−ε)3

(2−ε)(1+ε−ε2)
ε4(1− ε)3(2− ε)(1 + ε− ε2)

(0, 1, 0, 0, 0) ε4(1− ε)
ε2(1−ε)

(2−ε)2(1+ε−ε2)
ε6(1− ε)(2− ε)2(1 + ε− ε2)

(0, 1, 0, 1, 0) ε3(1− ε)2
ε(1−ε)2

(2−ε)2(1+ε−ε2)
ε5(1− ε)2(2− ε)2(1 + ε− ε2)

(0, 1, 1, 0, 0) ε3(1− ε)2
ε(1−ε)2

(2−ε)2(1+ε−ε2)
ε5(1− ε)2(2− ε)2(1 + ε− ε2)

(1, 0, 0, 0, 0) ε4(1− ε)
ε2(1−ε)
(2−ε)2 ε6(1− ε)(2− ε)2

(1, 0, 0, 0, 1) ε3(1− ε)2
ε(1−ε)2
(2−ε)2 ε5(1− ε)2(2− ε)2

(1, 0, 1, 0, 0) ε3(1− ε)2
ε(1−ε)2
(2−ε)2 ε5(1− ε)2(2− ε)2

(1, 1, 0, 0, 0) ε3(1− ε)2
ε(1−ε)2
(2−ε) ε5(1− ε)2(2− ε)

(1, 1, 1, 0, 0) ε2(1− ε)3
(1−ε)3
(2−ε) ε4(1− ε)2(2− ε)

to disconnected nodes A and D, with their probabilities
under the original probability law and under IS. Only two
configurations, (0, 0, 1, 1, 1) and (1, 1, 1, 0, 0), have a prob-
ability Θ(1) under IS and it can be readily checked that the
sufficient conditions of Theorem 6 are verified. To verify
VRE directly, Table II also displays the contribution fo
each configuration to the variance of the overall estimator
under IS. We find from this table and easy computations
that u = 2ε2 + 2ε3 − 5ε4 + 2ε5 and∑

x∈{0,1}5
L2(x)φ(x)P̃[X = x] = 4ε4 + o(ε4),

so the relative variance is
1
u2

∑
x∈{0,1}5

φ(x)L2(x)P̃[X = x]− 1 = o(1),

in accordance with Theorem 6.
Example 4: Consider a variation of Example 2 where
K is now the set of all nodes, as shown in Figure 4.
The system works only if all nodes are connected. It is
in a failed state if and only if at least two links are
failed. This gives 11 failed configurations out of 16, and
u = 6ε2 + o(ε2). Table III gives the original and modified
probabilities of those 11 configurations, as well as the
contributions to the second moment under IS. Here, for
instance, u3(0, 0) = û3(0, 0) = 1, but u3(0, 1) = 2ε+o(ε)

A

B

C

D

q1 = ε

q2 = ε

q3 = ε

q4 = ε

Fig. 4. A graph topology with four links and requiring full connectivity.

whereas û3(0, 1) = ε. Thus if x1 = 0, the unreliability of
the second link under the zero-variance change of measure
is εu3(0, 0)/(εu3(0, 0)+(1−ε)u3(0, 1)) = 1/3+o(1) and
it is 1/2 + o(1) with the mincut-maxprob approximation.
Thus we have BRE, thanks to Theorem 4, but the sufficient
conditions of Theorems 5 or 6 are not verified, and this can
be seen by looking for instance at configuration (0, 0, 1, 1).
One can directly see that VRE is not verified by directly
computing the relative variance:

1
u2

∑
x∈{0,1}m

φ(x)L2(x)P̃[X = x]− 1 =
1
9

+ o(1).
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TABLE III
ORIGINAL AND MODIFIED PROBABILITIES OF THE 11 FAILED CONFIGURATIONS, AND ASSOCIATED CONTRIBUTION TO THE SECOND MOMENT

UNDER IS, FOR EXAMPLE 4.

Configuration P[X = x] eP[X = x] L2(x)eP[X = x]

(0, 0, 0, 0) ε4 ε2

(2−ε)2 ε6(2− ε)2

(0, 0, 0, 1) ε3(1− ε)
ε(1−ε)
(2−ε)2 ε5(1− ε)(2− ε)2

(0, 0, 1, 0) ε3(1− ε)
ε(1−ε)
(2−ε)2 ε5(1− ε)(2− ε)2

(0, 0, 1, 1) ε2(1− ε)2
(1−ε)2
(2−ε)2 ε4(1− ε)2(2− ε)2

(0, 1, 0, 0) ε3(1− ε)
ε(1−ε)
(2−ε)3 ε5(1− ε)(2− ε)3

(0, 1, 0, 1) ε2(1− ε)2
(1−ε)2
(2−ε)3 ε4(1− ε)2(2− ε)3

(0, 1, 1, 0) ε2(1− ε)2
(1−ε)2
(2−ε)3 ε4(1− ε)2(2− ε)3

(1, 0, 0, 0) ε3(1− ε)
ε(1−ε)
(2−ε)3 ε5(1− ε)(2− ε)3

(1, 0, 0, 1) ε2(1− ε)2
(1−ε)2
(2−ε)3 ε4(1− ε)2(2− ε)3

(1, 0, 1, 0) ε2(1− ε)2
(1−ε)2
(2−ε)3 ε4(1− ε)2(2− ε)3

(1, 1, 0, 0) ε2(1− ε)2
(1−ε)2
(2−ε)2 ε4(1− ε)2(2− ε)2

We emphasize that the BRE property is always verified,
regardless of the order in which the links are sampled. For
the VRE property, on the other hand, the sampling order
may matter. Thus, the ordering may have an impact on the
performance and this leads to the question: What is the
best way to define that ordering? Intuitively, the general
goal is to ensure that the approximation q̃i, when sampling
the i-th link, is as close as possible to the zero-variance
probability. We do not yet have a precise algorithm (or a
general heuristic rule) to find a good ordering a priori to
achieve this goal.

VI. NUMERICAL ILLUSTRATIONS

We now report some simulation experiments with the
mincut-maxprob approximation, for the toy examples of
Section V and for larger ones. We also tried the method
numerically for Examples 1 and 2, and the estimator was
equal to u on each run, as expected.

Example 5: Table IV gives empirical results for Exam-
ple 3, for sample size n = 104 and four different values
of ε. It shows the estimate of u, a 95% confidence interval
on u, the empirical standard deviation (per replication),
and the empirical relative error. We observe a decrease of
the relative error when ε decreases, in accordance with the
VRE property.

Example 6: Table V reports similar results for Exam-
ple 4. We saw in that example that the square relative error
is 1/9 + o(1), so the relative error should converge to 1/3
when ε→ 0. This is exactly what we observe empirically.

Example 7: We now take a larger graph, made of 20
nodes and 30 links, with the dodecahedron topology as
shown in Figure 5. This structure is often used as a
benchmark for network reliability evaluation techniques

[6], [7], [13]. We consider the homogeneous case, where all
links have the same unreliability ε, and we want to compute
the probability that nodes A and B are disconnected.
Links are ordered somewhat arbitrarily, according to their
numbering in the figure. The empirical results, in Table VI,
suggest that VRE holds. Our proposed IS scheme provides
an extremely tight confidence interval on u when ε is very
small. We know of no other method that provides VRE for
this dodecahedron topology.
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Fig. 5. Dodecahedron topology

Example 8: To experiment with an even larger network,
of a size for which simulation is typically required, we
construct a graph by juxtaposing three copies of the
dodecaheron topology of Figure 5, forming a parallel
system as shown in Figure 6. The resulting network has
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TABLE IV
EMPIRICAL RESULTS FOR EXAMPLE 5, FOR n = 104 AND FOUR VALUES OF ε.

ε Estimate 95% Confidence interval Std deviation Relative error

10−1 2.150× 10−2 (2.139× 10−2, 2.160× 10−2) 5.15× 10−3 0.24
10−2 2.022× 10−4 (2.018× 10−4, 2.026× 10−4) 2.07× 10−5 0.10
10−3 2.0014× 10−6 (2.0003× 10−6, 2.0024× 10−6) 5.28× 10−8 2.6× 10−2

10−4 2.0002× 10−8 (1.9998× 10−8, 2.0006× 10−8) 2.00× 10−10 1.0× 10−2

TABLE V
EMPIRICAL RESULTS FOR EXAMPLE 6, FOR n = 104 AND FOUR VALUES OF ε.

ε Estimate 95% Confidence interval Std deviation Relative error

10−1 5.271× 10−2 (5.239× 10−2, 5.302× 10−2) 1.62× 10−2 0.31
10−2 5.944× 10−4 (5.905× 10−4, 5.982× 10−4) 1.96× 10−4 0.33
10−3 6.015× 10−6 (5.976× 10−6, 6.054× 10−6) 2.00× 10−6 0.33
10−4 6.022× 10−8 (5.982× 10−8, 6.061× 10−8) 2.00× 10−8 0.33

TABLE VI
EMPIRICAL RESULTS FOR EXAMPLE 7, FOR n = 104 AND FOUR VALUES OF ε.

ε Estimate 95% Confidence interval Std deviation Relative error

10−1 2.8960× 10−3 (2.8276× 10−3, 2.9645× 10−3) 3.49× 10−3 1.2
10−2 2.0678× 10−6 (2.0611× 10−6, 2.0744× 10−6) 3.42× 10−7 0.17
10−3 2.0076× 10−9 (2.0053× 10−9, 2.0099× 10−9) 1.14× 10−10 0.057
10−4 2.0007× 10−12 (2.0000× 10−12, 2.0014× 10−12) 3.46× 10−14 0.017

90 links. The source and terminal nodes A and B of the
three dodecaheron copies are merged. and the links are
ordered in the same way as in Figure 5, starting with
the first copy, then the second copy, and finally the third.
We still consider the homogeneous case, where all links
have the same unreliability ε, and we want to compute
the probability that nodes A and B are disconnected. Note
that the unreliability here is the cube of that of a single
dodecahedron. The empirical results, in Table VII, suggest
that VRE holds here too.

A dodec. 1

dodec. 2

dodec. 3

B

Fig. 6. Three dodecahedron topologies in parallel

Example 9: We consider a similar construction as in
the previous example, except that the three dodecaheron
copies are connected in series instead of in parallel, as
shown in Figure 7. The source node is the source of the

first copy and the destination is the destination of the third
one, while the destination of the first (respectively second)
copy is the source of the second (respectively third). We
still consider the homogeneous case, where all links have
the same unreliability ε. Here the reliability (and not the
unreliability) is the cube of that of a single dodecahedron
topology. The empirical results in Table VIII suggest that
only BRE holds.

A dodec. 1 dodec. 2 dodec. 3 B

Fig. 7. Three dodecahedron topologies in series

The gain in accuracy (variance reduction) with the
proposed method comes at the expense of increased com-
puting times, because we need to find two mincuts with
maximal probability at each step of the sampling process.
This is done in polynomial time, using for instance the
basic Ford-Fulkerson algorithm [27]. To give some idea
of the added computational burden compared with crude
Monte Carlo, we report here the average CPU time to
simulate one realization of the graph with both methods,
with our Java implementation on a MacBook with a 2.4
GHz Intel Core 2 Duo processor. For Example 3, the
average simulation time is 9.4× 10−6 seconds with crude
Monte Carlo and 4.2 × 10−5 seconds with our mincut-
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TABLE VII
EMPIRICAL RESULTS FOR EXAMPLE 8, FOR n = 104 AND THREE VALUES OF ε.

ε Estimate 95% Confidence interval Std deviation Relative error

10−1 2.3573× 10−8 (2.2496× 10−8, 2.4650× 10−8) 5.49× 10−8 2.3
5× 10−2 2.5732× 10−11 (2.5138× 10−11, 2.6327× 10−11) 3.03× 10−11 01.2

10−2 8.7655× 10−18 (8.7145× 10−18, 8.8165× 10−18) 2.60× 10−18 0.30

TABLE VIII
EMPIRICAL RESULTS FOR EXAMPLE 9, FOR n = 104 AND THREE VALUES OF ε.

ε Estimate 95% Confidence interval Std deviation Relative error

10−2 6.1919× 10−6 (6.0190× 10−6, 6.3648× 10−6) 8.82× 10−6 1.4
10−3 5.9730× 10−9 (5.8213× 10−9, 6.1146× 10−9) 7.74× 10−9 1.3
10−4 5.9246× 10−12 (5.7766× 10−12, 6.0727× 10−12) 7.55× 10−12 1.3

maxprob IS algorithm. For Example 7 (the dodecahedron
topology), the numbers are 4.8× 10−5 seconds for crude
Monte Carlo and 7.9×10−4 seconds for our method, so the
time increases by a factor 16.5. For Example 8, this factor
is about 52 while it is 26 for Example 9. These factors
are not negligible, but they are modest in comparison with
the (arbitrarily large) factors by which the variance can be
reduced.

VII. CONCLUSIONS

We have described in this paper a new importance
sampling scheme for the simulation of static reliability
models. Our method tries to mimic the zero-variance
change of measure, sampling sequentially the links and
approaching the unreliability of the model given the status
of previously sampled links by a rough estimation, here
taken as the probability of a mincut. We proved that
the BRE property is verified by our scheme when the
unreliabilities of all links go to zero. This implies that
compared with MC, the variance can be reduced by an
arbitrarily large factor by taking ε small enough. Under
additional conditions on the quality of the approximation,
even VRE is verified. The efficiency of the method is
illustrated on small examples to check the correctness of
the implementation, and on a larger model often used in
the area for illustration purposes. The VRE property is
observed on benchmark examples, something not observed
by the other rare-event simulation methods of the literature,
emphasizing the interest of our proposal when links are
very reliable.

This work will be pursued in several directions. We will
first try to improve the approximation of the unreliability
function, likely driving to a change of measure closer to
the zero-variance one. The idea is to consider not only
the mincut probability function, which is a lower bound of
the unreliability, but other functions such as for instance
an upper-bound taken as one minus the probability of a
minpath, and to use a linear combination of those basis

functions to get a better approximation. This is similar
to what is done in dynamic programming to approximate
the Bellman value function. The coefficients of the linear
combination will have to be learned. Another issue we
would like to tackle is the combination of this importance
sampling scheme with other variance reduction techniques
such as those in [5], [7], where importance sampling
is not considered. Adding an adapted zero-variance IS
approximation to the techniques proposed there is likely to
drastically reduce the variance and produce an extremely
efficient estimator. A third direction for improvement is
to combine our general procedure with graph reductions
techniques that can be applied in polynomial time as
a function of the model size, usually employed in the
area, such as series-parallel reductions for example. These
reductions should contribute to further diminish both the
variance and the global cost in time of the method.
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de Recherche Opérationnelle, at the Université de Montréal, Canada.
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