
Random Number Generation and Quasi-Monte Carlo ∗

Pierre L’Ecuyer
Université de Montréal, Canada, and Inria Rennes, France

November 2014

Keywords: random number generator, pseudorandom numbers, linear generator, multi-
ple recursive generator, tests of uniformity, random variate generation, inversion, rejection,
simulation, Monte Carlo, quasi-Monte Carlo, low-discrepancy

Abstract

Abstract: Probability theory defines random variables and stochastic processes in
terms of probability spaces, an abstract notion whose concrete and exact realization on
a computer is far from obvious. (Pseudo) random number generators (RNGs) imple-
mented on computers are actually deterministic programs which imitate, to some ex-
tent, independent random variables uniformly distributed over the interval [0, 1] (i.i.d.
U [0, 1], for short). RNGs are a key ingredient for Monte Carlo simulations, probabilis-
tic algorithms, computer games, cryptography, casino machines, and so on. In this
article, we outline the main principles underlying the design and testing of RNGs for
statistical computing and simulation. Then we indicate how U(0, 1) random numbers
can be transformed to generate random variates from other distributions. Finally, we
summarize the main ideas on quasi-random points, which are more evenly distributed
than independent random point and permit one to estimate integrals more accurately
for the same number of function evaluations.

Introduction

Probability theory defines random variables and stochastic processes in terms
of probability spaces, a purely abstract notion whose concrete and exact realization on a
computer is far from obvious. (Pseudo) random number generators (RNGs) implemented
on computers are actually deterministic programs that imitate, to some extent, independent
random variables uniformly distributed over the interval [0, 1] (i.i.d. U [0, 1], for short) [13,
15, 23]. RNGs are a key ingredient for Monte Carlo simulation , probabilistic algorithms,
computer games, etc. In the section ‘Uniform Random Number Generators’, we discuss

∗An older version of this article was originally published online in 2006 in Encyclopedia of Actuarial
Science, c© John Wiley & Sons, Ltd. This version, largely rewritten, is submitted for Wiley StatsRef:
Statistics Reference Online, 2014.

1



the main ideas underlying the design and testing of RNGs for computational statistics and
simulation. For other applications such as cryptography and lotteries, for example, there are
different (stronger) requirements [40, 42].

Random variates from nonuniform distributions and stochastic objects of all sorts are
simulated by applying appropriate transformations to these fake i.i.d. U [0, 1] [4, 12]. Con-
ceptually, the easiest way of generating a random variate X with cumulative distribution
function F (i.e., such that F (x) = P[X ≤ x] for all x ∈ R) is to apply the inverse of F to
a U [0, 1] random variate U :

X = F−1(U)
def
= min{x|F (x) ≥ U}. (1)

Then, P[X ≤ x] = P[F−1(U) ≤ x] = P[U ≤ F (x)] = F (x), so X has the desired distribution.
This is the inversion method (see ). If X has a discrete distribution with P[X = xi] = pi,
inversion can be implemented by storing the pairs (xi, F (xi)) in a table and using binary
search or index search to find the value of X that satisfies (1). In the cases in which F−1 is
hard or expensive to compute, other methods are sometimes more advantageous, as explained
in the section ‘Nonuniform Random Variate Generation’.

One major use of simulation is to estimate the mathematical expectation of a function of
several random variables, which can usually be expressed (sometimes implicitly) in the form

µ =

∫
[0,1]s

f(u)du , (2)

where f is a real-valued function defined over the unit hypercube [0, 1]s, u = (u1, . . . , us) ∈
[0, 1]s, and s is the number of calls to the RNG required by the simulation.

A simple way of approximating µ is to select a point set Pn = {u1, . . . ,un} ⊂ [0, 1]s and
take the average

µ̂n =
1

n

n∑
i=1

f(u i) (3)

as an approximation. The Monte Carlo method (MC) chooses the u i’s as n i.i.d. uni-
formly distributed random vectors over [0, 1]s. Then, µ̂n is an unbiased estimator of
µ. If f is also square integrable, then µ̂n obeys a central limit theorem , which permits
one to compute an asymptotically valid confidence interval for µ, and the error |µ̂n − µ|
converges to zero as O(n−1/2) in probability, in the sense that the width of the confidence
interval converges to 0 at that rate.

The idea of quasi-Monte Carlo (QMC) is to select the point set Pn more evenly distributed
over [0, 1]s than a typical set of random points, with the aim of reducing the error compared
with MC [6, 22, 43]. Important issues are: How should we measure the uniformity of Pn?
How can we construct such highly uniform point sets? Under what conditions is the error (or
variance) effectively smaller? and How much smaller? These questions are discussed briefly
in the section ‘Quasi-Monte Carlo Methods’.

2



Uniform Random Number Generators

Following [15], a uniform RNG can be defined as a structure (S, µ, f , U , g), where S is a
finite set of states, µ is a probability distribution on S used to select the initial state s0 (the
seed), f : S → S is the transition function, U is the output set, and g : S → U is the output
function. In what follows, we assume that U = [0, 1]. The state evolves according to the
recurrence si = f(si−1), for i ≥ 1, and the output at step i is ui = g(si) ∈ U . These ui are
the random numbers produced by the RNG. Because S is finite, one must have sl+j = sl
for some l ≥ 0 and j > 0. Then, si+j = si and ui+j = ui for all i ≥ l; that is, the output
sequence is eventually periodic. The smallest positive j for which this happens is the period
length ρ. Of course, ρ cannot exceed |S|, the cardinality of S. So ρ ≤ 2b if the state is
represented over b bits. Good RNGs are designed so that their period length is close to that
upper bound.

‘Truly random’ generators based on physical devices such as noise diodes, quantum com-
puting devices, and so on, are also available, but for simulation and computational statistics,
they are much less convenient than RNGs based on deterministic recurrences. A major ad-
vantage of the latter is their ability to repeat exactly the same sequence of numbers: This
is very handy for program verification and replay, and for implementing variance reduction
methods in simulation (e.g. for comparing similar systems with common random numbers)
[1, 34, 21]. True randomness may nevertheless be used for selecting the seed s0. Then, the
RNG can be viewed as an extensor of randomness, stretching a short random seed into a
long sequence of random-looking numbers.

What quality criteria should we consider in RNG design? One obvious requirement is an
extremely long period, to make sure that no wraparound over the cycle can occur in practice.
The RNG must also be efficient (run fast and use little memory), repeatable (able to repro-
duce the same sequence), and portable (work the same way in different software/hardware
environments). The availability of efficient jumping-ahead methods, that is, to quickly com-
pute si+ν given si, for any large ν, is also an important asset, because it permits one to
partition the sequence into long disjoint streams and substreams for constructing virtual
generators from a single backbone RNG [21, 23, 31, 38]. Such multiple streams of random
numbers are very convenient when simulating slightly different systems with common ran-
dom numbers to compare their performance. They facilitate the task of synchronizing the
use of the random numbers across the different systems [1, 14, 21, 24, 34]. Multiple streams
of random numbers are also essential for parallel simulation on multiple processors, which
is becoming increasingly important, in view of the fact that computational power increases
nowadays no longer by increasing the clock speeds, but by increasing the number of comput-
ing elements [31]. On some popular parallel computing devices, such as graphical processing
units (GPUs), the size of fast-access memory for each processing element is quite small, so
the state of the RNG (and of each stream) should remain small (say at most a few dozen
bytes). This is also true for other types of small computing devices.

A long period does not suffice for the ui’s to behave as uniform and independent. Ideally,
we would like the vector (u0, . . . , us−1) to be uniformly distributed over [0, 1]s for each s > 0.
This cannot be exactly true, because these vectors always take their values only from the

3



finite set Ψs = {(u0, . . . , us−1) : s0 ∈ S}, whose cardinality cannot exceed |S|. If s0 is
random, Ψs can be viewed as the sample space from which vectors of successive output
values are taken randomly. Producing s-dimensional vectors by taking nonoverlapping blocks
of s output values of an RNG can be viewed in a way as picking points at random from Ψs,
without replacement. It seems natural, then, to require that Ψs be very evenly distributed
over the unit cube, so that the uniform distribution over Ψs is a good approximation to that
over [0, 1]s, at least for moderate values of s. For this, the cardinality of S must be huge, so
that it is possible for Ψs to fill the unit hypercube densely enough. This is in fact a more
important reason for having a large state space than just the fear of wrapping around the
cycle.

The uniformity of Ψs is usually assessed by figures of merit measuring the discrepancy
between the empirical distribution of its points and the uniform distribution over [0, 1]s

[13, 33, 23, 43]. Several such measures can be defined and they correspond to goodness-
of-fit test statistics for the uniform distribution over [0, 1]s. An important criterion
in choosing a specific measure is the ability to compute it efficiently without generating the
points explicitly, and this depends on the mathematical structure of Ψs. This is why different
figures of merit are used in practice for analyzing different classes of RNGs. The selected
figure of merit is usually computed for a range of dimensions, for example, for s ≤ s1 for
some arbitrary integer s1. Examples of such figures of merit include the (normalized) spectral
test in the case of multiple recursive generators (MRGs) and linear congruential generators
(LCGs) [13, 8, 25, 18, 37] and measures of equidistribution for generators based on linear
recurrences modulo 2 [16, 33, 51]. These RNGs are defined below.

More generally, one can compute a discrepancy measure for sets of the form Ψs(I) =
{(ui1 , . . . , uis) : s0 ∈ S}, where I = {i1, i2, . . . , is} is a fixed set of nonnegative integers. Do
this for all I in a given class I, and take either the worst case or some type of average (after
appropriate normalization) as a figure of merit for the RNG [30, 33]. The choice of I is left
open. Typically, I would contain sets I such that s and is − i1 are both relatively small.

After an RNG has been designed based on sound mathematical analysis, it is good
practice to submit it to a battery of empirical statistical tests that try to detect empirical
evidence against the hypothesis H0 that the ui are i.i.d. U [0, 1]. A test can be defined by
any function T of a finite set of ui’s, and whose distribution under H0 is known or can be
closely approximated. There is an unlimited number of such tests. No finite set of tests can
guarantee, when passed, that a given generator is fully reliable for all kinds of simulations.
Passing large batteries of tests cannot prove that the RNG is foolproof, but it certainly
improves one’s confidence in the RNG. In reality, no RNG can pass all possible statistical
tests. Roughly speaking, bad RNGs are those that fail simple tests, whereas good ones
fail only complicated tests that are very hard to find and run. Ideally, the statistical tests
should be selected in close relation with the target application, that is, T should mimic the
random variable of interest, but this is rarely practical, especially for general purpose RNGs.
Large collections of statistical tests for uniform RNGs are proposed and implemented in
[2, 13, 35, 36] and other references given there.

4



The most widely used RNGs are based on linear recurrences of the form

xi = (a1xi−1 + . . .+ akxi−k) mod m, (4)

for positive integers m and k, and coefficients al in {0, 1, . . . ,m− 1}. The state at step i is
si = (xi−k+1, . . . , xi). If m is a prime number, one can choose the coefficients al’s so that the
period length reaches ρ = mk − 1, which is the largest possible value [13].

A multiple recursive generator (MRG) uses (4) with a large value of m and defines the
output as ui = xi/m. For k = 1, this is the classical LCG. Implementation techniques and
concrete examples are given, for example, in [8, 18, 23, 39] and the references given there.

A different approach takes m = 2, which allows fast implementations by exploiting the
binary nature of computers. By defining the output as ui =

∑L
j=1 xis+j−12

−j for some positive
integers s and L, one obtains a linear feedback shift register (LFSR) generator [19, 43, 51].
This can be generalized to a linear recurrence of the form x i = Ax i−1 mod 2, where the
k-bit vector x i = (xi,0, . . . , xi,k−1)

T is the state at step i and A is a k × k binary matrix.
To construct the output, we define the w-bit vector y i = (yi,0, . . . , yi,w−1)

T = Bx i mod 2,
where B is a w × k binary matrix, and put ui = yi,0/2 + yi,1/2

2 + · · · + yi,w−1/2
w. The

sequence of states x i has maximal period 2k − 1 if and only if the characteristic polynomial
of A is primitive modulo 2, and for each j, the binary sequence {yi,j, i ≥ 0} obeys the
recurrence (4) where the al are the coefficients of this characteristic polynomial [33]. This
implies that all these RNGs fail statistical tests based on the linear complexity of this binary
sequence, but many F2-linear RNGs are nevertheless useful and reliable for most applications,
and they are very fast. This setup encompasses several types of generators, including the
Tausworthe, polynomial LCG, generalized feedback shift register (GFSR), twisted GFSR,
Mersenne twister, WELL, xorshift, and combinations of these [32, 33, 41, 47].

Some of the best RNGs currently available are combined generators, constructed by
combining the outputs of two or more RNGs having a simple structure. The idea is to
keep the components simple so that they run fast, and to select them carefully so that
their combination has a more complicated structure and highly-uniform sets Ψs(I) for the
values of s and sets I deemed important. Such recommendable combinations are proposed
in [19, 18, 32, 39], for example. By combining MRGs with F2-linear RNGs, the structure
becomes nonlinear and it becomes more difficult to measure the uniformity, but useful bounds
on uniformity measures can still be computed [26], and the resulting RNGs are very robust
to statistical testing. In general, nonlinearity can be introduced by making either f or g
nonlinear. In some cases, the transition function f does very little and much of the work
is left to g. Counter-based RNGs push this to the limit: f just increments a counter, so
f(i) = i+1, and g implements a complicated transformation such as a block cipher encryption
algorithm [11, 36, 48, 49]. One advantage is that the output ui at any step i can be generated
directly and efficiently without generating the previous values, so the ui’s can be generated
in any order. One drawback is that the good ones are typically slower than linear RNGs.

Other types of generators, including nonlinear ones, are discussed, for example, in [7,
13, 15, 17, 23, 51], and some perform quite well in statistical tests [36]. Plenty of very bad
and unreliable RNGs abound in both commercial and open-source software. Convincing

5



examples can be found in [17, 20, 36], for example. In particular, we think that all LCGs
with period length less than 2100, say, should be discarded.

Nonuniform Random Variate Generation

For most applications, inversion is the method of choice for generating nonuniform random
variates. The fact that it transforms U monotonously into X (X is a nondecreasing function
of U) makes it compatible with major variance reductions techniques [1, 14]. For certain
types of distributions (the normal and chi-square , for example), there is no close form
expression for F−1 but good numerical approximations are available [4, 9, 12]. Methods to
construct accurate approximations of F−1 are discussed in [12]. If an efficient algorithm
is available to compute F , one can use it to approximate F−1(U) by binary search, or by
Newton-Raphson if the density is also known [3, 4].

For discrete distributions over integers i, inversion can be implemented by first tabulating
the pairs (xi, F (xi)), then using binary search to find I = min{i | F (xi) ≥ U} [3]. If there
are too many possible values of i (e.g., an infinite number), one can store only the main
portion of the table and compute other values when needed [3]. Faster algorithms use
an index: partition (0, 1) into c subintervals of size 1/c and tabulate Lj = F−1(j/c) for
j = 0, . . . , c− 1. When U ∈ [j/c, (j + 1)/c), search for X in Lj, . . . , Lj+1. When c is large,
this is very fast, as fast as the alias method [12].

There are situations where speed is important and where noninversion methods are appro-
priate. In general, compromises must be made between simplicity of the algorithm, quality
of the approximation, robustness with respect to the distribution parameters, and efficiency
(generation speed, memory requirements, and setup time). Simplicity should generally not
be sacrificed for small speed gains. In what follows, we outline some important special cases
of noninversion methods.

Suppose we want to generate X from a complicated density f . Select another density r

such that f(x) ≤ t(x)
def
= ar(x) for all x for some constant a ≥ 1, and such that generating

variates Y from the density r is easy. To generate X, repeat the following: generate Y from
the density r and an independent U [0, 1] variate U , until Ut(Y ) ≤ f(Y ). Then, return
X = Y . This is the rejection method [4, 12]. The number R of turns into the ‘repeat’ loop
is one plus a geometric random variable with parameter 1/a, so E[R] = a, and we want a to
be as small (close to 1) as possible. There is usually a compromise between having a close
to 1 and keeping r simple. When f is a bit expensive to compute, one can also use a squeeze
function q which is faster to evaluate and such that q(x) ≤ f(x) for all x. To verify the
condition U t(Y ) ≤ f(Y ), first check if U t(Y ) ≤ q(Y ), in which case we accept immediately
and there is no need to compute f(Y ).

The rejection method is often applied after a change of variable that transforms the
density f by a smooth increasing function T (e.g., T (x) = log x or T (x) = −x−1/2, selected
so that it is easier to construct good hat and squeeze functions (often piecewise linear) for
the transformed density. By transforming back to the original scale, we get hat and squeeze
functions for f . This is the transformed density rejection method, which has several variants

6



and extensions [4, 12].
Changes of variable are also used commonly to standardize stochastic processes by chang-

ing their time scale. For example, to generate arrivals from a Poisson process with piecewise-
constant rate, one can make a change of variable to obtain a Poisson process with rate 1
(with inter-arrival times that are independent and exponential with mean 1), generate the
arrivals for that standard process, and transform the arrival times back to the original time
scale. More generally, the change of variable can be random, driven by a subordinator pro-
cess (e.g., a gamma process), and this applies to various kinds of Lévy processes, including
Brownian motion and geometric Brownian motion [1].

Besides the general methods, several specialized and fancy techniques have been designed
for commonly used distributions like the Poisson, normal, and so on. Details can be found
in [1, 4, 9, 12], for example.

Quasi-Monte Carlo Methods

The primary ingredient for QMC is a highly uniform (or low-discrepancy) point set Pn to
be used in (3). The two main classes of approaches for constructing such point sets are
lattice rules and digital nets [5, 6, 22, 43, 50]. For these constructions, the point sets Pn
have the same structures as Ψs for LCGs and for F2-linear generators, respectively, and their
uniformity (or discrepancy) can be measured in a similar way. A low-discrepancy sequence
or Quasi-Random Sequence is an infinite sequence of points P∞ such that the set Pn
comprised of the first n points of the sequence have low discrepancy for all n, as n → ∞
[6, 43]. With such a sequence, one does not have to fix n in advance when evaluating (3);
sequential sampling becomes possible. Applications of QMC in different areas are discussed,
for example, in [6, 10, 22, 27].

QMC methods are typically justified by worst-case error bounds of the form

|µ̂n − µ| ≤ ‖f − µ‖ ·D(Pn) (5)

for all f in some Banach space F with norm ‖ · ‖. Here, ‖f − µ‖ measures the variability of
f , while D(Pn) measures the discrepancy of Pn and its definition depends on how the norm
is defined in F . These inequalities are typically derived by applying a version of Holder’s
inequality in the selected space. A popular special case of (5) is the Koksma-Hlawka
inequality , in which the norm is the variation of f in the sense of Hardy and Krause
and D(Pn) is the (rectangular) star discrepancy [43]. The latter considers all rectangular
boxes aligned with the axes and with a corner at the origin in [0, 1]s, computes the absolute
difference between the volume of the box, and the fraction of Pn falling in it, and takes the
worst case over all such boxes. This is a multidimensional version of the Kolmogorov-
Smirnov goodness-of-fit test statistic . Several other versions of (5) are discussed in
[6, 22, 44] and other references therein. Some of the corresponding discrepancy measures
are much easier to compute than the star discrepancy. Like for RNGs, the discrepancy
measures used to construct and choose point sets in practice depend on the structure of the
construction, and are selected so they can be computed effectively [6, 30].

7



Specific sequences P∞ have been constructed with star discrepancyD(Pn) = O(n−1(lnn)s)
when n→∞ for fixed s, yielding a convergence rate of O(n−1(lnn)s) for the worst-case error
if ‖f−µ‖ <∞ [6, 43, 51]. This is asymptotically better than MC. There are other discrepancy
measures for which point sets Pn can be constructed with discrepancy D(Pn) = O(n−α+ε)
for ε > 0 arbitrarily close to 0 and for an arbitrary α > 0, and we know how to construct
such points [6, 5, 22, 30]. The larger α, the more restricted is the class of functions f for
which (5) holds (the functions must be smoother in some sense). Also, the hidden constant
in the O(n−α+ε) expression depends on s and α and may be huge for large α or s, so the
bound is sometimes meaningless unless n is astronomically large. Thus, even though QMC
performs much better than MC in practice in some situations (sometimes by huge factors),
the worst-case bound (5) does not always explain why. In fact, the actual error is often much
smaller than the bound.

One explanation is that even if s is large, f can sometimes be well approximated by a
sum of orthogonal functions defined over some low-dimensional subspaces of [0, 1]s, and the
bound (5) applies to the integration error over each of those subspaces. If the projections
of Pn over the important subspaces have low discrepancy, which is much easier to achieve
than getting a small overall D(Pn) for large s, then the overall integration error can be small
because the error over each important subspace is small. This has motivated the introduction
of discrepancy measures that give more weight to projections of Pn over selected (small)
subsets of coordinates [5, 27, 22, 30]. One can choose a discrepancy measure and select the
weights for one’s specific problem. Software is now available to construct point sets with
small weighted discrepancy for the selected weights [29].

One limitation of QMC with a deterministic point set Pn is that no statistical error
estimate is available. Randomized QMC addresses this issue by randomizing Pn so that
(a) each point of the randomized set is uniformly distributed over [0, 1]s and (b) the high
uniformity of Pn is preserved. For example, one way to achieve this is to shift the entire
point set Pn randomly, by adding a single uniform random variable U modulo 1, for each
coordinate. Another way is to take an exclusive-or of each point with the same random
U (a digital random shift). By doing this, (3) becomes an unbiased estimator of µ and, by
taking a small number of independent randomizations of Pn, one can also obtain an unbiased
estimator of Var[µ̂n] and eventually compute a confidence interval for µ [22, 28, 46]. This
turns QMC into a variance reduction method [27, 28].

Bounds and expressions for the variance have been developed (to replace (5)) for certain
classes of functions and randomized point sets [22, 46]. Under appropriate assumptions on
f , the variance converges faster than the MC rate of O(1/n). For example, a scrambling
method introduced by Owen for a class of digital nets gives Var[µ̂n] = O(n−3(lnn)s) if the
mixed partial derivatives of f are Lipschitz [45]. More generally, convergence results for the
variance can be obtained easily from the fact that the variance converges at least as fast as
the square of the worst-case error.

8



Acknowledgements

This work has been supported by the Natural Sciences and Engineering Research Council
of Canada Grant No. ODGP0110050, a Canada Research Chair, and an Inria International
Chair to the author.

References

[1] S. Asmussen and P. W. Glynn. Stochastic Simulation. Springer-Verlag, New York, 2007.

[2] Lawrence E. Bassham III, Andrew L. Rukhin, Juan Soto, James R. Nechvatal, Miles E.
Smid, Elaine B. Barker, Stefan D. Leigh, Mark Levenson, Mark Vangel, David L. Banks,
Nathanael Alan Heckert, James F. Dray, and San Vo. A statistical test suite for ran-
dom and pseudorandom number generators for cryptographic applications. NIST special
publication 800-22, revision 1a, National Institute of Standards and Technology (NIST),
Gaithersburg, MD, USA, 2010.

[3] R. C. H. Cheng. Random variate generation. In Jerry Banks, editor, Handbook of
Simulation, pages 139–172. Wiley, 1998. chapter 5.

[4] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, New York, NY,
1986.

[5] J. Dick, F. Y. Kuo, and I. H. Sloan. High dimensional integration—the quasi-Monte
Carlo way. Acta Numerica, 22:133–288, 2013.

[6] J. Dick and F. Pillichshammer. Digital Nets and Sequences: Discrepancy Theory and
Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, U.K., 2010.

[7] J. Eichenauer-Herrmann. Pseudorandom number generation by nonlinear methods. In-
ternational Statistical Reviews, 63:247–255, 1995.

[8] G. S. Fishman. Monte Carlo: Concepts, Algorithms, and Applications. Springer Series
in Operations Research. Springer-Verlag, New York, NY, 1996.

[9] J. E. Gentle. Random Number Generation and Monte Carlo Methods. Springer, New
York, NY, second edition, 2003.

[10] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-Verlag, New
York, 2004.

[11] P. Hellekalek and S. Wegenkittl. Empirical evidence concerning AES. ACM Transactions
on Modeling and Computer Simulation, 13(4):322–333, 2003.

[12] W. Hörmann, J. Leydold, and G. Derflinger. Automatic Nonuniform Random Variate
Generation. Springer-Verlag, Berlin, 2004.

9



[13] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.
Addison-Wesley, Reading, MA, third edition, 1998.

[14] A. M. Law. Simulation Modeling and Analysis. McGraw-Hill, New York, fifth edition,
2014.

[15] P. L’Ecuyer. Uniform random number generation. Annals of Operations Research,
53:77–120, 1994.

[16] P. L’Ecuyer. Maximally equidistributed combined Tausworthe generators. Mathematics
of Computation, 65(213):203–213, 1996.

[17] P. L’Ecuyer. Bad lattice structures for vectors of non-successive values produced by
some linear recurrences. INFORMS Journal on Computing, 9(1):57–60, 1997.

[18] P. L’Ecuyer. Good parameters and implementations for combined multiple recursive
random number generators. Operations Research, 47(1):159–164, 1999.

[19] P. L’Ecuyer. Tables of maximally equidistributed combined LFSR generators. Mathe-
matics of Computation, 68(225):261–269, 1999.

[20] P. L’Ecuyer. Software for uniform random number generation: Distinguishing the good
and the bad. In Proceedings of the 2001 Winter Simulation Conference, pages 95–105,
Piscataway, NJ, 2001. IEEE Press.

[21] P. L’Ecuyer. SSJ: A Java Library for Stochastic Simulation, 2008. Software user’s guide,
available at http://www.iro.umontreal.ca/~lecuyer.

[22] P. L’Ecuyer. Quasi-Monte Carlo methods with applications in finance. Finance and
Stochastics, 13(3):307–349, 2009.

[23] P. L’Ecuyer. Random number generation. In J. E. Gentle, W. Haerdle, and Y. Mori, ed-
itors, Handbook of Computational Statistics, pages 35–71. Springer-Verlag, Berlin, second
edition, 2012.

[24] P. L’Ecuyer and E. Buist. Variance reduction in the simulation of call centers. In
Proceedings of the 2006 Winter Simulation Conference, pages 604–613. IEEE Press, 2006.

[25] P. L’Ecuyer and R. Couture. An implementation of the lattice and spectral tests for
multiple recursive linear random number generators. INFORMS Journal on Computing,
9(2):206–217, 1997.

[26] P. L’Ecuyer and J. Granger-Piché. Combined generators with components from different
families. Mathematics and Computers in Simulation, 62:395–404, 2003.

[27] P. L’Ecuyer and C. Lemieux. Variance reduction via lattice rules. Management Science,
46(9):1214–1235, 2000.

10



[28] P. L’Ecuyer and C. Lemieux. Recent advances in randomized quasi-Monte Carlo meth-
ods. In M. Dror, P. L’Ecuyer, and F. Szidarovszky, editors, Modeling Uncertainty: An
Examination of Stochastic Theory, Methods, and Applications, pages 419–474. Kluwer
Academic, Boston, 2002.

[29] P. L’Ecuyer and D. Munger. Lattice builder: A general software tool for constructing
rank-1 lattice rules. Submitted, see http://www.iro.umontreal.ca/~lecuyer/papers.

html, 2012.

[30] P. L’Ecuyer and D. Munger. On figures of merit for randomly-shifted lattice rules. In
H. Wozniakowski and L. Plaskota, editors, Monte Carlo and Quasi-Monte Carlo Methods
2010, pages 133–159, Berlin, 2012. Springer-Verlag.

[31] P. L’Ecuyer, B. Oreshkin, and R. Simard. Random numbers for parallel computers:
Requirements and methods, 2014. http://www.iro.umontreal.ca/~lecuyer/myftp/

papers/parallel-rng-imacs.pdf.

[32] P. L’Ecuyer and F. Panneton. Construction of equidistributed generators based on linear
recurrences modulo 2. In K.-T. Fang, F. J. Hickernell, and H. Niederreiter, editors, Monte
Carlo and Quasi-Monte Carlo Methods 2000, pages 318–330. Springer-Verlag, Berlin, 2002.

[33] P. L’Ecuyer and F. Panneton. F2-linear random number generators. In C. Alexopou-
los, D. Goldsman, and J. R. Wilson, editors, Advancing the Frontiers of Simulation: A
Festschrift in Honor of George Samuel Fishman, pages 169–193. Springer-Verlag, New
York, 2009.

[34] P. L’Ecuyer and G. Perron. On the convergence rates of IPA and FDC derivative
estimators. Operations Research, 42(4):643–656, 1994.

[35] P. L’Ecuyer and R. Simard. TestU01: A Software Library in ANSI C for Empirical
Testing of Random Number Generators, 2002. Software user’s guide. Available at http:

//www.iro.umontreal.ca/~lecuyer.

[36] P. L’Ecuyer and R. Simard. TestU01: A C library for empirical testing of random num-
ber generators. ACM Transactions on Mathematical Software, 33(4):Article 22, August
2007.

[37] P. L’Ecuyer and R. Simard. On the lattice structure of a special class of multiple
recursive random number generators. INFORMS Journal on Computing, 26(2):449–460,
2014.

[38] P. L’Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton. An object-oriented
random-number package with many long streams and substreams. Operations Research,
50(6):1073–1075, 2002.

11



[39] P. L’Ecuyer and R. Touzin. Fast combined multiple recursive generators with multipliers
of the form a = ±2q±2r. In Proceedings of the 2000 Winter Simulation Conference, pages
683–689, Piscataway, NJ, 2000. IEEE Press.

[40] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University
Press, Princeton, 1996.

[41] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Modeling and
Computer Simulation, 8(1):3–30, 1998.

[42] A. J. Menezes, S. A. Vanstone, and P. C. Van Oorschot. Handbook of Applied Cryptog-
raphy. CRC Press, 1996.

[43] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, vol-
ume 63 of SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM,
Philadelphia, PA, 1992.

[44] Dirk Nuyens. The construction of good lattice rules and polynomial lattice rules. In
Peter Kritzer, Harald Niederreiter, Friedrich Pillichshammer, and Arne Winterhof, editors,
Radon Series on Computational and Applied Mathematics. De Gruyter, 2014. to appear.

[45] A. B. Owen. Scrambled net variance for integrals of smooth functions. Annals of
Statistics, 25(4):1541–1562, 1997.

[46] A. B. Owen. Latin supercube sampling for very high-dimensional simulations. ACM
Transactions on Modeling and Computer Simulation, 8(1):71–102, 1998.

[47] F. Panneton, P. L’Ecuyer, and M. Matsumoto. Improved long-period generators based
on linear recurrences modulo 2. ACM Transactions on Mathematical Software, 32(1):1–16,
2006.

[48] C. L. Phillips, J. A. Anderson, and S. C. Glotzer. Pseudo-random number generation
for brownian dynamics and dissipative particle dynamics simulations on GPU devices.
Journal of Computational Physics, 230(19):7191–7201, 2011.

[49] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw. Parallel random numbers: as
easy as 1, 2, 3. In Proceedings of the 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 16:1–16:12, New York, 2011. ACM.

[50] I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Clarendon Press,
Oxford, 1994.

[51] S. Tezuka. Uniform Random Numbers: Theory and Practice. Kluwer Academic Pub-
lishers, Norwell, MA, 1995.

12


