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We develop and study efficient Monte Carlo algorithms for pricing path-dependent options with the vari-
ance gamma model. The key ingredient is difference-of-gamma bridge sampling, based on the represen-

tation of a variance gamma process as the difference of two increasing gamma processes. For typical payoffs,
we obtain a pair of estimators (named low and high) with expectations that (1) are monotone along any such
bridge sampler, and (2) contain the continuous-time price. These estimators provide pathwise bounds on unbi-
ased estimators that would be more expensive (infinitely expensive in some situations) to compute. By using
these bounds with extrapolation techniques, we obtain significant efficiency improvements by work reduction.
We then combine the gamma bridge sampling with randomized quasi–Monte Carlo to reduce the variance and
thus further improve the efficiency. We illustrate the large efficiency improvements on numerical examples for
Asian, lookback, and barrier options.
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1. Introduction
Madan and Seneta (1990) and Madan et al. (1998)
introduced the variance gamma (VG) model with
application to modeling asset returns and option pric-
ing. The VG process is a Brownian motion with
a random time change that follows a stationary
gamma process. This model permits more flexibility
in modeling skewness and kurtosis relative to Brow-
nian motion. We developed closed-form solutions for
European option pricing and provided empirical evi-
dence that this model gives a better fit to market
option prices than the classical Black-Scholes model.
One approach to option pricing under VG is based on
characteristic function representations and employs
efficient techniques such as the fast Fourier trans-
form (Carr and Madan 1999); however, it does not
appear to be sufficiently well developed for path-
dependent options. Monte Carlo (MC) methods offer
a simple way of estimating option values in that
context (Glasserman 2004). However, these methods
can be very time consuming if a precise estimator is
needed.
Our aim in this paper is to develop and study

strategies that improve the efficiency of MC estima-
tors in the context of pricing path-dependent options
under the VG model. Our approach exploits the key
property that a VG process can be written as the dif-
ference of two (increasing) gamma processes. By sim-
ulating a path of these two gamma processes over a
coarse time discretization, we can compute bounds

on the “more detailed” (or continuous-time) sample
path and approximate the corresponding payoff by
extrapolation, with explicit bounds on the approx-
imation error. We simulate the process paths over
a given time interval by successive refinements via
bridge sampling truncated after a small number of
steps and combine this with extrapolation and ran-
domized quasi–Monte Carlo sampling.
Quasi–Monte Carlo (QMC) methods have attracted

a lot of interest in finance over the past 10 years
or so (Caflisch and Moskowitz 1995, Moskowitz and
Caflisch 1996, Acworth et al. 1997, Åkesson and
Lehoczy 2000, Owen 1998, Glasserman 2004, L’Ecuyer
2004a). Randomized QMC (RQMC) methods replace
the vectors of independent uniform random num-
bers that drive the simulation by sets or sequences
of points that cover the space more uniformly than
random points, so the variance is reduced, and yet
the points are randomized in a way that provides an
unbiased estimator of the integral together with a con-
fidence interval.
In applications where RQMC really improves on

ordinary MC, the integral has typically low effec-
tive dimension in some sense (L’Ecuyer and Lemieux
2002). Roughly, this means that the variance of the
integrand depends (almost) only on a small number
of uniforms, or is a sum of functions that depends
(almost) only on a small number of uniforms. Caflisch
and Moskowitz (1995) and Moskowitz and Caflisch
(1996) introduced a bridge sampling method for
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generating the path of a Brownian motion at discrete
points over a finite time interval: First generate the
value at the end, then the value in the middle con-
ditional on that at the end, then the values at one
quarter and at three quarters conditional on the previ-
ous ones, and so on, halving each interval recursively.
This method rewrites the integrand so as to concen-
trate the variance to the first few coordinates, and this
makes QMC and RQMC much more effective.
Path-dependent option pricing under the VG model

via QMC with bridge sampling was recently pro-
posed and studied empirically by Ribeiro and Webber
(2004) and Avramidis et al. (2003). The algorithms
proposed there are similar in spirit and structure
to the bridge sampling algorithm mentioned for the
Brownian motion. Both are based on the premise that
the bridge sampling methodology improves the effec-
tiveness of QMC by concentrating the variance on the
first few random numbers (i.e., by reducing the effec-
tive dimension of the integrand).
Our contributions are a theoretical and empirical

analysis of a particular bridge sampling technique
named difference-of-gammas bridge sampling (DGBS)
(Avramidis et al. 2003). We exploit this in two ways:
(i) to approximate continuous-time prices, or prices of
options whose payoffs are based on a large number
of observation times, by simulating the process only
over a limited number of observation times, and (ii) to
improve the effectiveness of RQMC.
The representation of a VG process that underlies

DGBS yields a pair of estimators (named low and
high) whose expectations are monotone along any
sequence of paths with increasing resolution. Under
monotonicity assumptions on the payoff that hold for
many frequently traded options, if bridge sampling is
stopped at a coarser resolution than the one on which
the payoff is based, then the low and high estima-
tors have negative and positive bias, respectively. By
extrapolating estimators based on different levels of
resolution, one can reduce the bias of these inexpen-
sive estimators and improve their efficiency relative to
estimators that compute the exact payoff. (As usual,
we define efficiency as one over the product of the
mean square error by the expected computing time of
the estimator.)
We focus on prototypical Asian, lookback, and bar-

rier options. For Asian options, we obtain the con-
vergence rate of the expected gap between the low
and high estimators and develop an estimator, based
on Richardson’s extrapolation, whose bias has a bet-
ter convergence rate. For the lookback case, we exhibit
the low and high estimators and provide empirical
evidence that the extrapolation method can improve
both convergence of the bias and efficiency. For
the barrier case, we exhibit low and high estima-
tors and develop bridge sampling that continues

until the gap between the two estimators becomes
zero; this procedure yields an unbiased estimator
whose expected work requirement is often consid-
erably smaller than full-dimensional path sampling.
Ribeiro and Webber (2003) also develop and study
empirically a method for “correcting for simulation
bias” for lookback and barrier options when estimat-
ing continuous-time prices for models driven by Lévy
processes; this method heuristic does not yield error
bounds and risks increasing the bias.
We compare empirically the variance and efficiency

of MC and RQMC for three option pricing exam-
ples on a single asset, namely an arithmetic average
Asian option, a lookback option, and a barrier option.
We experiment with different types of QMC point
sets from those used by Ribeiro and Webber (2004)
and randomize our QMC point sets to obtain unbi-
ased estimators of both the mean and variance (which
Ribeiro and Webber do not have). Our bridge sam-
pling algorithms combined with RQMC improve sim-
ulation efficiency by large factors in these examples.
The remainder of the paper is organized as fol-

lows. Section 2, reviews the VG model and option
pricing under this model. In §3, we introduce sam-
pling algorithms for the gamma and VG processes.
In §4, we develop and study truncated DGBS, exam-
ine special cases, and suggest a few estimators for
each case. In §5, we compare the estimators (in terms
of variance and efficiency) on a numerical example,
with and without truncation and extrapolation, for
MC and RQMC. In §6, we briefly review Lévy pro-
cesses, generalize the approach to Lévy processes of
finite variation, and state the practical difficulties that
arise beyond the VG case.

2. Background and Notation
2.1. The Variance Gamma Process and

Option Pricing
We provide the relevant background for the VGmodel
developed by Madan and Seneta (1990), Madan and
Milne (1991), and Madan et al. (1998), with emphasis
on pricing path-dependent options via MC sampling
methods. The notation X ∼� ����2�means that X has
the normal distribution with mean � and variance �2.
Gamma����� denotes the gamma distribution with
mean �� and variance ��2.
Let B = 
B�t� = B�t� ���� t ≥ 0� be a Brownian

motion with drift parameter  and variance parame-
ter � . That is, B�0�= 0, the process B has independent
increments, and B�t + �� − B�t� ∼ � ����2��, for all
t ≥ 0 and � > 0. Let G = 
G�t� = �t������ t ≥ 0� be
a gamma process independent of B, with drift � > 0
and volatility � > 0. That is, G�0� = 0, the process G
has independent increments, and G�t + �� − G�t� ∼
Gamma���2/���/�� for t ≥ 0 and �> 0.
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A VG process with parameters ������ is defined
by

X=
X�t�=X�t������=B�G�t�1�������� t≥0�� (1)

In simple terms, the VG process is obtained by sub-
jecting the Brownian motion to a random time change
obeying a gamma process with parameter �= 1. The
gamma process has increasing paths, and this ensures
that the time change makes sense. The Brownian
motion, the gamma process, and the VG process are
Lévy processes (Bertoin 1998); see §6 for a brief over-
view of this class of processes.
Madan et al. (1998) developed risk-neutral valua-

tion formulas based on a general equilibrium argu-
ment that has the effect of specifying a market price
of risk to relate a statistical VG process to an equilib-
rium (or risk-neutral) VG process (see p. 85 and their
reference to Madan and Milne 1991). In this paper,
we work exclusively with risk-neutral parameters and
processes. In practice, such parameters are estimated
to fit market prices of simple options (e.g., European).
The (risk-neutral) asset price process 
S�t�� t ≥ 0� is

defined by

S�t�= S�0�exp
��+ r − q�t+X�t��� (2)

where X�t�=X�t������, r is the (constant) risk-free
interest rate, q is the asset’s continuously com-
pounded dividend yield, and the constant �= log�1−
� − �2�/2�/� is chosen so that the discounted value
of a portfolio invested in the asset is a martingale. In
particular,

E�S�t��= S�0�exp��r − q�t�� (3)

We therefore require

�+�2/2�� < 1� (4)

which ensures E�S�t�� < � for all t > 0. We will as-
sume (4) throughout the paper.
We consider the pricing of a general path-depen-

dent option under the VG model. The payoff may
depend on the value of the process at a finite num-
ber of observation times, say 0= t0 < t1 < � � � < td = T ,
where T is the expiration epoch. These observation
times are often built explicitly into the option con-
tract. The equilibrium value of such a path-dependent
option, with payment occurring at time T , can be
expressed as c= E�C�, where the random variable

C = e−rT f �S�t1�� � � � � S�td�� (5)

is the discounted payoff and f � �d →� is the payoff
function. In typical applications, the time discretiza-
tion is often composed of equal-length intervals over
(a subset of) �0�T �. In the case of a continuous-time
option, where the payoff depends on the entire path

S�t�� 0 ≤ t ≤ T �, the discounted payoff C is simply
redefined as

C = e−rT f �
S�t�� 0≤ t ≤ T ��� (6)

3. Bridge Sampling for Gamma and
Variance Gamma Processes

3.1. Sampling the Brownian Motion
A Brownian motion B with parameters ���� can be
sampled at arbitrary discrete times 0= t0 < t1 < · · ·<
tm via either sequential sampling or bridge sam-
pling. In sequential sampling, one defines B�0� = 0
and B�ti�= B�ti−1�+ �ti − ti−1�+

√
ti− ti−1�Zi, for i =

1� � � � �m, where the Zi are independent and identi-
cally distributed (i.i.d.) � �0�1� random variables.
Bridge sampling exploits the property of Brownian

motion that, for arbitrary times 0≤ &1 < t < &2, the con-
ditional distribution of B�t� given B�&1� and B�&2� is
� �aB�&1�+ �1−a�B�&2�� a�t−&1��2�, where a= �&2− t�/
�&2 − &1�. If we assume that m is a power of 2, say m=
2k, the bridge sampling algorithm operates as follows:
Let B�0� = 0, generate first B�tm� ∼ � �tm� tm�

2�, then
B�tm/2� conditional on �B�0��B�tm��, then B�tm/4� con-
ditional on �B�0��B�tm/2��, then B�t3m/4� conditional on
�B�tm/2��B�tm��, and so on. With this method, the first
values that are generated already determine a rough
sketch of the process path. For that reason, for typical
payoff functions, most of the variance depends only
on the first few random numbers, and the integrand
is much more QMC-friendly than with sequential
sampling (Moskowitz and Caflisch 1996, Glasserman
2004).

3.2. Sampling the Gamma Process
A gamma process G with parameters ����� can be
sampled at discrete times 0= t0 < t1 < · · ·< tm in ways
similar to sampling a Brownian motion, via either
sequential sampling or bridge sampling.
For gamma sequential sampling (GSS), let G�0�= 0

and G�ti�=G�ti−1�+)i, where
)i ∼Gamma��ti− ti−1��2/���/���

and the )is are independent, for i= 1� � � � �m.
Gamma bridge sampling (GBS) relies on the obser-

vation that for arbitrary times 0≤ &1 < t < &2, the con-
ditional distribution of G�t� given G�&1� and G�&2�
is the same as G�&1� + �G�&2� − G�&1��Y , where Y ∼
Beta��t−&1��2/�� �&2− t��2/��, and Beta����� denotes
the beta distribution with parameters ����� over the
interval �0�1�, whose density is f �x�= x�−1�1− x��−1/
B�����, where B����� = ∫ 1

0 y
�−1�1 − y��−1 dy is the

beta function. Moreover, because of the independent-
increments property of G, additionally conditioning
on any portion of the path before &1 and/or after &2
does not change the conditional distribution of G�t�.
When &2 − &1 becomes small, the parameters of the
beta distribution decrease, and its (bimodal) density
concentrates near the extreme values 0 and 1. In the
limit as &2− &1→ 0, the probability that there is more
than one jump in the interval goes to zero (see §6),
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and the beta distribution converges to a Bernoulli.
The GBS algorithm operates in essentially the same
way as bridge sampling for the Brownian motion: Let
G�0�= 0, generate G�tm�∼Gamma�tm�2/���/��, then
Y ∼ Beta�tm/2�2/�� �tm − tm/2��

2/��, and set G�tm/2� =
G�t0�+ �G�tm�−G�t0��Y , and so on.
Madan et al. (1998, p. 82) say in their discussion of

the gamma process, “the dynamics of the continuous-
time gamma process is best explained by describing
a simulation of the process,” and proceed to describe
the standard, general-purpose, but only approximate
method for generating paths of a Lévy process with
infinite Lévy measure, namely truncation of the Lévy
measure near zero (i.e., ignoring jumps below a cer-
tain small threshold) and simulation from the appro-
priate compound Poisson processes. In the case where
the process value needs to be observed only at fixed
discrete points in time, this approximate approach is
unnecessary: The GSS and GBS algorithms simulate
the process exactly via gamma or beta random or both
variate generators.

3.3. Bridge Sampling of the Variance Gamma
Process

We now describe two bridge sampling algorithms for
the VG process and then generalize the second one. In
analogy with Brownian bridge sampling and gamma
bridge sampling, these algorithms sample the VG pro-
cess at a time partition that becomes increasingly fine.
To simulate a path of the asset price dynamics, it suf-
fices to generate a path of the VG process X and trans-
form it to a path of the process S via the exponential
transformation (2).
For the first algorithm, named Brownian-gamma

bridge sampling (BGBS), we observe that, because
of the independence of the two processes G and B,
conditional on any collection of increments of G, the
increments of B are independent normal random vari-
ables. Thus, we can first sample the increments of G
via GBS and then sample the increments of B�G�·��
by Brownian bridge sampling, conditional on the cor-
responding increments of G. This can be done in
two ways: (a) sampling first all increments of G and
then all increments of B, or (b) sampling them in
pairs. The pseudocode given in Figure 1 uses the sec-
ond approach. This method is equivalent to the one
sketched in §4 of Ribeiro and Webber (2004).
Our second algorithm, named difference-of-gammas

bridge sampling (DGBS), depends crucially on an alter-
native representation of the VG process as the differ-
ence between two independent gamma processes as
follows (Madan et al. 1998):

X�t�= -+�t�− -−�t�� (7)

where -+ and -− are independent gamma pro-
cesses (defined on a common probability space) with

Figure 1 Brownian-Gamma Bridge Sampling of a VG Process X with
Parameters ��� �� �� � � at Arbitrary Times 0= t0 < t1 < · · ·<
tm, Where m= 2k (All Variates Are Independent)

G�0�← 0; X�0�← 0
Generate G�tm�∼Gamma�tm�2/���/��
Generate X�tm�∼� �G�tm���

2G�tm��
For .= 1 to k 

n← 2k−.

For j = 1 to 2.−1 

i← �2j − 1�n
�1 ← �ti − ti−n��2/�
�2 ← �ti+n − ti��2/�
Generate Y ∼ Beta��1��2�
G�ti�←G�ti−n�+ �G�ti+n�−G�ti−n��Y
Generate Z∼� �0� �G�ti+n�−G�ti��� 2Y �
X�ti�← YX�ti+n�+ �1−Y �X�ti−n�+Z

}
}

parameters ��p� �p� and ��n� �n�, respectively, with
�p = �

√
2+ 2�2/� + �/2, �n = �

√
2+ 2�2/� − �/2,

�p = �2p�, and �n = �2n�. To concentrate the sampling
of macro-effects of paths of X (and of S) to the first
sampling coordinates, one can simulate X by apply-
ing GBS to both -+ and -− simultaneously.
The general version of the DGBS algorithmworks as

follows. We consider a finite time interval �0�T � and
an infinite sequence of distinct real numbers y0 = 0,
y1 = T , and y2�y3� � � � � dense in �0�T �, but otherwise
arbitrary. This is the sequence of times at which the
two gamma processes are generated, in order (i.e., first
at y1, then at y2 conditional on their values at y1, then
at y3 conditional on their values at y1 and y2, and so
on). For each positive integer m, let 0 = tm�0 < tm�1 <
· · ·< tm�m = T denote the values of y0�y1� � � � � ym sorted
by increasing order, and let 1�m� be the index i such
that tm� i = ym. That is, tm� 1�m� is the new observation
time added at stepm. Figure 2 outlines the DGBS algo-
rithm with an infinite loop. In an actual implementa-
tion, the algorithm can be stopped after any number
of steps. A special case of particular interest involves
the dyadic partition ti = T i/m, i= 1�2� � � � �m, wherem
is a power of 2; by choosing tm� 1�m� as the midpoint of
�tm� 1�m�−1� tm� 1�m�+1� for all m, all beta variates are sym-
metric (the density is symmetric with respect to 1/2). In
the numerical results in §5, we work exclusively with
dyadic partitions and use a fast beta random-variate
generator that exploits the symmetry.

4. Truncated Difference-of-Gammas
Bridge Sampling

The representation of a VG process as a difference
of two gamma processes has the nice property that,
given the values of the two gamma processes at
a finite set of observation times, one can compute
bounds on the path of the VG process everywhere
between these observation times, as we shall explain
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Figure 2 Difference-of-Gammas Bridge Sampling of a VG Process X
with Parameters �1� �� �� � � at an Infinite Sequence of Times
y0 = 0, y1 = T , and y2� y3� � � � in �0� T � (All Variates Are Inde-
pendent)

t1�0 ← 0; t1�1 ← T
-+�0�← 0; -−�0�← 0
Generate -+�T �∼Gamma�T /���p/�p�
Generate -−�T �∼Gamma�T /���n/�n�
For m= 2 to � 

i← 1�m�
�1 ← �ym − tm� i−1�/�
�2 ← �tm� i+1− ym�/�
Generate Y + ∼ Beta��1��2�
-+�ym�← -+�tm� i−1�+ �-+�tm� i+1�− -+�tm� i−1��Y

+

Generate Y − ∼ Beta��1��2�
-−�ym�← -−�tm� i−1�+ �-−�tm� i+1�− -−�tm� i−1��Y

−

X�ym�← -+�ym�− -−�ym�
}

in this section. This implies in particular that with
DGBS, one can stop (truncate) the sampling process
at any intermediate step and compute bounds on the
value of the VG process at all other times that are
involved in the option payoff. From that, one can
obtain bounds on the final payoff without having to
simulate all the process values that determine the
payoff, and some intermediate value between these
bounds (instead of the exact payoff) can be taken as
an estimator of the expected payoff. This truncated
DGBS procedure can save work in exchange for some
bias. In many practical settings, the saving can be
significant, and the additional bias contributes little
to the mean square error. Truncating early can there-
fore improve the overall estimator’s efficiency by an
important factor, especially when the computing bud-
get is small (so the squared bias can be dominated by
the variance). For certain types of options, the bias can
be completely eliminated. In other cases, the bias can
be reduced by computing the truncated DGBS estima-
tors at different truncation points and extrapolating.
This methodology is also very convenient for approx-
imating the values of options based on continuous-
time observation of the process.

4.1. Bounds on the VG Process
Define 2 =�+ r − q, 2+ =max�2�0�, 2− =max�−2�0�,
and

S�t� = S�0�exp�2t+X�t��=S�0�exp�2t+-+�t�−-−�t��

for t ≥ 0� (8)

We now develop bounds on the path of S from the
values of the two gamma processes at a finite set of
observation times in the setting of the DGBS algo-
rithm of Figure 2.
Define the two processes Lm and Um over �0�T � by

Lm�t� = S�tm�i−1�exp�2�t−tm�i−1�−-−�tm�i�+-−�tm�i−1��

= S�0�exp�2t− -−�tm� i�+ -+�tm� i−1��

and

Um�t� = S�tm�i−1�exp�2�t−tm�i−1�+-+�tm�i�−-+�tm�i−1��

= S�0�exp�2t+ -+�tm� i�− -−�tm� i−1��

for tm� i−1 < t < tm� i, and Lm�tm� i� = Um�tm� i� = S�tm� i�,
for i = 0� � � � �m. These two processes are both left
and right discontinuous at the observation times tm� i
(where they match). The following proposition states
that the process S is squeezed between these two
bounding processes and that these bounds are nar-
rowing monotonously when m increases.

Proposition 1. For every sample path of S, any inte-
ger m> 0, and all t ∈ �0�T �, we have

Lm�t�≤ Lm+1�t�≤ S�t�≤Um+1�t�≤Um�t��

Proof. At t = tm� i, for 0 ≤ i ≤ m, we have Lm�t� =
Um�t�= S�t� by definition. The increase of the process
X = -+ − -− in any subinterval of �tm� i−1� tm� i� can-
not exceed the increase of the process -+ during that
interval, that is, cannot exceed -+�tm� i� − -+�tm� i−1�.
Similarly, its decrease cannot exceed the increase of -−

during that interval, that is, cannot exceed -−�tm� i�−
-−�tm� i−1�. Combining these observations with (8), we
obtain that Lm�t�≤ S�t�≤Um�t�.
To show that Um+1�t� ≤ Um�t�, let �tm� j−1� tm� j � be

the interval that contains the point ym+1. Outside
this interval �tm� j−1� tm� j �, we have Um+1�t� = Um�t�.
We also have tm+1� j−1 = tm� j−1, tm+1� j = ym+1, and
tm+1� j+1 = tm� j , so this interval splits into the two inter-
vals �tm+1� j−1� tm+1� j � and �tm+1� j � tm+1� j+1�, when m in-
creases to m+ 1. For t ∈ �tm+1� j−1� tm+1� j �, we have

Um+1�t� = S�tm+1� j−1�exp�2�t− tm+1� j−1�

+ -+�tm+1� j �− -+�tm+1� j−1��

= S�tm� j−1�exp�2�t− tm�j−1�
+ -+�tm+1� j �− -+�tm� j−1��

≤ S�tm� j−1�exp�2�t− tm� j−1�
+ -+�tm+1� j+1�− -+�tm� j−1��

= Um�t�

because tm+1� j+1 = tm� j . For t ∈ �tm+1� j � tm+1� j+1�, we
have

Um+1�t� = S�tm+1� j �exp�2�t− tm+1� j �+ -+�tm+1� j+1�

− -+�tm+1� j ��

= S�tm+1� j−1�exp�2�t− tm+1� j−1�+ -+�tm+1� j �

− -−�tm+1� j �− -+�tm+1� j−1�+ -−�tm+1� j−1�

+ -+�tm+1� j+1�− -+�tm+1� j ��
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≤ S�tm+1� j−1�exp�2�t− tm+1� j−1�+ -+�tm+1� j+1�

− -+�tm+1� j−1��

= S�tm+1� j−1�exp�2�t− tm+1� j−1�+ -+�tm� j �

− -+�tm� j−1��

= Um�t��

The inequality Lm�t� ≤ Lm+1�t� can be proved by a
symmetrical argument. �

The following simplified (piecewise constant) ver-
sion of the bounds of Proposition 1 will be convenient.
Define

Lm�i = inf
tm� i−1<t<tm� i

Lm�t�

= S�tm� i−1�exp�−2−�tm� i− tm� i−1�− -−�tm� i�

+ -−�tm� i−1���

Um�i = sup
tm� i−1<t<tm� i

Um�t�

= S�tm� i−1�exp�2
+�tm� i− tm� i−1�+ -+�tm� i�

− -+�tm� i−1���

L∗
m�t�= Lm�i and U ∗

m�t�=Um�i for tm� i−1 < t < tm� i, and
L∗
m�tm� i�=U ∗

m�tm� i�= S�tm� i�, for i= 1� � � � �m.
Corollary 1. For every sample path of S, any integer

m> 0, and all t ∈ �0�T �, we have
L∗
m�t�≤ L∗

m+1�t�≤ S�t�≤U ∗
m+1�t�≤U ∗

m�t��

4.2. Estimators Based on Truncated DGBS and
Extrapolation

Under monotonicity conditions on the option’s payoff
as a function of the path of S, conditional on the val-
ues observed so far, these bounds on S translate into
bounds on the conditional payoff. Any value lying
between these bounds can be taken as a (generally
biased) estimator of the expected payoff. When the
two bounds on the payoff coincide (which can hap-
pen for barrier options, for example), there is no bias.
To state this more formally, we define

�m = �tm�1�-
+�tm�1�� -

−�tm�1�� � � � �

tm�m�-
+�tm�m��-

−�tm�m��� (9)

which contains the values of the two gamma pro-
cesses at the first m observation times. Denote by
CL�m, CU�m, C∗

L�m, and C∗
U�m the discounted payoffs

(that correspond to C) when S is replaced in (5)
and (6) by Lm, Um, L∗

m, and U
∗
m, respectively.

Corollary 2. Suppose that conditional on �m, C is a
monotone nondecreasing function of S�t� for all values of t
not in 
tm�0� � � � � tm�m�. Then,

C∗
L�m ≤CL�m ≤C ≤CU�m ≤C∗

U�m�

If C is (conditionally) nonincreasing instead, the reverse
inequality holds. In both cases, these bounds are narrowing
when m increases.

Proof. This follows from Proposition 1 and
straightforward monotonicity arguments. �

Recall that d is the number of times at which the
option contract requires the underlying asset to be
observed. When d is large (possibly infinite), we sug-
gest the following sampling strategy for estimating
c = E�C�: Generate the process X by DGBS for some
integer k such that m= 2k < d (for simplicity, we may
assume that the sampling points are y1 = T , y2 = T /2,
y3 = T /4, y4 = 3T /4� � � �) and compute the values of
CL�m and CU�m, which readily provide bounds on the
value of C. In this context, we are interested in an esti-
mator Cm of c based only on the information in �m.
There are of course several possibilities for Cm. In gen-
eral, these estimators are biased.
A simple one is the average of the payoff bounds,

CA�m = �CL�m+CU�m�/2. It may not be the best choice
if the bounds are highly asymmetric with respect to
the exact payoff C. Another possibility is to take Cm as
the discounted payoff obtained when the process S is
replaced by the arithmetic average S̄m = �Lm +Um�/2,
or by the geometric average S̄G�m defined by

S̄G�m�t� = �Lm�t�Um�t��
1/2

= S�0�exp�2t+ �X�tm� i�+X�tm� i−1��/2�
for tm� i−1 ≤ t ≤ tm� i, or by the process defined by re-
placing X in (8) by its conditional expectation given
�m, that is,

S̄X�m�t�

= S�0�exp�2t+E�X�t� ��m��
= S�0�exp�2t+�i�t�X�tm� i�+ �1−�i�t��X�tm� i−1��

for tm� i−1 ≤ t ≤ tm� i, where �i�t� = �t − tm� i−1�/�tm� i −
tm� i−1�. We shall denote by C

�G�
m and C

�X�
m the values

of Cm when S is replaced by S̄G�m and S̄X�m, respec-
tively. Yet another approach is to let Cm be the payoff
of the corresponding discrete-time option with obser-
vation times tm�1� � � � � tm�m, which we denote by C

�D�
m .

Suppose that d=� and that the bias ��m�= E�Cm�
− c has the asymptotic form

��m�= �0m
−51 +O�g�m�� (10)

for some constants �0 and 51 > 0 and a function g
such that g�m� = o�m−51�. One frequently encounters
51 = 1 (see the next subsections). Assume �0 �= 0 and
replace the estimator Cm by

�Cm = 2
51Cm−Cm/2
251 − 1 � (11)
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where m is assumed to be a power of 2 (for simplic-
ity). We have

E� �Cm� = �251�c+��m��− �c+��m/2���/�251 − 1�
= �251c+ 251�0m−51 +O�g�m��− c−�0�m/2�−51

−O�g�m/2���/�251 − 1�
= c+O�g�m���

That is, �Cm has reduced bias order compared with Cm.
In case �0 = 0, the bias order remains O�g�m��, and
the dominant (i.e., nonzero, slowest-decaying) bias
term has a (generally) different constant. As an exam-
ple, if ��m� = �2m

−52 , where �2 �= 0 and 52 > 51 > 0,
then it is easy to see that �Cm has bias c2m−52 , where
c2 = �2�251 − 252�/�251 − 1�; the bias remains in order
m−52 , but the constant in front has opposite sign and
larger absolute value than �2. Further, a simple calcu-
lation shows that the absolute bias may also increase
if the dominant term in (10) alternates sign as a func-
tion of m.
This method is an application of a general class of

techniques called extrapolation to the limit or Richard-
son’s extrapolation (Joyce 1971, Conte and de Boor
1972), also proposed by Boyle et al. (1997) in a sim-
ulation-based security-pricing context. Our numerical
experiments in §5 show that the bias reduction can
be significant, typically without a significant increase
of the variance. This bias reduction permits one to
obtain an estimator with a given (target) mean square
error using a smaller value of m (i.e., with a smaller
amount of work).
Although many traded options meet the mono-

tonicity assumption of Corollary 2, there exist actively
traded types of options that fail the assumption,
for example, if the payoff is the realized volatil-
ity (sample-path standard deviation), or a monotone
function of it, or the first (in time) large drop or
increase of the underlying; in all cases, the condi-
tional payoff has “interactions” between the not-yet-
sampled path values, destroying monotonicity. For
such options, truncated DGBS would yield biased
estimates, and the error bounds of Corollary 2 would
not apply.
In the remainder of this section, we specialize these

bounds to specific option types, namely Asian options
in §4.3, lookback options in §4.4, and barrier options
in §4.5. For an Asian option with continuous-time
observation, we also prove that (10) holds with 51 = 1
(where �0 could be zero) for an equal-length partition
(i.e., tm� i = iT /m) for both CL�m and CU�m.

4.3. Asian Options
Suppose we want to estimate the continuous-time
Asian call price c= cA���= E�CA����� where

C =CA���= e−rT
(
1
T

∫ T

0
S�t� dt−K

)+
�

by a discrete-time, generally biased, Monte Carlo esti-
mator. We consider the DGBS algorithm of Figure 2.
Here, conditional on �m, the discounted payoff C is
clearly a monotone nondecreasing function of S�t� for
all t. Therefore,

CL�m−1 ≤CL�m ≤C ≤CU�m ≤CU�m−1

for all m> 1 and all sample paths, from Corollary 2.
This implies that CL�m and CU�m are negatively and
positively biased estimators of cA���, respectively. A
better estimator could be �Cm defined in (11) for some
Cm between these bounds, if we know the correct
value of 51.
The upper bound CU�m here can be written as

CU�m = e−rT
(
1
T

∫ T

0
Um�t� dt−K

)+
�

where
1
T

∫ T

0
Um�t� dt

= 1
T

m∑
i=1

∫ tm� i

tm� i−1
S�0�exp�2t+ -+�tm� i�− -−�tm� i−1�� dt

= 1
T

m∑
i=1
S�0�exp�-+�tm� i�− -−�tm� i−1��

∫ tm� i

tm� i−1
exp�2t� dt

=




S�0�
2T

m∑
i=1
exp�-+�tm� i�− -−�tm� i−1��

· �exp�2tm� i�− exp�2tm� i−1��� 2 �= 0
S�0�
T

m∑
i=1
exp�-+�tm� i�− -−�tm� i−1��

· �tm� i− tm� i−1�� 2 = 0�
Similarly,

CL�m = e−rT
(
1
T

∫ T

0
Lm�t� dt−K

)+
�

where

1
T

∫ T

0
Lm�t�dt =




S�0�
2T

m∑
i=1
exp�−-−�tm�i�+-+�tm�i−1��

·�exp�2tm�i�−exp�2tm�i−1��� 2 �=0
S�0�
T

m∑
i=1
exp�−-−�tm�i�+-+�tm�i−1��

·�tm�i−tm�i−1�� 2=0�
Besides CL�m and CU�m, natural choices of Cm are

CA�m, C
�D�
m , C�G�

m , and C�X�
m defined in §4.2, and the sym-

metrical version of C�D�
m defined by

C�S�
m = e−rT

(
1
m
��S�0�+ S�T ��/2

+ S�t1�+ · · ·+ S�tm−1��−K
)+
�
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For the Asian option, C�G�
m and C�X�

m can be computed
via the following expressions (we leave out the details
of the derivations):

C�G�
m = e−rT

(
1
T

∫ T

0
S̄G�m�t� dt−K

)+

= e−rT
(
1
T

∫ T

0
S�0�exp�2t+ �X�tm� i�

+X�tm� i−1��/2� dt−K
)+

= e−rT
(
S�0�
2T

m∑
i=1
exp��X�tm� i�−X�tm� i−1��/2�

· �exp�2tm� i�− exp�2tm� i−1��−K
)+

and

C�X�
m = e−rT

(
1
T

∫ T

0
S̄X�m�t� dt−K

)+

= e−rT
(
S�0�
T

m∑
i=1
exp

[
tm� iX�tm� i−1�− tm� i−1X�tm� i�

tm� i− tm� i−1

]

·
[
exp�Dm�itm� i�− exp�Dm�itm� i−1�

Dm�i

]
−K

)+
�

where Dm�i = �X�tm� i� − X�tm� i−1��/�tm� i − tm� i−1� and
we assumed 2 �= 0; obvious modifications apply when
2 = 0.
Proposition 2 establishes that for CL�m ≤ Cm ≤ CU�m

and equal-length time discretizations of the form
tm� i = iT /m, the bias converges to zero as O�m−1�
when m→� and as o�m−1� when extrapolating with
51 = 1.

Proposition 2. Assume (4). Consider equal-length
discretizations of the form tm� i = iT /m, where m =
1�2� � � � � We have

mE�CU�m−CL�m�

≤




S�0��Q1/m
+ −Q1/m

− �
e−rT − e−qT
1− e−�r−q�T /m

if r �= q

S�0��Q1/m
+ −Q1/m

− �e−rT m

if r = q



→ <0 (12)

as m→�, where

<0 =



S�0�

e−rT − e−qT
�r − q�T log�Q+/Q−� if r �= q

S�0�e−rT log�Q+/Q−� if r = q�

Q+ = eT 2
+
(
1− �p

�p

)−T /�
� and Q− = e−T 2

−
(
1+ �n

�n

)−T /�
�

This implies that whenever CL�m ≤Cm ≤CU�m for all m,

�E�Cm�− cA���� = �̃/m+ o�1/m� (13)

as m→�, where 0≤ �̃≤ <0.

Proof. To prove the inequality in (12), define )-+
m� i

= -+�iT /m� − -+��i − 1�T /m�, )-−
m� i = -−�iT /m� −

-−��i− 1�T /m�, and observe that
0 ≤ CU�m−CL�m
≤ e−rT

1
m

m∑
i=1
�Um�i−Lm�i�

≤ e−rT
1
m

m∑
i=1
S��i− 1�T /m�

[
exp

(
2+T
m

+)-+
m� i

)

− exp
(
−2

−T
m

−)-−
m� i

)]
�

We take expectations, observing that S��i − 1�T /m�,
)-+

m� i, and )-
−
m� i are independent, with E�S�iT /m��=

S�0�exp��r − q�iT /m� from (3); E�exp�)-+
m� i�� =

�1 − �p/�p�
−T /�m (the finiteness of this moment

follows from (4), which implies �p/�p < 1); and
E�exp�−)-−

m� i��= �1+ �p/�p�−T /�m. We obtain
E�CU�m−CL�m�

≤ e−rT S�0�
1
m
�Q1/m

+ −Q1/m
− �

m−1∑
i=0
exp��r − q�iT /m�

and summing the geometric series proves the inequal-
ity in (12). The convergence part of (12) follows by
L’Hôpital’s rule.
In view of (12) and the fact that E�CL�m�≤ cA���≤

E�CU�m� from Corollary 2, we have that �E�Cm� −
cA���� = O�1/m�. It is either o�1/m�, in which case
(13) holds trivially with �̃= 0, or of the form (13) for
�̃ > 0. �

For the bias model (10), a numerical experiment
with one example suggests that for estimators CL�m,
CU�m, C

�D�
m , C�G�

m , and C�X�
m , we have 51 = 1 and g�m�=

m−2. For C�S�
m and CA�m, we observed 51 ≈ 2.

Consider now an Asian option based on discrete
observation times 0 = t0 < t1 < · · · < td = T , whose
value is c= cA�d�= E�CA�d��� where

C =CA�d�= e−rT
(
1
d

d∑
i=1
S�ti�−K

)+
�

Because CL�d ≤ CA�d� ≤ CU�d, the bounds CL�m ≤
CA�d� ≤ CU�m also hold in this case whenever m ≤
d and 
tm�1� � � � � tm�m� ⊆ 
t1� � � � � td�. If d is a large or
moderate power of 2 and if ti = iT /d, for example, we
may consider replacing the estimator CA�d� by a less
expensive extrapolated one.
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4.4. Lookback Options
We now examine a prototypical lookback option,
the floating-strike call. The approach extends easily
to other related payoff types; for these and further
information, see Hull (2000). The continuous-time
price of this option is c = cF��� = E�CF���� with
payoff

CF���= e−rT
[
S�T �− inf

0≤t≤T
S�t�

]
� (14)

Conditional on S�T �, this payoff is a nonincreasing
function of S�t� for each t, which implies from the
second part of Corollary 2 that CU�m ≤ CF��� ≤ CL�m.
These bounds are narrowing when m increases. The
low and high estimators are

CU�m = e−rT
[
S�T �− inf

0≤t≤T
Um�t�

]

= e−rT
[
S�T �− min

0≤i≤m
S�tm� i�

]
(15)

and

CL�m = e−rT
[
S�T �− inf

0≤t≤T
Lm�t�

]

= e−rT
[
S�T �− min

0≤i≤m
Lm�i

]
� (16)

respectively.
A numerical experiment with one example indi-

cates that for an equal-length discretization where
tm� i = iT /m, when Cm is taken as either CU�m or CL�m,
��m� has approximately the form ��m� = �0m

−1 +
O�m−5/3�. Thus, the extrapolation from either of these
high and low estimators reduces the bias (empirically)
from O�m−1� to O�m−5/3� approximately.
The discretely observed version of this option has

discounted payoff

CF�d�= e−rT
[
S�T �−min

0≤i≤d
S�ti�

]
� (17)

We have CU�d ≤ CF�d� ≤ CL�d, and therefore CU�m ≤
CF�d�≤CL�m whenever 
tm�1� � � � � tm�m�⊆ 
t1� � � � � td�.

4.5. Barrier Options
Barrier options appear to pose greater computational
challenges relative to Asians and lookbacks. Ribeiro
and Webber (2004), pricing with the VG model and
using BGBS sampling, achieved substantial efficiency
improvement for Asian and lookback options but
very little efficiency improvement for barrier options.
A barrier option can be classified as either knock-in
or knock-out. A knock-in option has zero payoff unless
the underlying asset price reaches a barrier, whereas a
knock-out option has zero payoff whenever the under-
lying asset price reaches a barrier. For further infor-
mation, see Hull (2000).

As a prototypical barrier option, we consider an
up-and-in call, whose continuous-time payoff is

CB���= e−rT �S�T �−K�+I
{
sup
0≤t≤T

S�t� > b

}
� (18)

where b > S�0� is the barrier, K is the strike price, and
I denotes the indicator function. Conditional on �m
for m > 0, this payoff is nondecreasing in S�t� for
each t, so the first part of Corollary 2 applies. The low
and high estimators are

CL�m = e−rT �S�T �−K�+I
{
sup
0≤t≤T

Lm�t� > b

}

= e−rT �S�T �−K�+I
{
max
1≤i≤m

S�tm� i� > b
}

and

CU�m = e−rT �S�T �−K�+I
{
sup
0≤t≤T

Um�t� > b

}

= e−rT �S�T �−K�+I
{
max
1≤i≤m

Um�i > b
}
�

The gap between the low and high estimators van-
ishes if S�T � ≤ K and also whenever the indicator
function takes the same value in both cases, that is,
whenever

max
1≤i≤m

Um�i ≤ b or max
1≤i≤m

S�tm� i� > b�

One approach to estimating the continuous-time price
is to increase m in DGBS until this gap is closed.
The smallest m at which the gap is closed is a ran-
dom variable, say M , and the resulting estimator
CL�M =CU�M =CM is unbiased. This unbiased estima-
tor may require considerably less expected computa-
tional time than a (generally biased) estimator based
on a large but fixed value of m. To avoid the possi-
bility of excessively large values of m, one may select
some upper bound m∗ and increase m only up to
min�M�m∗�. For the cases where m reaches m∗, one
can use an extrapolation-based estimator as in the
previous examples. These cases would happen when
the path gets very close to the barrier, without cross-
ing it at an observation time tm� i.
Our approach extends easily to other related pay-

off types. For example, for a down-and-in call option,
we have b < S�0�, and we replace “sup0≤t≤T S�t� > b”
in the indicator function of (18) by “inf0≤t≤T S�t� < b,”
with the corresponding replacements in the low and
high estimators. The cases up-and-out call, down-
and-out call, and the put versions can be handled in
a similar way.
The computationally most challenging setting for

an up-and-in call option occurs when the barrier is
far from the initial asset price (i.e., b � S�0�), mak-
ing the barrier crossing an event of small probability.
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In such instances, truncating the DGBS algorithm at
the random stopping time M typically yields a signif-
icant computational saving, because E�M� tends to be
small relative to a reasonable preselected value of m.
Empirical evidence is provided in §5.4.
The saving can also be important for the discretely

observed version of this option, with discounted
payoff

CB�d�= e−rT �S�T �−K�+I
{
max
1≤i≤d

S�ti� > b
}
�

We have CL�m ≤ CB�d� ≤ CU�m whenever 
tm�1� � � � �
tm�m�⊆ 
t1� � � � � td�, so we can use the same truncated
DGBS procedure, stopped at m=min�M�d�.

5. Numerical Results
We illustrate the efficiency improvement provided by
truncated DGBS with MC and RQMC. We work with
dyadic partitions (§3.3) in all examples.

5.1. Efficiency
The efficiency of our MC estimators depends on the
truncation parameter m and on the number of inde-
pendent replications n. Suppose that the truncated
estimator Cm has expected computing cost (e.g., CPU
time) c�m�, bias ��m� = E�Cm� − E�C�, and variance
Var�Cm� = �2�m�. Let �Cm�n be the average of n i.i.d.
copies of Cm. The efficiency of �Cm�n is

Eff� �Cm�n� =
1

nc�m���2�m�+�2�m�/n�
= 1
c�m��n�2�m�+�2�m�� � (19)

This expression goes to zero if m is fixed and n→
�, reflecting the fact that increasing n eventually
becomes a waste of computing resources if m is
fixed, because the bias eventually dominates the mean
square error. This means that as the available comput-
ing budget increases, both m and n should increase
simultaneously, in a way that depends on the func-
tions c, �, and �2.
Suppose that c�m� = c0 + c1m, ��m� = �0m

−5 , and
�2�m� = �20 for some positive constants c0, c1, �0, 5,
and �0. This is often a good approximation to reality.
Then

Eff� �Cm�n�=
1

�c0+ c1m��n�20m−25 +�20 �
� (20)

For a fixed computing budget b= �c0+ c1m�n, this ex-
pression is maximized by taking

m=m∗ =
(
25�20b
c1�

2
0

)1/�25+1�
� (21)

That is, m must increase proportionally to b1/�25+1�. To
quantify the efficiency improvement of one estimator

over another, in our examples, we estimate the con-
stants involved in (20).
The constants c0 and c1 depend on the sampling

algorithm and on the method used for generating the
normal, gamma, and beta random variables. In our
experiments, all random variables were generated by
inversion (Law and Kelton 2000, Hörmann et al. 2004)
to make them compatible with RQMC. To approx-
imate the normal and gamma inverse distribution
functions, we used the rational Chebyshev approx-
imation of Blair et al. (1976), which gives 16 deci-
mal digits of accuracy, and the algorithm of Moshier
(2000), respectively. Because we worked exclusively
with dyadic partitions, all required beta random vari-
ables have density that is symmetric with respect to
1/2, and we developed a special method to approxi-
mate the inverse distribution function for such sym-
metric beta random variables (?). This special method
is much faster than all available methods for invert-
ing the beta distribution with general parameters. The
ratio-of-gammas method for generating beta random
variables should not be used in this context because
it becomes unstable when the density of the beta dis-
tribution concentrates near 0 and 1.
With these inversion methods, the normal random

variables are faster to generate than the symmetric
betas (roughly by a factor of 20), and the gamma ran-
dom variables are the slowest to generate (roughly
by a factor of 10 compared with the symmetric betas,
and this factor increases when the shape parameter �
of the gamma distribution becomes smaller). There-
fore, GBS is significantly faster than GSS (typically
by a factor of 10 or more) for sampling the gamma
processes when using these variate-generation meth-
ods. In what follows, efficiency comparisons are for
the DGBS algorithm only. Our simulations were per-
formed with the Java simulation library SSJ (L’Ecuyer
2004b).
For comparison, we ran MC experiments where all

random variates were generated by the fastest non-
inversion methods available in SSJ (an acceptance/
complement ratio method for the normal, a rejection
method with log-logistic transform for the beta, and
an acceptance/rejection method for the gamma). The
MC simulation ran faster with these methods than
with inversion when m is small but became slower
when m is large. Roughly, in our examples, they cut
the CPU time in half for m = 16 and take about
the same time for m = 512. The explanation is that
the performance of these beta and gamma generators
depends highly on the distribution’s parameters and,
as m increases, we get into the parameter range where
the methods are less efficient.
For RQMC, we tried various types of methods

implemented in SSJ. The results reported here are
only for the F2wLFSR point sets taken from Panneton
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(2004), randomized by a linear matrix scrambling plus
a random digital shift (Owen 2003). One of the alter-
natives are the well-known Sobol’ point sets with the
same randomization, but with the available imple-
mentation of these point sets we were limited to m≤
128, due to an upper bound on their dimension. The
variance reduction with the Sobol’ point sets was actu-
ally better than for the selected point sets for some
small values of m. To estimate the variance and effi-
ciency with RQMC, we performed N = 100 indepen-
dent randomizations of the 2m-dimensional n-point
F2wLFSR point set, for several values of n equal to
powers of 2. In this context, if �Cm�n�N denotes the gen-
eral average, we get

Eff� �Cm�n�N �

= 1
Nn�c0+ c1m���20m−25 +�2�m�n�/N �� (22)

in which c0 and c1 are easily estimated, whereas
�2�m�n� depends on both m and n in a complicated
way. We could not easily fit an expression to this
�2�m�n�, so in our efficiency computations, we sim-
ply replaced it by its empirical value for each m and
n. Expression (22) always reaches its maximum for
N = 1, but we need to take N > 1 to be able to esti-
mate the variance.

5.2. An Asian Option
We borrow VG model parameters from an unpub-
lished draft of Hirsa and Madan (2004), where the
VG model parameters were calibrated against options
on the S&P 500 index using data for June 30, 1999.
In our example, T = 0�40504, � = 0�1927, � = 0�2505,
 = −0�2859, r = 0�0548, and q = 0. These parameter
values can be considered representative for the case
of intermediate-maturity options for a nondividend-
paying asset. Our first example is an Asian option
with parameters S�0� = 100 and K = 100. Our aim is
to estimate the continuous-time price cA���.
To estimate the bias as a function of m for the esti-

mators Cm, we computed very precise RQMC esti-
mates of E�Cm� for m= 2k, k = 1� � � � �11. For that, we
used 100 copies of a 2m-dimensional F2wLFSR point
set with n= 218 points, randomized independently by
an affine linear scramble. Figures 3 and 4 show the
estimated absolute bias as a function of m (in loga-
rithmic scale), without and with Richardson’s extrap-
olation, respectively. To estimate this bias, we used
an estimated value of cA��� obtained by extrapolat-
ing the values for k= 10 and 11. This estimated exact
value is 3�68538± 0�000048 with 95% confidence.
In this example, (10) holds well for all estimators,

and we estimated 51 and �0 by fitting the linear
regression model log��m� = log�0 − 51 logm to the
data points for which the estimated bias differed sig-
nificantly from zero (i.e., was more than twice the

Figure 3 Estimated Absolute Bias ���m�� of Various Estimators
without Extrapolation, as a Function of m, for the Asian
Option Example
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Note. In the legend, “L” refers to CL�m , “U” refers to CU�m , and so on. The
dashed line indicates the half-width of the confidence interval on the bias.
Bias estimates that fall below that line are too noisy to be reliable.

half-width of the confidence interval on cA���). The
rate estimates were �51 ≈ 2 for CA�m and C�S�

m and �51 ≈ 1
for the other estimators (the slopes in Figure 3 seem
to converge to −2 or −1 when m→ �). These esti-
mates may not apply generally. Figure 4 summarizes
the bias of all extrapolated estimators based on the
associated estimated rate and of the extrapolated esti-
mators �CA�m and �C�S�

m with 51 = 1. The empirical bias
of all estimators extrapolated with the rate 1 is also
well modeled by (10) and converges as O�m−2�. Of
these, the best performer is �C�D�

m , followed by �C�S�
m ,�C�G�

m , and �C�X�
m , which are almost indistinguishable; last

come �CL�m, �CU�m, and �CA�m, which are almost indis-
tinguishable. The best estimators in terms of bias are
�CA�m and �C�S�

m using the rate 2; the bias is below our
confidence interval half-width for m ≥ 16. The esti-
mators C�S�

m , C
�G�
m , and C

�X�
m without extrapolation are

Figure 4 Estimated Absolute Bias ���m�� of Various Estimators with
Extrapolation (with �1 = 1, Unless Otherwise Indicated) as a
Function of m, for the Asian Option Example
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Figure 5 Estimated MC Efficiency for the Asian Option Example,
without Extrapolation
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doing practically as well in terms of bias as the extrap-
olated �CL�m, �CU�m, and �CA�m with 51 = 1.
Figures 5 and 6 show the estimated efficiency of

standard MC as a function of m, without and with the
extrapolation, respectively. Without the extrapolation,
CL�m, CU�m, and C

�D�
m do very poorly for moderate m

(they lie close to the horizontal axis in the figure),
whereas C�S�

m with m= 16 is the best combination for
this example. With the extrapolation, �C�S�

m with 51 = 2
is the best performer, followed by �C�D�

m and then by
�C�S�
m with 51 = 1. The efficiency of all extrapolated
estimators decreases for m > 64. For �CA�m and �C�S�

m ,
extrapolating with 51 = 2 versus 51 = 1 increases effi-
ciency, and the efficiency peaks at smaller m, because
of the faster decay of bias.
With RQMC, for n = 214, 216, and 218, the effi-

ciency as a function of m behaves very similarly to
that under MC, except that it is significantly larger.
The best estimator in our MC experiments, exclud-
ing those extrapolated with 51 = 2, is �C�D�

8 and has
(empirical) efficiency 130. For comparison, the naive
estimators C�D�

2048 and C
�D�
8 , which correspond to esti-

mating the continuous-time option by a discrete-time
one with 2,048 and 8 observation times, respectively,
have efficiencies 2.2 and 0.03. For RQMC with n= 212,
�C�D�
16 has (empirical) efficiency 6,973, whereas C

�D�
2048 and

Figure 6 Estimated MC Efficiency for the Asian Option Example, with
Extrapolation
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Figure 7 Estimated Absolute Bias ���m�� of Various Estimators without

Extrapolation, as a Function of m, for the Lookback Option
Example
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C
�D�
16 have efficiencies 30.5 and 0.10, respectively. The
most efficient RQMC estimator, �C�D�

16 , is approximately,
3,000 times more efficient than the naive estimator
C
�D�
2048. That is, it requires a total CPU time approx-
imately 3,000 times smaller to estimate the option
value with a given precision.

5.3. A Lookback Option
Our second example is a lookback option, with the
same parameters as for the Asian option. The bias
and efficiency are estimated in the same way as in
the Asian option case, for the three estimators CL�m,
CU�m, and CA�m considered in §4.4. The estimated
exact value is 9�39805± 0�00015 with 95% confidence.
Figure 7 shows the bias without extrapolation; the
points for CL�m and CU�m fall well along a straight line,
and the rate estimates are �51 ≈ 1. The points for CA�m
show mild concave nonlinearity, suggesting extrapo-
lation may be less effective. Figure 8 shows the bias
when we heuristically use 51 = 1 in the extrapolation
for all estimators, and some concave nonlinearity is

Figure 8 Estimated Absolute Bias ���m�� of Various Estimators with
Extrapolation, as a Function of m, for the Lookback Option
Example
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Figure 9 Estimated RQMC Efficiency for the Lookback Option Example,
without Extrapolation
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visible. A linear regression to the points in this figure
gives slopes of about −5/3, that is, the bias converges
approximately as O�m−5/3�. Extrapolation reduces the
bias order of CL�m, CU�m, but results in a slight increase
in the bias of CA�m.
Figures 9 and 10 display the estimated efficiency for

RQMC, without and with extrapolation. The MC effi-
ciencies are smaller but have a very similar behavior.
The best estimator in our MC experiments, �C�U�

64 , has
(empirical) efficiency 46.2. For comparison, the naive
estimator C�U�

2048, which corresponds to estimating the
continuous-time option by a discrete-time one with
d= 2�048, has efficiency 2.03. The best RQMC estima-
tor is �C�U�

256 , with (empirical) efficiency 585. It is approx-
imately 300 times more efficient than the naive MC
estimator C�U�

2048.

5.4. A Barrier Option
We report results for a barrier option with b = 120
and all other parameters as in the Asian option. In
this case, the DGBS randomly truncated at M , as
explained in §4.5, gives exactly the same payoff as a
“full-dimensional” estimator that would sample the
entire path at all m∗ observation times. Therefore,
the efficiency improvement factor can be character-
ized by the ratio of expected work between these two
estimators.
The efficiency is estimated in the same way as in

the Asian option case, for the two estimators CL�m∗ ≡
CB�m

∗� and CU�m∗ considered in §4.5. The estimated
exact value is 2�1575 ± 0�0010 with 95% confidence.
If we compare an estimator truncated at m∗ with
one truncated at min�M�m∗�, we obtain the efficiency

Table 1 Expected Truncation Value and Efficiency Improvement Ratio Under MC, and Estimated Value with
RQMC with n= 220, as a Function of m∗, for the Barrier Option Example

m∗ 4 16 64 256 1,024 4,096 16,386 65,536

E�min�M�m∗�� 2�204 2�554 2�894 3�221 3�598 3�893 4�159 4�527

q�m∗� 1�13 2�0 5�4 18�8 71 277 1,065 4,094

Est. value 1�9877 2�0980 2�1402 2�1528 2�1561 2�1569 2�1570 2�1571

Est. value extra. 2�0543 2�1428 2�1553 2�1572 2�1571 2�1571 2�1571 2�1571

Figure 10 Estimated RQMC Efficiency for the Lookback Option
Example, with Extrapolation
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improvement ratio

q�m∗�≈ c0+ c1m∗

c0+ c1E�min�M�m∗��

for some constants c0 and c1. This is simply the ratio
of computing costs, because the estimator takes the
same value in both cases. Table 1 displays values of
E�min�M�m∗�� and q�m∗� for m∗ equal to powers of 2.
These values are approximately the same for both MC
and RQMC because their computing costs are about
the same. The table also gives the estimated values
based on n= 106 replicates of CL�m∗ with RQMC, with-
out extrapolation (est. value) and with extrapolation
(est. value extra.). Despite the fact that E�min�M�m∗��
converges rather slowly with m∗, the estimated value
stabilizes rapidly (i.e., the bias quickly becomes negli-
gible), especially when we use extrapolation. Further
evidence of the efficiency of DGBS with MC, for a
wider set of examples than presented here, is pro-
vided in Avramidis (2004).
The efficiency of the RQMC estimator truncated at

min�M�m∗� is approximately 12 times that of the cor-
responding truncated MC estimator. So the efficiency
improvement factor of this RQMC estimator com-
pared with the standard MC estimator truncated at
m∗ is approximately 12q�m∗�. This improvement fac-
tor is approximately 12,800 for m∗ = 214 = 16�386, for
instance.

6. Generalization to Finite-Variation
Lévy Processes

The DGBS method for option pricing under the VG
model can in principle be extended to option-pricing
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models driven by any Lévy process whose paths have
finite variation. (The variation of a function f over
the interval �a� b� is V �f � = sup∑n

i=1 �f �xi�− f �xi−1��,
where a = x0 < x1 < · · · < xn = b determines a par-
tition of �a� b� and the supremum is taken over all
such partitions and all n.) We will explain the exten-
sion beyond the VG case and point to the difficul-
ties that arise. Exponentials of Lévy processes are
increasingly used as models of asset prices in the
derivative-pricing literature, for example, the CGMY
model (Carr et al. 2002) that contains VG as a spe-
cial case. We make a minimal introduction to Lévy
processes, following Asmussen (1999).
A Lévy process X = 
X�t�� t ≥ 0� is defined as a

continuous-time real-valued process with stationary
independent increments and X�0� = 0. This class of
processes is in one-to-one correspondence with the
class of infinitely divisible distributions via the distri-
bution of, say, X�1�. A Lévy process can be written
as the independent sum X�t� = ct + �B�t�+ J �t� of a
deterministic drift ct, a Brownian component �B�t�,
and a pure-jump Lévy process 
J �t�� t ≥ 0� character-
ized by its Lévy measure C, which can be any non-
negative measure on � satisfying C�
0��= 0 and

∫ �

−�
min�x2�1�C�dx� <�� (23)

A rough description of the process J is that jumps of
size x occur with intensity (rate per unit time) C�dx�.
The paths of 
J �t�� t ≥ 0� over any finite time interval
are functions of finite variation if and only if

∫ �

−�
min��x��1�C�dx� <�� (24)

A subordinator is a nondecreasing Lévy process. A
pure-jump Lévy process can be written as the dif-
ference of two independent subordinators defined by
the restriction of C to �0��� and the negative of the
restriction of C to �−��0�, respectively, if and only if
its Lévy measure satisfies (24).
Generalizing the setting we have studied so far,

we can replace the VG process by any pure-jump
Lévy process X of finite variation, that is, with Lévy
measure satisfying (24). Because of the representation
X = X+ − X− where X+ and X− are subordinators,
the pathwise bounding of X is straightforward if one
samples the subordinators via the bridge method. For
the general case of bridge sampling, assuming knowl-
edge of the increment density p+t and p−t of X

+�t� and
X−�t�, respectively, for &1 < t < &2, we can write the
conditional density of X+�t� at y given X+�&1� = x1
and X+�&2� = x2 as p+�y� &1� &2�x1�x2� = p+t−&1�y − x1� ·
p+&2−t�x2 − y�/p+&2−&1�x2 − x1�. So if we can sample from
this density, we have a generalization of DGBS.
However, there is a major difficulty: Except for the

VG case, p+t and p−t do not appear to be known

explicitly for other pure-jump finite-variation Lévy
processes. According to Asmussen (1999, pp. 88–89
and references therein), the increment density of a
pure-jump Lévy process is only known in special
cases, notably the gamma, Cauchy, and inverse Gaus-
sian. The inverse Gaussian process (Barndorff-Nielsen
1998) is not a subordinator, and a Cauchy subordi-
nator is unlikely to be useful because the increment
has an infinite mean. So at this point there is no clear
practical generalization of our approach beyond the
case where the subordinators are gamma processes.
In particular, we do not have an algorithm to sample
from the conditional density of the increment for the
CGMY process.

7. Conclusions and Future Research
An insight that emerges from this paper is that in
certain applications the idea of integrand structur-
ing to concentrate the variance to a few coordinates
can also be used to reduce the work by eliminat-
ing sampling of uninteresting coordinates altogether,
given some assurance that the resulting estimator’s
bias is acceptable. This is the theme behind the esti-
mation approach proposed in §4, where it is pos-
sible to bound the bias a priori (pre-sampling) for
Asian options, or a posteriori (after-sampling) for
lookback and barrier options. An extreme case is coor-
dinate elimination, arising with barrier options, where
there is an a posteriori guarantee—once the stopping
condition is satisfied—that the full-dimensional and
truncated estimators are equal. Special properties of
the variance gamma process have been exploited to
enable this structuring.
Our theoretical and numerical results suggest the

attractiveness of difference-of-gammas bridge sam-
pling combined with Richardson extrapolation when
pricing path-dependent options under the variance
gamma model. In our numerical illustrations, we
observed that combining this approach with RQMC
improved the efficiency by yet another large factor.
The integrand structuring proposed here, via DGBS,
not only permits one to truncate with bounds on the
bias, it also boosts the effectiveness of RQMC. Our
illustrations focused on a particular set of VG model
parameters to study the bias, variance, work, and effi-
ciency in some depth; we expect these measures to
be fairly representative of what one may encounter in
typical applications.
It would be desirable to know the asymptotic (con-

vergence rate) of the bias of estimators for options
other than the Asian type. Such knowledge would
support better extrapolation, leading to bias reduction
and efficiency improvement.
Our efficiency improvement techniques could cer-

tainly be combined further with other variance reduc-
tion methods such as control variates, for example.
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Perhaps the most natural control variates are the pow-
ers of the asset price or the powers of the two gamma
processes sampled, for example, at an equal-length
partition of time; the means are directly derived from
the moment-generating function of the gamma distri-
bution (see the proof of (12)) and are only finite for
powers r < �p/�p. When the number of replications is
very large, there is no problem in using many control
variates, and the savings could be significant.

Acknowledgments
This work has been supported by NSERC-Canada Grant
ODGP0110050, NATEQ-Québec Grant 02ER3218, a Killam
Research Fellowship, and a Canada Research Chair to the
second author. We thank Pierre-Alexandre Tremblay, Boni
Abdel R. Chabi-Yo, and Chiheb Dkhil, who wrote and ran
the programs needed for our numerical experiments.

References
Acworth, P., M. Broadie, P. Glasserman. 1997. A comparison of

some Monte Carlo and quasi-Monte Carlo techniques for
option pricing. P. Hellekalek, H. Niederreiter, eds. Monte Carlo
and Quasi-Monte Carlo Methods in Scientific Computing. Number
127 in Lecture Notes in Statistics. Springer-Verlag, New York,
1–18.

Åkesson, F., J. P. Lehoczy. 2000. Path generation for quasi-Monte
Carlo simulation of mortgage-backed securities. Management
Sci. 46 1171–1187.

Asmussen, S. 1999. Stochastic simulation, with a view toward
stochastic processes. MaPhySto Lecture Notes 2, University of
Aarhus, Aarhus, Denmark.

Avramidis, A. N. 2004. Efficient pricing of barrier options with
the variance gamma model. R. G. Ingalls, M. D. Rossetti, J. S.
Smith, B. A. Peters, eds. Proc. 2004 Winter Simulation Conf. IEEE
Press, Piscataway, NJ, 1574–1578.

Avramidis, A. N., P. L’Ecuyer, P.-A. Tremblay. 2003. Efficient sim-
ulation of gamma and variance-gamma processes. Proc. 2003
Winter Simulation Conf. IEEE Press, Piscataway, NJ, 319–326.

Barndorff-Nielsen, O. E. 1998. Processes of normal inverse Gaussian
type. Finance Stochastics 2 41–68.

Bertoin, J. 1998. Lévy Processes. Cambridge University Press,
Cambridge, UK.

Blair, J. M., C. A. Edwards, J. H. Johnson. 1976. Rational Cheby-
shev approximations for the inverse of the error function.Math.
Comput. 30 827–830.

Boyle, P., M. Broadie, P. Glasserman. 1997. Monte Carlo methods for
security pricing. J. Econom. Dynam. Control 21(8–9) 1267–1321.

Caflisch, R. E., B. Moskowitz. 1995. Modified Monte Carlo methods
using quasi-random sequences. H. Niederreiter, P. J.-S. Shiue,
eds. Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing. Number 106 in Lecture Notes in Statistics. Springer-
Verlag, New York, 1–16.

Carr, P., D. Madan. 1999. Option valuation using the fast Fourier
transform. J. Comput. Finance 2 61–73.

Carr, P., H. Geman, D. Madan, M. Yor. 2002. The fine structure of
asset returns: An empirical investigation. J. Bus. 75 305–332.

Conte, S. D., C. de Boor. 1972. Elementary Numerical Analysis: An
Algorithmic Approach, 2nd ed. McGraw-Hill, New York.

Glasserman, P. 2004. Monte Carlo Methods in Financial Engineering.
Springer-Verlag, New York.

Hirsa, A., D. B. Madan. 2004. Pricing American options under vari-
ance gamma. J. Comput. Finance 7(2) 63–80.

Hörmann, W., J. Leydold, G. Derflinger. 2004. Automatic Nonuniform
Random Variate Generation. Springer-Verlag, Berlin, Germany.

Hull, J. 2000. Options, Futures, and Other Derivative Securities, 4th ed.
Prentice-Hall, Englewood-Cliff, NJ.

Joyce, D. C. 1971. Survey of extrapolation processes in numerical
analysis. SIAM Rev. 13(4) 435–490.

Law, A. M., W. D. Kelton. 2000. Simulation Modeling and Analysis,
3rd ed. McGraw-Hill, New York.

L’Ecuyer, P. 2004a. Quasi-Monte Carlo methods in finance. R. G.
Ingalls, M. D. Rossetti, J. S. Smith, B. A. Peters, eds. Proc. 2004
Winter Simulation Conf., IEEE Press, Piscataway, NJ, 1645–1655.

L’Ecuyer, P. 2004b. SSJ: A Java library for stochastic simulation. Soft-
ware user’s guide, University of Montréal, Montréal, Canada,
http://www.iro.umontreal.ca/∼ lecuyer.

L’Ecuyer, P., C. Lemieux. 2002. Recent advances in random-
ized quasi-Monte Carlo methods. M. Dror, P. L’Ecuyer,
F. Szidarovszky, eds. Modeling Uncertainty: An Examination of
Stochastic Theory, Methods, and Applications. Kluwer Academic
Publishers, Boston, MA, 419–474.

L’Ecuyer, P., R. Simard. 2004. Inverting the symmetrical beta distri-
bution. ACM Trans. Math. Software. Forthcoming.

Madan, D. B., F. Milne. 1991. Option pricing with V.G. martingale
components. Math. Finance 1 39–55.

Madan, D. B., E. Seneta. 1990. The variance gamma (V.G.) model
for share market returns. J. Bus. 63 511–524.

Madan, D. B., P. P. Carr, E. C. Chang. 1998. The variance gamma
process and option pricing. Eur. Finance Rev. 2 79–105.

Moshier, S. L. 2000. Cephes math library. Retrieved August 7, 2006,
http://www.moshier.net.

Moskowitz, B., R. E. Caflisch. 1996. Smoothness and dimension
reduction in quasi-Monte Carlo methods. J. Math. Comput.
Model. 23 37–54.

Owen, A. B. 1998. Latin supercube sampling for very high-dimen-
sional simulations. ACM Trans. Model. Comput. Simulation 8(1)
71–102.

Owen, A. B. 2003. Variance with alternative scramblings of digital
nets. ACM Trans. Model. Comput. Simulation 13(4) 363–378.

Panneton, F. 2004. Construction d’ensembles de points basée
sur des récurrences linéaires dans un corps fini de carac-
téristique 2 pour la simulation Monte Carlo et l’intégration
quasi-Monte Carlo. Unpublished doctoral thesis, Département
d’informatique et de recherche opérationnelle, Université de
Montréal, Canada.

Ribeiro, C., N. Webber. 2003. Correcting for simulation bias in
Monte Carlo methods to value exotic options in models driven
by Lévy processes. Working paper, Cass Business School,
London, UK.

Ribeiro, C., N. Webber. 2004. Valuing path-dependent options in the
variance-gamma model by Monte Carlo with a gamma bridge.
J. Computational Finance 7(2) 81–100.


