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ABSTRACT

We study algorithms for sampling discrete-time paths
of a gamma process and a variance gamma process, de-
fined as a Brownian process with random time change
obeying a gamma process. The attractive feature of
the algorithms is that increments of the processes over
longer time scales are assigned to the first sampling co-
ordinates. The algorithms are based on having in ex-
plicit form the process’ conditional distributions, are
similar in spirit to the Brownian bridge sampling al-
gorithms proposed for financial Monte Carlo, and syn-
ergize with quasi-Monte Carlo techniques for efficiency
improvement. We compare the variance and efficiency
of ordinary Monte Carlo and quasi-Monte Carlo for an
example of financial option pricing with the variance-
gamma model, taken from (Madan, Carr, and Chang
1998).

1 INTRODUCTION

For numerical integration via randomized quasi-Monte
Carlo (QMC) techniques, there have been recent publi-
cations on the subject of structuring the sampling algo-
rithm so as to concentrate the variance of the integrand
to a few coordinates (Caflisch and Moskowitz 1995;
Moskowitz and Caflisch 1996; Acworth, Broadie, and
Glasserman 1997; Akesson and Lehoczy 2000; Owen
1998; Liu and Owen 2003). The book of Fox (1999) is
centered on such ideas and their synergy with QMC.
Caflisch and Moskowitz (1995) and Moskowitz and
Caflisch (1996) arose interest by introducing an algo-
rithm that exploits the synergy of such ideas with QMC
by sampling discretely paths of a Brownian motion,
recursively halfing the sampling horizon, conditional
on previously generated values of the process. This
method is is known as Brownian bridge sampling. Sev-
eral variants of the structuring approach have been pro-
posed, with Acworth, Broadie, and Glasserman (1997)
suggesting an approach based on the principal compo-
nents of the covariance matrix of a discretely sampled

Brownian motion, and Akesson and Lehoczy (2000) ex-
tending the ideas to more general Gaussian processes.
Caflisch, Morokoff, and Owen (1997) and Akesson and
Lehoczy (2000) report computational experience with
integrals arising in pricing mortgage-backed securities,
and Acworth, Broadie, and Glasserman (1997) also re-
port experience with high-dimensional integrals arising
in option pricing. The empirical consensus is that the
above path generation schemes, when combined with
quasi-Monte Carlo, outperform ordinary Monte Carlo
(MC) in many situations, sometimes by orders of mag-
nitude. On the other hand, brute-force QMC without
the structuring approach has been found to outperform
ordinary Monte Carlo less consistently in problems of
high dimension.

The above phenomenon can be understood by com-
bining the concepts of ANOVA decomposition of a func-
tion and effective dimension of an integral (Caflisch,
Morokoff, and Owen 1997; L’Ecuyer and Lemieux
2000b) with the well-known fact that QMC integration
error decreases at a faster rate than ordinary Monte
Carlo when the integral’s dimension is small. Briefly
and loosely speaking, the ANOVA decomposition of a
function expresses the variance of a s-dimensional func-
tion of random inputs (coordinates) as a sum of variance
terms, with a term corresponding to each of the 2% sub-
sets of coordinates. In many high-dimensional integra-
tion problems, and depending on how the coordinates
are defined, there exists a subset of coordinates of rel-
atively small cardinality to which most of the variance
(e.g., 99%) is due; equivalently, the remaining subset of
coordinates, while having large cardinality, contributes
little to the variance of the integral. In the case where
the first d coordinates account for at least 100p% of the
variance, we say that the integral has effective dimen-
sion d in proportion p in the truncation sense (Caflisch,
Morokoff, and Owen 1997; Hickernell 1998b). If p is
close to one, this implies that the variance depends es-
sentially only on the uniformity of the d-dimensional
QMC point set defined as the projection of the original
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QMC point set on its first d coordinates. The smaller d
is, the easier it is to make this point set more uniform.
Other measures of effective dimension are defined and
studied, e.g., in Caflisch, Morokoff, and Owen (1997),
L’Ecuyer and Lemieux (2000b), Hickernell (1998a).

In this paper, we begin by introducing the gamma
process, a continuous-time process with stationary, in-
dependent gamma increments. Madan and Seneta
(1990), Madan, Carr, and Chang (1998) introduced in
the context of financial option pricing a continuous-time
stochastic process termed wvariance gamma that is a
Brownian motion with random time change, where the
random time change is a gamma process. The authors
argued that the variance gamma model permits more
flexibility in modelling skewness and kurtosis relative
to Brownian motion. They developed closed-form solu-
tions for European option pricing with the VG model
and provided empirical evidence that the VG option
pricing model gives a better fit to market option prices
than the classical Black-Scholes model. Another poten-
tial use of the gamma process (more precisely, the anal-
ogous process in discrete-time) is as a model of partial
sums of positive random variables such as inter-arrival
and service times in queueing systems.

We then define algorithms that sample discrete-
time paths of the gamma process and the variance
gamma, process, recursively halfing the sampling hori-
zon, conditional on previously generated values of the
process. First, we clarify that exact sampling of
gamma-process paths is straightforward, a fact that
may be obscured by the discussion in Madan, Carr,
and Chang (1998), as we explain in Section 3. Our
sampling algorithms are similar in spirit and structure
to the Brownian bridge algorithm discussed above; both
are based on the premise that many integrals are of low
effective dimension, with the macro-effects correspond-
ing to increments of the process over large time scales
being dominant in the ANOVA variance decomposi-
tion. These algorithms attempt to synergize with quasi-
Monte Carlo techniques for efficiency improvement. We
compare the variance and efficiency of ordinary Monte
Carlo and quasi-Monte Carlo for an example of finan-
cial option pricing under the variance gamma model
of Madan, Carr, and Chang (1998). We find that our
bridge sampling algorithms combined with QMC meth-
ods effectively improve simulation efficiency by large
factors.

While finalizing this paper, we became aware of re-
lated unpublished work by Ribeiro and Webber (2002),
who have recently proposed bridge-based sampling al-
gorithms that turn out to be identical to those described
in our Figures 2 and 3. The sampling algorithm of
Figure 4 seems new. We also experiment with differ-
ent types of QMC point sets than Ribeiro and Webber

(2002) and randomize our QMC point sets in order to
obtain unbiased estimators of both the mean and vari-
ance (which these authors do not have).

The remainder of the paper is organized as follows.
Section 2 reviews Brownian bridge sampling. In Sec-
tion 3, we introduce the gamma and variance gamma
processes, define the sampling algorithms, and discuss
applications. In Section 4 we compare (in terms of vari-
ance and efficiency) the bridge+QMC algorithms to the
QMC-without-bridge and MC algorithms for a simple
illustrative example.

2 PREVIOUS RELATED WORK

For completeness and continuity, we review the Brow-
nian bridge sampling in the context of discrete sam-
pling of Brownian paths. Let {B(t) : t > 0} be a stan-
dard Brownian motion with zero drift and unit variance,
i.e., such that B(0) = 0 and B(1) ~ N(0,1), where
~ means “is distributed as” and N (u,0?) denotes the
Normal distribution with mean y and variance o2. We
wish to estimate via Monte Carlo an integral defined
against paths of B for a given discrete-time partition
0=ty <t <...<t, =T for some given T > 0.
To make our discussion more concrete, let us assume
for example that the integrand in question has effec-
tive dimension four in the truncation sense, in propor-
tion p close to one, so that most of the variance is due
to the macro-effects represented by B(T/4), B(T/2),
B(3T/4), and B(T). This setting, or variants thereof,
are quite common in many integration problems aris-
ing in financial asset pricing, because B(T') represents
(up to a monotone transformation, e.g., the exponential
function) the value of an asset or, more generally, a risk
factor, and such quantities often capture a large part of
the overall uncertainty in the future value of the asset
to be priced by the integration algorithm.

The natural sampling algorithm is to sample the
Brownian increments along the given partition; but the
assumed low effective dimension of the integrand in the
truncation sense, with coordinates corresponding to the
inputs B(T/4), B(T/2), B(3T/4), and B(T), means
that QMC will be very effective if instead we define
input coordinates to correspond to the crucial inputs
B(T/4), B(T/2), B(3T/4), and B(T'), and then sample
these inputs via the inverse transform method. This
can easily be achieved as follows. We recall the stan-
dard property of Brownian motion that for any ¢ > 0
and nonnegative time increments At;, Ats, the condi-
tional distribution of B(t + At;) given B(t) and B(t +
At + Atz) is N(aB(t) -+ (]. — a)B(t+ Aty + Atz, aAtg),
where a = Aty /(Aty + Aty). Moreover, since B(-) is a
Markov process, additionally conditioning on any por-
tion of the path before t and after ¢t + At; + Aty does
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not change the conditional distribution. Based on this
property, one samples discretely paths of a Brownian
motion, recursively halfing the sampling horizon, con-
ditional on previously generated values of the process,
Thus, the Brownian path is sampled in the order B(T),
B(T/2), B(T/4), B(3T/4),... Moskowitz and Caflisch
(1996) combined this sampling algorithm with using
QMC points for the integration. Assuming that all
normal variates are generated by transforming a single
(pseudo- or quasi-) uniform random number, the inte-
gral has low effective dimension and QMC is expected
to outperform MC.

3 BRIDGE SAMPLING FOR GAMMA AND
VARIANCE GAMMA PROCESSES

We let G(a, B) denote the gamma distribution with den-
sity
1 a—1_—z/8
T) = z% e x>0 1

£ = 5ar L w0, (1)
where I is the usual gamma function, and we refer to «
and 3 as the shape and scale parameters, respectively.
The gamma process {G(t; s, v) : t > 0} with mean pa-
rameter p and variance parameter v is a continuous-
time process with stationary, independent gamma in-
crements such that for any h > 0,

Gt + hs p,v) = Gt pyv) ~ G /v,v ). (2)

By definition, the distribution of the increments de-
pends on the length h of the time increment but not
on the time ¢. Note that the increment of length h
has mean ph and variance vh. The gamma process is
the Lévy process corresponding to the gamma distri-
bution. For background on Lévy processes, including
their existence, see Sato (1999).  Some basic facts
about Lévy processes are: (a) they are in one-to-one
correspondence with infinitely divisible distributions;
(b) the Lévy-Khintchine representation decomposes a
Lévy process into a sum of three parts: the first part
is a deterministic function of time, the second part is a
stochastic process with continuous component, namely
a scaled Brownian motion, and the third part is a
stochastic process formed by the superposition of com-
pound Poisson processes over a range of possible jump
sizes, and where the Poisson jump processes have rate
functions that derive from the (possibly-infinite) Lévy
measure A with support on the range of jump sizes. To
lighten notation, we refer to the process as G(t) or sim-
ply G when the parameters p and v are irrelevant or
obvious from the context.

Suppose we wish to generate paths of a gamma pro-
cess between times zero and T for some given 7" > 0.
Clearly only a discrete-time skeleton of the process can

G(0) =0;
h=27*T;
For i =1 to 2*

Generate Q ~ G(u?h/v,v/p);
G(ih) = G((i — 1)h) + Q;
Next ¢

Figure 1: Gamma Sequential Sampling (GSS) of a Pro-
cess G(t; u,v) for a 2¥-Point Equal-Length Partition of
[0,T]

be generated on a computer, so we assume the goal
is to generate values of the process for a discrete-time
partition of (0,7'), namely at the time values t; := idT,
i=1,...,2% where § = 2~ for some positive integer k.
(This can be generalized easily to arbitrary observation
times ¢;.) Perhaps the most natural sampling algorithm
is to sample the process increments along the above par-
tition, known to be independent, identically distributed
gamma variates. We term this natural approach gamma
sequential sampling (GSS). A pseudocode is given in
Figure 1.

We observe that Madan, Carr, and Chang (1998)
say in their discussion of the gamma process, “the dy-
namics of the continuous-time gamma process is best
explained by describing a simulation of the process,”
and proceed to describe the standard, general-purpose,
but only approximate method for generating paths of
a Lévy process with infinite Lévy measure, namely
truncation of the Lévy measure near zero (i.e., ignor-
ing jumps below a certain small threshold) and sim-
ulation from the appropriate compound Poisson pro-
cesses. We emphasize that in the case where the pro-
cess value needs to be observed only at fixed discrete
points in time, this approximate and cumbersome ap-
proach is unnecessary; it is immediately clear from (2)
that the process increments can be simulated exactly
via a gamma variate generator.

3.1 Gamma Bridge Sampling

We now describe a sampling algorithm that concen-
trates the sampling of the macro-effects, i.e., incre-
ments of the process over longer time scales, to the
first coordinates. A path of the process is sampled at
the following time points, in order of generation: T,
T/2, T/4, 3T/4, T/8, 3T/8, 5T/8, 7T/8, ..., 6T,...,
(2¥ — 1)6T. The algorithm is based on the observa-
tion that the conditional distributions of G(¢; u,v) are
available in closed form. Specifically, for any ¢ > 0
and nonnegative time increments Aty, Ats, the condi-
tional distribution of G(t + At;) given G(t) = v and
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G(0) =0;
Generate G(T) ~ G(uT Jv, v/ p);
For{=1tok
For m =1 to 2¢~1

1 =2m—1;

Generate Y ~ B(u2T/(v2%), u®T [ (v2%));

G(iT/2% = G((i —1)T /2%

+ (G +1)T/2% - G((i —1)T/2Y)) Y;
Next m

Next ¢

Figure 2: Gamma Bridge Sampling of a Process
G(t; p,v) for a 2*-Point Equal-Length Partition of [0, 7]

Gt + Aty + Aty) = v is 70 + (72 — %)Y, where YV
is distributed as B(At; /v, Ata/v), and B denotes the
beta distribution on (0,1). Moreover, because of the
independent-increments property of G(-), additionally
conditioning on any portion of the path before ¢ and/or
after t + Aty + Aty does not change the conditional
distribution. The conditional distributions do not de-
pend on the mean parameter p (u only appears in the
unconditional distribution of G(T")). As the time scale
decreases, the beta parameters decrease, resulting even-
tually in a bimodal density whose mass concentrates
more on the extreme values 0 and 1. We name this con-
ditional sampling of the gamma process gamma bridge
sampling. A pseudocode for gamma bridge sampling is
given in Figure 2.

3.2 The Variance Gamma Process and Bridge
Sampling

Madan and Seneta (1990), Madan and Milne (1991),
Madan, Carr, and Chang (1998) studied option pric-
ing for a model where the asset log-return dynamics
follow a continuous-time process obtained as a subor-
dinate to Brownian motion, using a gamma process to
model randomized operational time (Feller 1966) (the
term “operational time” refers to the time scale of “op-
erations” relevant to the phenomenon of study). We
now introduce this model of asset returns, named the
V@G process in Madan, Carr, and Chang (1998).

Let B = {B(t;6,0) : t > 0} be a Brownian motion
with drift parameter  and variance parameter o. Let
G = {G(t;1,v) : t > 0} be a unit-mean gamma pro-
cess (@ = 1) independent of the process B. The vari-
ance gamma (VG) process X (¢;0,0,v) is obtained as a
subordinate of the Brownian motion process B(t;6,0)

using the operational time G(t;1,v) (Feller 1966):
X(t:6,0,v) :== B(G(t; 1,v),0,0). 3)

In simple terms, the VG process is obtained by sub-
jecting the Brownian motion to a random time change
obeying a gamma process.

In the interest of brevity, we proceed directly to
the specification of the asset price dynamics (under the
VG model) relevant to pricing, known as risk-neutral
asset dynamics. We refer to Madan, Carr, and Chang
(1998) for aspects of the VG model that are relevant to
the financial literature. Let {S(t) : ¢ > 0} denote the
risk-neutral asset price process. Under the risk-neutral
dynamics, the paths of the asset price process obey:

S(t) = S(0) exp{rt+ X (t;0rN, orN, YrRN) + WRNt}, (4)

where r is the risk-free interest rate, the subscript
“RN” indicates that these are the risk-neutral param-
eters (as opposed to the statistical parameters), and
wrN = log(l — OrnveN — 0iNVRN/2)/veN. Under the
VG model, option prices can be expressed as expecta-
tions against paths of the process S over some fixed
horizon under the above risk-neutral dynamics.

To the best of our knowledge, except for stan-
dard European options, pricing formulas under the VG
model are not available in closed form. Hence, numer-
ical or Monte Carlo integration appear to be the only
viable approaches; and for the case of high-dimensional
integrals arising in the pricing of path-dependent op-
tions, Monte Carlo integration is often the leading prac-
tical approach.

With such applications in mind, we describe two
algorithms for sampling paths of the asset price pro-
cess (4) that concentrate the sampling of the macro-
effects (of X and S) to the first coordinates, where
“macro-effects” are understood to be the increments of
these processes over longer time scales. In analogy with
Brownian bridge sampling and gamma bridge sampling,
both algorithms sample the VG process at a time par-
tition that becomes increasingly fine. First, note that
to simulate paths of the asset price dynamics, it suf-
fices to generate paths of the VG process X (t;0,0,v)
and then transform these to paths of S via the transfor-
mation (4). For the first algorithm, named Brownian-
gamma bridge sampling (BGBS), we observe that the
assumed independence of processes G and B implies
that conditional on any collection of increments of the
gamma, process G, the increments of the Brownian pro-
cess B are independent normals. Thus, we may first
sample increments of G via gamma bridge sampling,
and then sample increments of B(G(t)) by Brownian
bridge sampling, conditional on the corresponding G in-
crements. This can be done in two ways: (a) sampling
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G(0) =0; X(0)=0;
Generate G(T') ~ G(u?T [v, v/ p);
Generate X (T) ~ N (0G(T),o?G(T));
For{=1tok
For m =1 to 26!
1=2m —1;
Generate Y ~ B(u*T/(v2%), u2T/(v2%));
G(iT/2% = G((i —1)T /2%

+ [G((i + 1)T /2% — G((i —1)T /2] Y;
b=G((i +1)T/2%) — G(iT/2%);
Generate Z ~ N (0,b0%Y);

X(T/20) =Y - X((i + 1)T/2)

+(1-Y)-X((i —1)T/2% + Z;

Next m
Next ¢

Yp(0) = 0; 1 (0) =0;
Generate vp(T') ~ G(ugT [vp, vp/p);
Generate 1 (T) ~ G2 /v, va1n):
For{=1tok
For m = 1 to 2¢71
1 =2m — 1,
Generate Y, ~ B(u2T /12, p2T/(152"));
2o iT/2) = (i — 1)T/20)
DG+ 1T/2) — (G — 1T /20)] ¥y
Generate Yy, ~ B(u2T/(vn2%), p2T/(va2"));
i /2) = (i — 1)T/20)
(i + DT/2) — (i — 1T/29)] Yo
X(T/20) = 3T /2) - 3T /2');
Next m
Next ¢

Figure 3: Brownian-Gamma Bridge Sampling (BGBS)
of a VG process X (t) = B(G(t; p,v), 8, o) for a 2%-Point
Equal-Length Partition of [0,T]

first all increments of G and then all increments of B; or
(b) sampling them in alternance. The pseudocode given
in Figure 3 uses the second approach. This method is
in fact equivalent to the one sketched in Section 4 of
Ribeiro and Webber (2002).

Our second algorithm, named double-gamma bridge
sampling (DGBS), depends crucially on an alternative
representation of the VG process, as the difference be-
tween two independent gamma processes (Madan, Carr,
and Chang 1998) as follows:

X(t;@,a,ll) :'Yp(t§llfp3yp) _'Vn(t§ﬂn3yn)a (5)

where

o (1/2)\/6* + 202 /v +6/2
n = (1/2)\/0%2 4+ 202 /v —6/2
(/2 v + 20770 +6/2) v
Vo = ((1/2)\/92+202/y—9/2)2y.

In view of the above representation of the process X, it
is possible to concentrate the sampling of macro-effects
of paths of X (and thus also of macro-effects of paths of
S) to the first sampling coordinates. Algorithm DGBS
samples each of v, and vy, by gamma bridge sampling,
while interleaving the sampling of the two processes,
so that sampling occurs in the following order: v, (T),

Vp

Figure 4: Double Gamma Bridge Sampling (DGBS) of
a VG Process X (t) = B(G(t;p,v),0,0) for a 2F-Point
Equal-Length Partition of [0, 7]

M (T); 1(T/2), W(T/2), %w(T/4), W(T/4), 1p(3T/4),
(3T /4),... A pseudocode is given in Figure 4.

These sampling algorithms, combined with QMC
methods, are experimented and compared with stan-
dard MC for a simple numerical example in Section 4.2.

3.3 Queueing Simulation With Gamma Incre-
ments

Recall our discussion motivating the effectiveness of
Brownian bridge sampling in the context of financial
simulations. In the context of queueing, one could ar-
gue that effective structuring of queueing simulations
may bring efficiency improvement by reducing the ef-
fective dimension in a similar way. One line of thought
would be that large-scale effects, measured by incre-
ments of the partial-sum processes of interarrival and
service times over large—as opposed to small—blocks
of successive customers, may contain a large fraction of
the relevant uncertainty.

For a simple concrete illustration, consider a single-
server queue with ii.d. interarrival times A = {4; : i =
1,2,...} and ii.d. customer service times S = {S; :
i > 1,2,...}, where the sequences A and S are inde-
pendent. Assume that A; and S; are gamma random
variables with means ua and ps and variances va and
vg, respectively.

Many performance measures can be estimated by
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simulating the system’s evolution over a fixed num-
ber d of customers. For convenience of exposition, we
take d = 2F for some positive integer k. Consider
the partial-sum processes {d>1_, A; : j = 1,2,...,d}
and {>7_,S; : j = 1,2,...,d}. Observe that the
joint distributions of the interarrival time partial sums
{31, Ai:j=1,2,...,d} coincide with the finite di-
mensional distributions of a continuous-time gamma
process sampled at integer values, {G(j;pa,vA),j =
1,2,...,d}, and analogously for the service-time par-
tial sums. Thus the gamma bridge sampling algorithm
immediately applies for sampling the partial sums, with
the key feature that macro-effects are concentrated on
the first sampling coordinates.

In preliminary experiments comparing the effi-
ciency of simulations for estimating the average sojourn
time of the first d customers in a single queue using
standard MC, QMC with gamma sequential sampling
as in Figure 1, and QMC with gamma bridge sampling
as in Figure 2, we found that QMC generally helps
(this agrees with the results of Lemieux and L’Ecuyer
2000) but that using the gamma bridge is not always
better than gamma sequential sampling. The expla-
nation is that the interaction between customers that
are close to each other in time can be much more im-
portant, in this example, than the interaction between
customers that are far from each other (Lemieux and
L’Ecuyer 2000). On the other hand, one can certainly
construct queueing examples where using the gamma
bridge would bring significant benefit. This issue is in
need for more study.

4 NUMERICAL RESULTS

4.1 Experimental Setup

This section reports numerical results on an option pric-
ing example. The simulations were made using the
SSJ software package (L’Ecuyer, Meliani, and Vaucher
2002). For the QMC point sets, we used (a) the Ko-
robov lattice rules proposed in Table 1 of L’Ecuyer and
Lemieux (2000b) (we used the third value of a in the
table for each value of n) and (b) Sobol’ point sets with
the same parameters as in Bratley and Fox (1988).

The lattice rules were randomized by random shifts
modulo 1, as explained in L’Ecuyer and Lemieux
(2000b), whereas the digital nets of Sobol’” were ran-
domized by the affine matrix scrambling in Definition
2.8 of Owen (2003). For each QMC point set, we made
m independent replicates of the randomization, for a
total of mn simulation runs, where n is the cardinality
of the point set.

For j = 1,...,m, let X; be the average value of
the performance measure of interest over the n runs of

the jth randomization. These X; are ii.d. unbiased
estimators of the integral of interest, say u, so we can
use their sample mean X and sample variance Sflmc to
compute a confidence interval for g in a standard way
under the assumption that the X; are also approxi-
mately normally distributed. For comparison, we make
mn (independent) simulation runs with the MC method
and compute the sample variance SZ . A confidence in-
terval on the variance reduction factor o2, /o2 (the
variance of QMC over that of MC) can be computed
by using the well-known fact that under the normality
assumption,

(m — 1)mnS2,.00.

m(mn — I)Sﬁmagmc

has the F distribution with (m, mn) degrees of freedom.

We define the efficiency improvement factor as
CqmeTame/ [CmeTh], Where ¢qme and ¢me are the aver-
age cost (CPU time) per simulation run for QMC and
MC, respectively. A confidence interval on this factor
can also be computed via the F distribution if we ne-
glect noise in the estimation of cgme and cme. This is
what we shall do.

4.2 Asian Option Pricing With the VG Model

We consider pricing a simple example of asian call op-
tion under the variance gamma model for the asset price
dynamics. The payoff depends on the arithmetic mean
of the underlying asset value at prespecified points in
time, as follows (Hull 2000): The option holder receives
at expiration time T the payoff

Cs =max | 0,

Ul

d
S5t - K ©

where S(t) is the asset price at time ¢, d is the number
of instants where S(-) is sampled, ¢; is the jth sampling
time (here we assume that ¢t; = jT/d for all j), and K
is a constant called the strike price of the option. The
option value, is u = e "TE[C4], where the expectation
is taken with respect to the risk-neutral asset price pro-
cess defined in (4). The goal is to estimate this p as
efficiently as possible, i.e., with the smallest variance
for a given computing budget, by simulation. This is
an integration problem in s = 2d dimensions.

We have implemented several QMC-based sampling
methods for the random variable C4. BGBS(b) and
DGBS are the methods described in Figures 3 and 4.
BGBS(a) is the variant of BGBS where the d values of
G are sampled first (using gamma-bridge sampling) and
then the d values of B are sampled via the Brownian
bridge method. BGSS(a), BGSS(b), and DGSS refer to
versions of these three methods where bridge sampling
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is replaced by sequential sampling for both the gamma
and Brownian processes. Finally, MC means the stan-
dard MC method with sequential sampling for both pro-
cesses. All normal, gamma, and beta random variables
are generated by inversion, using numerical approxima-
tions of the inverse distribution functions. We used the
methods given in Kennedy and Gentle (1980) for the
normal distribution, DiDonato and Moris (1987) for the
gamma distribution, and the “inverse of the incomplete
beta integral” function from the Cephes Math Library
(Moshier 2000) for the beta distribution. With these
approximations and our implementations, the inverse is
roughly fifty times more costly to compute for the beta
than for the gamma, and four times more costly for the
gamma than for the normal. This has to be considered
when comparing estimator’s efficiencies. We estimate
the variance reduction and efficiency improvement fac-
tors of each QMC method compared with MC. In or-
der to be able to use the F distribution for computing
confidence intervals on the variance reduction factors,
all the methods were simulated independently of each
other. (A different approach would have taken common
random numbers across the methods and might have
provided less noisy estimators of the variance reduction
factors.)

For the numerical illustration, we take parame-
ter values from Madan, Carr, and Chang (1998): Let
0RN = —0.1436, ORN = 0.12136, VRN = 0.3, r = 0.1,
T =1, K =101, and S(0) = 100. We made m = 100 in-
dependent randomizations for each QMC method. Ta-
ble 1 provides estimates of the improvement factors of
each of the six QMC sampling method compared with
MC, for three values of n, using the Korobov lattice
rules and the Sobol’ point sets. Each table entry gives
a 98% confidence interval on the variance reduction fac-
tor (top pair) and a 98% confidence interval on the ef-
ficiency improvement factor (bottom pair).

We see a clear evidence of variance reduction and ef-
ficiency improvement for QMC compared with MC, and
these improvements are more pronounced when QMC is
combined with bridge sampling. The Sobol’ point sets
perform better, with the bridge methods, than Korobov
rules. The DGBS method generally provides the best
variance reduction, but the efficiency improvement is
often better with BGBS, after the higher cost of DGBS
(for generating the beta random variables) has been
factored out. The eventual availability of good approx-
imations that are fast to compute for the inverse beta
distribution could definitely make DGBS the method of
choice.

One can also observe that for Sobol’ point sets,
BGBS(b) is much better than BGBS(a), whereas for
Korobov rules these is no clear winner between these
two sampling methods. The explanation is that in con-

Table 1: 98% Confidence Intervals on Variance Reduc-
tion Factors (Above) and Efficiency Improvement Fac-
tors (Below) of Randomized QMC Over MC, for the
Asian Option Example with d = 16

Korobov Lattice Rules
n=4093 | n=28191 | n= 16381
a = 1397 a="7151 | a = 5693
BGSS(a) (5, 10) (6, 12) (10, 19)
(5, 10) (6, 12) (10, 19)
BGSS(b) (5, 10) (7, 15) (10, 21)
(5, 10) (7, 15) (10, 21)
DGSS (15, 30) (7,15) (27, 54)
(7, 15) (4, 7) (14, 28)
BGBS(a) (32, 65) (34, 68) (65, 130)
(18, 36 ) (19, 38) (36, 72)
BGBS(b) (16, 32 ) (45, 90) (50, 100)
(9,18) (25, 50) (27, 53)
DGBS (38, 76 ) (73, 145) (87, 174)
(11,21) (20, 41) (24, 49)

Sobol’ Nets

n=4096 | n=28192 | n = 16384
BGSS(a) (11, 22) (7,15) | (12, 24)
(11, 22) (7,15) | (12, 24)
BGSS(b) (13, 26) (8, 16) (19, 38)
(13, 26) (8, 16) (19, 38)
DGSS (27, 54) (31, 62) (40, 81)
(11,22) | (16, 31) (20, 41)
BGBS(a) (85, 170) (56, 111) (95, 190)
(42, 85) (28, 56) (47, 95)
BGBS(b) | (149, 298) | (175, 351) | (285, 570)
(84, 168) (99, 198) (76, 152)
DGBS (234, 468) | (359, 718) | (321, 642)
(65, 131) | (101, 201) (90, 180)

trast to the Korobov rules, the Sobol’ point sets have
been designed to have better uniformity over their first
coordinates than over their last ones, and the BGBS(b)
sampling method exploits this by transfering more of
the variance to the first few random variables (i.e., it
achieves a lower effective dimension in the truncation
sense).

It should be pointed out that these variance re-
duction factors also depend a lot on the choice of pa-
rameters for the QMC point sets (e.g., the value of a
for the Korobov rules and the “direction numbers” for
the Sobol’ point sets; see L’Ecuyer and Lemieux 2002
or L’Ecuyer 2003 for an explanation of these parame-
ters). Changing the values of a in Table 1, for example,
may improve or degrade some factors significantly. In
general, larger values of n should give larger reduction
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factors for QMC, but this is not totally clear from the
table because (1) of the noise in the variance estimators
and (2) for a given value of n and given type of point
set, the specific parameters selected here might be sig-
nificantly better or worse than other parameters for the
same n, for the particular integral considered here.

In other experiments (whose detailed results are not
given here), we found that changing the number d of ob-
servation times while keeping all other parameters con-
stant seems to have no significant effect on the variance
reduction factor. On the other hand, increasing the
expiration date T while keeping all other parameters
constant tends to increase the variance reduction (and
efficiency improvement) factors with the QMC meth-
ods.
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