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Staffing Optimization with Chance Constraints in Call Centers

par
Thuy Anh Ta
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Thuy Anh Ta
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RÉSUMÉ

Les centres d’appels sont des éléments clés de presque n’importe quelle grande orga-

nisation. Le problème de gestion du travail a reçu beaucoup d’attention dans la littérature.

Une formulation typique se base sur des mesures de performance sur un horizon infini, et

le problème d’affectation d’agents est habituellement résolu en combinant des méthodes

d’optimisatione et de simulation.

Dans cette thèse, nous considérons un problème d’affection d’agents pour des centres

d’appels soumis à des contraintes en probabilité. Nous introduisons une formulation qui

exige que les contraintes de qualité de service (QoS) soient satisfaites avec une forte pro-

babilité, et définissons une approximation de ce problème par moyenne échantionnale

dans un cadre de compétences multiples. Nous établissons la convergence de la solution

du problème approximatif vers celle du problème initial quand la taille de l’échantillon

croı̂t. Pour le cas particulier où tous les agents ont toutes les compétences (un seul groupe

d’agents), nous concevons trois méthodes d’optimisation basées sur la simulation pour

le problème de moyenne échantillonnale. Étant donné un niveau initial de personnel,

nous augmentons le nombre d’agents pour les périodes où les contraintes sont violées,

et nous diminuons le nombre d’agents pour les périodes telles que les contraintes soient

toujours satisfaites après cette réduction. Des expériences numériques sont menées sur

plusieurs modèles de centre d’appels à faible occupation, au cours desquelles les algo-

rithmes donnent de bonnes solutions, i.e. la plupart des contraintes en probabilité sont

satisfaites, et nous ne pouvons pas réduire le personnel dans une période donnée sont

introduire de violation de contraintes. Un avantage de ces algorithmes, par rapport à

d’autres méthodes, est la facilité d’implémentation.

Mots-clés : centre d’appel, affectation des agents, contraintes en probabilité,

optimisation, simulation, niveau de service, temps d’attente moyen, Erlang C.



ABSTRACT

Call centers are key components of almost any large organization. The problem of

labor management has received a great deal of attention in the literature. A typical for-

mulation of the staffing problem is in terms of infinite-horizon performance measures.

The method of combining simulation and optimization is used to solve this staffing prob-

lem.

In this thesis, we consider a problem of staffing call centers with respect to chance

constraints. We introduce chance-constrained formulations of the scheduling problem

which requires that the quality of service (QoS) constraints are met with high probability.

We define a sample average approximation of this problem in a multiskill setting. We

prove the convergence of the optimal solution of the sample-average problem to that of

the original problem when the sample size increases. For the special case where we

consider the staffing problem and all agents have all skills (a single group of agents), we

design three simulation-based optimization methods for the sample problem. Given a

starting solution, we increase the staffings in periods where the constraints are violated,

and decrease the number of agents in several periods where decrease is acceptable, as

much as possible, provided that the constraints are still satisfied. For the call center

models in our numerical experiment, these algorithms give good solutions, i.e., most

constraints are satisfied, and we cannot decrease any agent in any period to obtain better

results. One advantage of these algorithms, compared with other methods, that they are

very easy to implement.

Keywords: Call center, staffing, chance constraints, optimization, simulation,

service level, average waiting time, Erlang C.
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CHAPTER 1

INTRODUCTION

Telephone call centers are key components of many businesses, and their economic

role is growing. They are used to handle customer support, phone orders and sales,

marketing, governmental information services (police, ambulances,...), etc. Call cen-

ters have become a popular means for companies to communicate with their customers.

Some call centers are very essential and it would be really difficult to imagine a govern-

ment agency, financial institution or 911 emergency services without telephone service.

The call center industry is thus large and rapidly expanding, in terms of both work-

force and economic scope. It employs millions of people around the world and is fast

growing. In the United States, according to statistics from the Bureau of Labor Statistics

[11], agents in customer service rank 7th in the list of the largest occupations in 2010.

This agency estimates that there were approximately 2.3 million agents in the U.S. in

2008 with 23% working in the financial and insurance sectors and 15% in the area of

administration and support service (Bureau of Labor Statistics [8]). Most of these em-

ployees work in call centers, but the data also contains agents who interact directly to

clients. The research predicts an increase in the number of jobs by 18% to 2.7 million

in 2018. Another report estimated that there were 2.15 million agents in May 2010 with

average hourly wages of US $15.76 and median of US $14.64 and an average annual

salary of US $32780 (Bureau of Labor Statistics [10]). The annual salary cost of agents

is then estimated at US $70.3 billion in 2010 in the United States. For comparison, in

May 2007 (before the financial crisis of 2008-09), there were 2.2 million agents and an

average annual salary of US $31040 for a total labor cost of US $68.1 billion (Bureau of

Labor Statistics [9]). Because call centers typically spend 60% to 70% of their budgets

on labor costs (Gans et al. [16]), it is important to optimize the management of labor.

Their management is complex and is a major area of application for operations research.
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1.1 Description of call centers

Gans et al. [16] and Koole [22] provide a good description of the functioning of a

call center and the different stages that a call must pass before being answered by an

agent. A call (or contact) represents a communication between a client and a service. A

call is also distinguished by its issuer: it can be emitted by a client (incoming call) or

by an agent (outgoing call). These calls are generally classify by type, representing the

requested service and its source of origin. An employee who interacts with the customer

on the phone is called an agent or representative customer service. Agents sharing a

common set of tasks form a group of agents. Each of them requires special skills on

the part of the employees: language, technical knowledge of a specific product, etc. A

group of agents is called specialist if it is assigned to some tasks and general in the case

of multiple tasks. When the skill-level required to handle calls is low, each employee

is trained to handle every type of call, and calls may be handled first come, first served

(FCFS), also called first in, first out (FIFO). Otherwise, if more highly-skilled works are

required, each agent may be trained to handle only a subset of the types of calls, a “skills

based routing” may be used to route calls to appropriate agents. Obviously, a client can

be transferred through several staffs before being satisfied. There are various kinds of

call centers: inbound call centers service ingoing calls, outbound call centers handle

outgoing calls, a call center that handles these mixed operations is referred to blend

incoming and outgoing center. In our context, we only consider inbound call centers. A

staff is called multi-purpose when an agent can serve several types of calls. Besides the

cost of training, the cost of an agent is often determined by the number of tasks assigned

to the group.

1.1.1 Inbound call handling

Customers call the centers for various reasons. When a call arrives, a free agent is

selected among agent groups. The router uses the type of the call to determine which

agents are allowed to serve the call, and how agents are chosen if several agents are free.

If a free agent is found, the call is sent to that agent, and the agent is allocated for a
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certain service time. If no agent is available for a new call, the call is sent to a waiting

queue if that does not exceed the total queue capacity. A call entering queue balks if it

abandons immediately. Other calls having to wait join the queue where they remain until

agents are free to serve them. A queued caller can also become impatient, and abandon

without service. If the queue is full at the time of an arrival call, the call is blocked

instead of entering the queue, i.e., the caller receives a busy signal.

1.1.2 Performance measures

Performance measures allow to assess the quality of service and efficiency of a call

center. The main purpose of these performance measures is to ensure the call center is

meeting its goals and objectives. Among them, service level (SL) is one of the most pop-

ular. It denotes the percentage of calls that are answered in a defined waiting threshold.

The constraint on the SL is most commonly stated as s percent of calls answered in τ

seconds or less, where τ is a parameter, and is usually denoted by s/τ . The SL can be

measured and controlled separately by time period (hour, day, etc.) and by call type, or in

an aggregated way. Many contact center managers simply assume that a target of 80/20

is the industry standard, and therefore use that as their own target. While this may be

the most common service level for customer service call centers, the fact is that there is

no industry standard for the SL. Other centers such as 911 in Montreal or emergency set

their standards to 95/2. Similarly technical support centers often have as target service

level waiting times of 3 to 5 minutes for free support (Seyrafiaan [32]). In practice, call

centers set their overall target (both percentage of calls and the threshold) in conjunction

with their Work Force Management (WFM) division in order to calculate their staff re-

quirements and scheduling. A higher service level means faster service (answering the

call) for customers. An important motivation for studying this measure is that for many

types of call centers that provide services, in several countries, there are government reg-

ulations on the minimal acceptable SL and the call centers may have to pay very large

fines when this SL is not met. As we will see in Section 2.2, over a given time period,

the SL is a random variable. Therefore, from the optimization point of view, ensuring

the target over finite durations can be expressed by chance constraints. One may prefer
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to define the SL over a long-term (infinite-horizon) in order to work with expectations

only, but this only ensures that the target is met on average.

The definition of SL also encourages us to give priority to calls who waited less

than or equal to τ , because serving those who waited more than τ can not improve the

measurement. In other words, while the SL indicates the percentage of calls that were

answered within the waited threshold, it does not provide any information regarding the

remaining calls. For this reason, it is important to look at a measure that represents all

the callers, such as the average waiting time (AWT) or average speed of answer (ASA).

The AWT or ASA in a period is the average (or mean) time a customer waited to have a

service for this period. For example, in a time interval, if half the calls go into queue and

wait for an average of 30 seconds, and the other calls go immediately to an agent, the

average waiting time is 15 seconds. Obviously, a lower service level (lower percentage

of calls or longer threshold) produces a longer ASA. Combined with the SL, the ASA

provides a more complete picture of the flow of the incoming calls. Another measure is

the abandonment ratio, which is measured by looking at the calls that abandon during

the defined time period compared with all calls for that period. Service level and average

waiting time are two quality of service (QoS) measures.

The satisfaction and well-being of agents influence the performance of a call center.

A manager often measures the efficient use of call center agents by the occupancy ratio

of agents. It is the percentage of time an agent is busy on a call or doing after call work

compared with available time. It is calculated by dividing time spent to answer calls by

total time at the workplace. For a call center with a high volume of calls and a lot of

agents, it is often possible to have a high quality of service with an occupancy rate of

over 90%. If occupancy is too low, agents are idle. If occupancy is too high, agents are

overworked, so they will be less effective, because the agents are exhausted. The art of

the workforce management (WFM) process is to create a balance between the SL and

the occupancy ratio. Practice shows that for most (though not all) centers, an occupancy

ratio of between 75% to 85% is optimal. However, not every call center or agent group

can reach that number. Small call centers that wish to deliver an 80/20 service level and

have sufficient staffing in place may not be able to achieve occupancies above 70% or
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80%. Larger call centers have the opposite problem. Their large group efficiencies may

allow them to staff for the same 80/20 service level and have occupancy numbers over

95%. In such cases, these managers have to add extra workers to bring occupancy down

to a tolerable level (Reynolds [31]). Many other different performance measurements

used to gauge the efficiency and effectiveness of a call center operation are discussed in

Reynolds [31].

1.1.3 Workforce Management

Workforce management is an essential part of the operation in any call center. It can

be summed up as a series of activities related to forecasting call volumes, and scheduling

required and appropriate staff. A complete WFM process is required to create planning

documents, call volume forecasts, agents schedules and intra-day adjustments (Seyrafi-

aan [33]).

Planning As the name implies, the planning stage is where it all begins. Using high

level forecasting techniques, call centers can come up with their expected annual

work-load (work-load is the total time required to handle the arrival calls). From

here, the centers can calculate the overall staffing requirements, hiring timelines,

training requirements and timelines as well as vacation allocation and the total

budget.

Forecasting A typical forecast predicts call volumes for any given time intervals in a

day (majority of centers use 15 or 30 minutes intervals) for the forecasting period.

Forecasting stage is based on the historical call patterns. However, there may be

some requirements for final adjustments based on the latest information as well

as changes in the environment.

Scheduling After forecasting the number of incoming calls for each interval, the next

step is to determine the number of agents required for each interval. But WFM is

more than simply determining agents for a day. Managers also schedule lunches,

breaks, scheduled trainings and vacations, and deal with the 2-3% of staff that

will not show up for their shift.
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Intra-day adjustments Even with the best laid plans and calculations, it is necessary

to track the operation of the queue (call volumes, service level) and adjust the

staffing to ensure that the center is providing the best service level possible, while

maintaining a reasonable occupancy rate. An intra-day adjustment team is re-

sponsible for tracking and reporting the operational indicators, re-forecasting the

daily volumes (usually twice a day), reassigning staff to and from various off-line

activities and maintaining the overall target service level.

1.1.4 Description of emergency call centers

Our work focuses on emergency call centers. Emergency services call centers are a

specialised component of the call center industry. An emergency is any situation where

the safety of people or property is at risk and requires immediate assistance. For exam-

ple, 911 is the emergency telephone number for the North American Numbering Plan.

This number is intended for use in emergency circumstances only, and to use it for any

other purpose (including non-emergency situations and prank calls) can be a crime. Ex-

amples of the 911 emergencies in Canada include: a fire, a crime in progress or a medical

emergency. A general view of an emergency call center is a call center where agents are

trained to answer calls from emergency situations. In the context of an inbound emer-

gency services call center, the organisation has no control over the arrival rate which

depends on natural and human phenomena (Lewis et al. [29]). Although many calls do

arrive randomly, some kinds of incidents generate spurts of calls that are related to the

same incident and so are not truly random. For example, a visible fire will usually gener-

ate many calls from the area. Calls will peak within several minutes and then downgrade

as the fire suppression units arrive. Most of the calls within a short period will be related

to the same incident, together with random calls also arriving interspersed among the fire

calls. Many other kinds of incidents also generate multiple calls, creating a large spurt

of call arrivals, and such effects demand more personnel to handle them. However, it is

not uncommon to see overlapping spurts, which further stresses the emergency systems.

Nobody knows in advance when such bursts can happen, so one cannot put more per-

sonnel at the right time. What is possible is to put one or a few more agents most of the
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time to cover this possibility. According to Lewis and Herbert [28], the emergency call

centers provide support to the community by a high level of service when needed. Their

effectiveness is gained by operation through efficient scheduling, rapid response to calls

and a high standard of agent capability. Therefore, the service level should be very high

and average waiting times are very low. Lafond [23] shows an example where 90% of

all 911 calls arriving shall be answered within 10 seconds during the busy hour (the hour

each day with the greatest call volume) and 95% of all 911 calls should be answered

within 20 seconds. The 911 center in Montreal requires that 95% of all arriving calls

shall be answered within 2 seconds. The requirements of high service levels and low

average waiting times in emergency call centers imply that the occupancy of agents will

be low.

1.2 Literature review

First, we give some definitions of Staffing, Scheduling and Routing Problems of call

centers. The goal of these problems is to minimize the operating cost of the center under

a set of constraints on certain performance measures such as SL, AWT and so on. One

decision to be made is how many agents of each skill group to have in the center as a

function of time. In a staffing problem, the day is divided into periods (e.g., 30 minutes

or one hour each) and one simply decides the number of agents of each group for each

period. In a scheduling problem, a set of admissible work schedules is first specified,

and the decision variables are the number of agents of each skill group in each work

schedule. This determines the staffing indirectly, while making sure that it corresponds

to a feasible set of work schedules. A yet more restrictive version of the problem is when

there is a fixed set of available agents to be scheduled for the day or the week, where

each agent has a specific set of skills. Then we have a scheduling and rostering problem.

In this thesis, we focus on the staffing problem for inbound call centers. This section

provides a survey of the recent literatures and various tools which can help solve this

problem.
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1.2.1 Modeling a call center

Modelling a call center is difficult because it is common to have only the averages

of performance measures over each period of the day, e.g., a half hour. It is difficult to

find the appropriate distributions and dependencies between random variables with such

aggregated data.

The arrival process of calls is not a homogeneous Poisson process (deterministic

rate). However, we often make this assumption, for the sake of mathematical simplicity.

More recent studies suggest a double stochastic process, e.g., Poisson-Gamma, if the

arrival rate of the Poisson process is a random variable (Avramidis et al. [2], Brown

et al. [6], Jongbloed and Koole [19]). Arrival rates often vary depending on the time-of-

day and often on the day-of-week. A positive correlation between periods and between

days was also observed in several analyses. In this thesis, we consider several arrival

processes which are discussed in Oreshkin et al. [30]. We give more details to explain

these arrival processes in Section 5.1.

The service time of a call is often regarded as a random variable following an expo-

nential distribution. Brown et al. [6] suggests that the lognormal distribution is usually a

much better fit.

Several other processes are less studied; data are often unavailable or partially con-

ditional on certain events. The patience time determines the time a customer is willing

to wait before giving up. It is important to model the patience time distribution correctly

because it can have a significant effect on the SL and abandonment ratio. Estimating the

patience distribution requires special statistical techniques (Brown et al. [6]).

1.2.2 Simulation tools

Simulation is a very flexible tool which generally requires less advanced knowledge

of mathematics that the analytical models. The widening gap between the evolution of

actual call centers and the development of analytical models is one of the main reasons

for the popularity and the need of simulation tools. However, simulation is a complex

program that requires considerable development effort. Based on the collection of statis-
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tics, simulation requires significant lead time to reduce the noise and the confidence

interval of the measurements.

For the optimization software discussed in our thesis, we use a simulator built from a

Java library for simulating contact centers (Buist and L’Ecuyer [7]), see also http://

www.iro.umontreal.ca/˜simardr/contactcenters/index.html. It is

based on the well-supported modern programming language Java and is built over the

SSJ simulation library (L’Ecuyer [25], L’Ecuyer and Buist [26]).

1.2.3 Call center staffing problem

The call center staffing problem has received a great deal of attention in the literature.

Staffing in the single-skill case (i.e., single call type and single agent type) has received

much attention in the call center literature. It is common to divide the day into several

periods during which the staffing is held constant and the arrival rate does not vary

much. The system is often assumed to reach steady-state, and steady-state queueing

models are used to provide a staffing for each period. The simplest queueing model of a

call center is the M/M/n queue, also known as an Erlang C system. This model ignores

blocking and customer abandonments. We will discuss this system in more detail in

Section 2.1. However, this assumption never happens in the real call centers, so it is

a crude approximation made in each time period. For better accuracy, the staffing and

scheduling should be done using simulation, as in the following articles.

Atlason et al. [1] propose a general methodology, based on the cutting plane method

of Kelley [21], to optimize the staffing of agents in a call center with single call type

and single skill, under service level constraints. They formulate the constraints in terms

of infinite horizon service levels. Their method combines simulation with integer pro-

gramming and cut generation. First, they relax the staffing problem to a sample average

approximation (which becomes a deterministic problem). Then, they optimize this sam-

ple problem by generating cuts from the violated service level constraints and adding

corresponding linear constraints. This process terminates when the optimal solution of

the relaxed problem is feasible for the original problem.

In the multiskill case, the staffing and scheduling problems are more difficult. Staffing

http://www.iro.umontreal.ca/~simardr/contactcenters/index.html
http://www.iro.umontreal.ca/~simardr/contactcenters/index.html
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a single period in steady-state is already difficult; the Erlang formulas and their approx-

imations (for the SL) no longer apply. Simulation seems to be the only reliable tool

to estimate the SL. Cez̧ik and L’Ecuyer [12] extend the method of Atlason et al. [1]

to the multiskill call centers. They also show some difficulties encountered with larger

problems, and develop (heuristic) methods to deal with these problems.

In order to solve the multiskill scheduling problem, Bhulai et al. [5] propose a two-

step approach. The first step determines a staffing of each agent type for each period. In

the second step, it solves a linear program to find a set of shifts that cover this staffing by

allowing agents to use only a subset of their skills in certain periods if needed. Bhulai

et al. [5] recognize that their two-step approach is generally suboptimal and they illus-

trate this by examples.

Avramidis et al. [3] propose a simulation-based algorithm for solving the multi-skill

scheduling problem, and compare it to the approach of Bhulai et al. [5]. This algorithm

extends the method of Cez̧ik and L’Ecuyer [12], which solves a single period staffing

problem.

In typical problem formulations, the constraints with respect to the average perfor-

mance measures in the long run are considered. Gurvich et al. [17] propose a more ap-

propriate problem formulation, which is to use probabilistic constraints on the (random)

values over a given time period. The form is as following: the call center’s management

chooses a risk level δ , and allows the QoS to be violated on at most a fraction δ . They

consider the probabilistic constraints on the abandonment ratios, with random (but time-

independent) arrival rates, and use a fluid approximation of the abandonment ratios for

any realization of the arrival rate. Moreover, they develop a two-step method to optimize

the staffing (for the staffing problem) under chance constraints. The first step introduces

a Random Static Planning Problem (RSPP) and discusses how it can be solved using two

different methods. The RSPP finds a set of staffing levels that minimize staffing costs

subject to the requirement that the staffing levels are sufficient to meet the demand of

all types of calls with a probability that is 1− δ . The output of the RSPP is a staffing

solution and a set of arrival rate vectors which are called the staffing frontier. In the

second step, they solve a finite number of staffing problems with known arrival rates –
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the arrival rates on the optimal staffing frontier. Thus, the most important role of the

staffing frontier approach is that it reduces the complex staffing problem with uncertain

rates to one of solving multiple problems with predictable rates. In the end, the output is

a staffing and routing solution that is feasible to chance constraints and is nearly optimal

for large call centers.

1.3 Master’s project

The management of labour in call centers is a difficult optimization problem. There

are lots of studies in this field. Some formulas as well as few algorithms to solve the

staffing problem in call centers have been proposed in literature. As discussed above,

the authors formulate the constraints in long term average performance measures over

an infinite horizon. This type of formulation stems from historical reasons, but it is not

necessarily appropriate for some practical applications. Even if the average is satisfied

the target threshold, the service level on a given day is a random variable that may have

a large variance, and may take a value much smaller than the target for a significant

fraction of the days. Therefore, according to the suggestion of Gurvich et al. [17], in

this thesis, we consider the use of probabilistic constraints expressing that the service

level targets (per call type, per period, global) on a random day must be satisfied with

probability at least 1− δ , for a given risk level δ selected by the manager. We are also

interested in constraints on the average waiting time. The goal is to design an optimiza-

tion software to find the optimal allocation while satisfying these constraints, therefore

defining a simulation-based optimization problem. We adopt the “sample-average ap-

proximation” approach for solving this problem, as described in the following. First, we

generate the simulation input data for N independent replications of the operations of the

call center over the planning horizon. This data includes call arrival times, service times

and so forth. When this data is fixed, we can estimate the probabilities in the constraints

by the averages computed over the generated realizations. Then, we solve a determinis-

tic optimization problem that chooses staffing levels so as to minimize the staffing cost,

while ensuring that the constraints are satisfied. Then, we study the convergence of the
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optimal solution of the sample problem to that of the original problem. By using the

strong law of large numbers (SLLN), we show that the set of optimal solutions of the

sample problem is a subset of the set of optimal solutions for the original problem with

probability 1 (w.p.1) as the sample size gets large. Furthermore, we show that the prob-

ability of this event approaches 1 exponentially fast when we increase the sample size.

We do all of these in a multiskill setting. In this thesis, we focus our attention on solving

the sample-average approximation problem for the single agent type call centers, and

propose three simulation-based optimization algorithms. The original idea is to increase

the staffing in periods where the constraints are violated, and to decrease the number of

agents in each period as much as possible while still satisfying the requirements. We

prove that these methods terminate under some conditions and analyse the quality of the

solutions obtained by the algorithms. We also include extensive numerical experiments

in several different types of call centers to assess the performance of these algorithms.

1.4 Structure of the thesis

This thesis is divided into six chapters. Chapter 1 presents the overview about call

centers and some related problems. In Chapter 2, we model the staffing problem by

using chance constraints with respect to the service level and the average waiting time.

In Chapter 3, we define the sample average approximations of the chance-constrained

staffing problem in the multiskill setting. This chapter also considers the convergence of

optimal solutions of the sample problem to the real optimal staffing level in the original

problem. In Chapter 4, we propose three simulation-based optimization algorithms to

solve the sample average approximations for the special case where all agents have all

skills (a single group of agents). Chapter 5 measures the efficiency of each algorithm

in several instances. We use the real data from an emergency call center 911 which has

low occupancy. We also test the algorithms in other call centers which have much higher

occupancy. Then, we consider the heavy traffic call center models to assess the quality

of our algorithms.



CHAPTER 2

MODEL AND PROBLEM FORMULATION

This chapter introduces the main problem of this thesis in mathematical form. This

problem is the management of the workforce for a number of specific groups assuming

an infinite number of available agents per group. We define the scheduling problem in a

multiskill setting in this section.

2.1 Erlang C traffic model on call centers

In this section, we give some definitions for the Erlang C traffic model for a single

call type. According to Cooper [14], a queuing model can be defined in terms of three

characteristics: the input process, the service mechanism, and the queue discipline. The

queuing models which we consider in this section are built under the following assump-

tions: the customers are assumed to arrive according to a Poisson process with constant

rate λ , the service times are assumed to be exponentially distributed with rate µ and

independent of each other (as well as everything else in the system); the queue disci-

pline is assumed to be blocked customers delay, i.e., when blocked customers wait as

long as necessary for service; the waiting calls are handled FIFO; and there are n agents.

These queuing models are called the M/M/n queue. The number of waiting positions

in the queue is assumed to be infinite. The offered traffic load is defined by ρ = λ

µ
. Let

C(n,ρ) denote the probability that all servers are occupied. According to Cooper [14],

the formula to compute C(n,ρ) is:

C(n,ρ) =
ρn

n!(1−ρ/n)

∑
n−1
k=0

ρk

k! +
ρn

n!(1−ρ/n)

, (0≤ ρ < n). (2.1)

This is called the Erlang delay formula or Erlang C formula. The Erlang C formula

was first published by by A.K. Erlang in 1917. Since an arriving call has to wait if all

servers are busy, the delay probability P[W > 0], where W is the waiting time of a call,
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is given by (2.1). The SL for a given n is computed from

P[W ≤ τ] = 1−C(n,ρ)eτ(nµ−λ ) with τ ≥ 0.

where τ is the acceptable waiting time.

The Erlang C function computes the probability that an arrival call in the Erlang C

queueing model will find all servers busy. This is the same as the fraction of arrival

calls that are delayed (i.e., must wait) before being answered. The service level estimate

given by the Erlang C formula is the average over an infinite time horizon. The Erlang C

formula describes the relationship between the call-arrival rate, the average service time,

the service level, and the number of agents. If we know any three of these numbers, we

can calculate the unknown factor. Generally, we are calculating the staff number needed

to achieve a service level or we are calculating the expected performance (service level)

of a number of staffings. The minimum n required to meet a given target of SL s, i.e.,

minn≥0{n : P{W ≤ τ} ≥ s}, can be obtained by some methods, using the fact that the

SL is monotone in n. In our thesis, we use the Erlang C formula and the binary search to

find the required number of staffs.

However, when n is very large and the system has high utilization, using the exact

Erlang C formula is quite difficult. Halfin and Whitt [18] give an approximation to the

Erlang C in this case. They consider a sequence of M/M/n queues for which n→ ∞

and (1− γ)
√

n→ β for 0 < β < 1, where µ is fixed and γ = λ/(nµ) is the associated

average system utilization or occupancy (also called “traffic intensity”). And they prove

that

P[W > 0]−→ 1
1+βΦ(β )/φ(β )

where Φ and φ are the standard normal distribution function and density, respectively.

They show that when the offered load ρ is high, and an appropriate number of agents are

employed, a system can achieve a high agent utilization and yet deliver a good service

level by choosing the number of servers as n = ρ + β
√

ρ + o(
√

ρ). If omitting the

small order term, we call this square-root safety staffing. If γ is fixed while λ and µ

increase to infinity, then P[W > 0] converges to 0, i.e., nobody waits in the limit. This is
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called the quality-driven regime. It is appropriate for situations where speed of answer

is much more important than the cost of agents, e.g., emergency service. In another

case, if the safety staffing β
√

ρ is fixed while both λ and n increase to infinity, then

P[W > 0] converges to 1, so in the limit, everyone waits. This efficiency-driven regime

is appropriate for call centers where the productivity of agents is much more important

than the wait, i.e., an answering email system. Another regime called a quality and

efficiency-driven (QED), is a regime for which P[W > 0] is fixed to a constant in (0,1)

while λ and n increase to infinity. It is good for a large call center with constraints on

the SL and abandonment ratio.

2.2 Performance measure

We describe in more details the performance measures introduced in Section 1.1.2.

In reality, the performance measures are calculated from the observed data at the end

of a period or day. There is no unique formula or standard for measuring performance.

There are often many different formulations to compute these measures. In many opti-

mization problems studied so far, a general approach is to consider the expected perfor-

mance measures over an infinite time horizon. However, in this context, we would like

to consider the distributions of performance measures in a given time interval, not the

expected value. We present in this section the performance measures used in this thesis

or considered important.

The service level (SL) is one of the measures which is most used in industry. This

measure is also referred to as telephone service factor (TSF). The formula for the SL is

not unique, but it can be summed up as the fraction of calls answered within a given time

τ , where τ is a parameter which is called acceptable waiting time. We present only some

formulas of service level and distinguish the definitions of service level over a given time

period and in a long run. Many other formulas are proposed in Jouini et al. [20]. Let

S(τ, t1, t2) be the number of calls served after a waiting time less than or equal to τ during

interval [t1, t2]. Let N(t1, t2) be the total number of calls counted during interval [t1, t2]

and L(τ, t1, t2) be the number of calls having abandoned after a waiting time smaller than



16

or equal to τ during the same time interval. Since the arrival and service times of calls

are not known but are random, the service level in a given time period [t1, t2] will be a

random variable and a formula of service level in the time interval [t1, t2] is

f 1
S (τ, t1, t2) =

S(τ, t1, t2)
N(t1, t2)−L(τ, t1, t2)

. (2.2)

This definition of service level (2.2) is used in our formulation with chance constraints.

For any given fixed staffing of agents, no reliable formula or quick algorithm is available

to estimate the distribution of service level; it can be estimated with a long (stochastic)

simulation only. An example of chance-constraint on the service level is, for example,

the probability that at least 95% of calls are answered within τ = 2 seconds in a given

time period is equal to or greater than 85%. This constraint is used for the model of the

emergency call center 911 in Montreal in our numerical experiment.

Another formula of service level defines the long-term fraction of calls whose time

in queue is no larger than a given threshold, that is:

f 2
S (τ, t1, t2) =

E[S(τ, t1, t2)]
E[N(t1, t2)−L(τ, t1, t2)]

, (2.3)

where E denotes the mathematical expectation.

In this definition, the numerator is the average of calls answered within τ and the

denominator is the average number of arrival calls (without abandonments), over an

infinite time horizon. The service level defined in (2.3) is equal to the fraction of calls

answered within τ over an infinite number of independent and identically distributed

(i.i.d.) copies of intervals [t1, t2]. It was used in most previous articles on staffing and

scheduling optimization (e.g., Atlason et al. [1], Avramidis et al. [3], Avramidis et al. [4],

etc). Multiple measures of SL are of interest: for a given time period of a day, for a given

call type, for a given combination of call type and period, aggregated over the whole day

and all call types, and so on. A typical constraint on the SL is, for example, that 80%

of calls are answered within τ = 20 seconds. In these contexts, they approximate f 2
S by

simulations, the expectations being estimated by the sample averages.

Here are two alternative definitions of SL. Note that for each way to compute SL, we
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also can distinguish two situations: the expected value over an infinite time horizon or

the random variable in a given time period. We here focus on the service level calculated

in a given time period; the extension to infinite horizon is direct. The first alternative

considers abandoned calls who waited less than or equal to τ as “good served calls”:

f 3
S (τ, t1, t2) =

S(τ, t1, t2)+L(τ, t1, t2)
N(t1, t2)

. (2.4)

Another alternative formula considers all abandonments as “badly served calls”:

f 4
S (τ, t1, t2) =

S(τ, t1, t2)
N(t1, t2)

. (2.5)

Another performance measure is the average waiting time. It is the average (or mean)

length of time a customer waited to have a service. The average waiting time is calcu-

lated by diving the total number of waiting time of all calls, by the total number of calls

during the time period. Similar to the service level, we also have many definitions of av-

erage waiting time. We give two formulas for this measure, the former being computed

over a given time period and the latter being defined for a long run.

A formula of average waiting time over a given time period [t1, t2] is:

f 1
W (t1, t2) =

W (t1, t2)
N(t1, t2)

, (2.6)

where W (t1, t2) is the sum of waiting times of calls (served or abandoned) counted during

time interval [t1, t2]. The average waiting time in this definition is a random variable, and

is used in our formulations with chance constraints. An example of the chance constraint

with average waiting time is that the probability that the average waiting time in a given

time period does not exceed 2 seconds is no smaller than 85%.

An alternative definition represents the average waiting time within a given time

[t1, t2] in the long run:

f 2
W (t1, t2) =

E[W (t1, t2)]
E[N(t1, t2)]

. (2.7)

The long term expected waiting time f 2
W can be estimated by simulations, by dividing
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the average sum of waiting times by the average number of arrivals.

For other performance measures discussed in the following, we also distinguish them

in two definitions, the expected value over the long run and the random variable in a

given time interval. We only describe here their definitions as random variables.

An important measure is the abandonment ratio, defined as:

fA(t1, t2) =
A(t1, t2)
N(t1, t2)

, (2.8)

where A(t1, t2) is the total number of abandonments. Abandonments usually mean the

loss of potential customers.

The effectiveness of a call center is also often measured by the occupation rates of

agents. Let yi be the number of agents in the group i, T be the time horizon covered

by the measure and Gi(t) ≤ yi be the number of agents of group i occupied in the time

0 ≤ t ≤ T . The occupancy ratio is defined by the proportion of agents occupied during

the period of length T :

fO,i(T ) =
1

yiT

∫ T

0
Gi(t)dt . (2.9)

2.3 Description of the model

We consider a telephone call center where different types of calls arrive at random

and different groups of agents answer these calls. The calls arrive according to arbitrary

stochastic processes that could be non-stationary, and perhaps doubly stochastic (see,

e.g., Avramidis et al. [2]). Arriving calls that find all servers occupied line up in an

infinite buffer queue. Arrivals are served in a FCFS order.

The goal is to minimize the operating cost of the center under a set of constraints

on the QoS. The day is divided into periods (e.g., 30 minutes or one hour each). The

objective function is the sum of costs of all agents, where the cost of an agent is a

deterministic function of its set of skills.

In this context, we are interested in chance constraints on the service levels and daily

average waiting times. Such constraints can be imposed per call type, per period, and

globally, with different thresholds. The convergence of our sample problem and our
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algorithms can be applied similarly when adding more constraints on other types of

performance measures, e.g., abandonment ratio, occupancy ratio, etc.

Our model of a call center is composed of a set of K call types, labelled from 1 to K,

and I agent types, labelled from 1 to I. Agent type i has the skill set Si ⊆ {1, ...,K}. The

day is divided into P periods of given length, labelled from 1 to P. The staffing vector is

y = (y1,1, ...,y1,P, ...,yI,1, ...,yI,P) where yi,p is the number of agents of type i available in

period p. Given y, let Sk,p(τk,p,y) be the fraction of calls of type k answered within τk,p

seconds during period p (the service level); let Sp(τp,y) be the fraction of calls answered

within τp seconds during period p, let Sk(τk,y) be the fraction of calls of type k answered

within τk seconds during the day; let S0(τ0,y) be the fraction of all calls answered within

τ0 seconds during the day; let Wk,p(y) be the average waiting time for calls of type k

during period p; and let Wp(y) be the average waiting time for all calls arriving in period

p; let Wk(y) be the average waiting time of calls of type k during the day; let W0(y) be

the average waiting time of all calls during the day. All of these are random variables,

whose distributions depend on the entire staffing. Suppose that the constraints are of the

form: the probabilities that service level and average waiting time are satisfied are no

smaller than some given thresholds.

The service level constraints are of the form:

P[Sk,p(τk,p,y)≥ sk,p]≥ rk,p for 1≤ k ≤ K and 1≤ p≤ P

P[Sp(τp,y)≥ sp]≥ rp for 1≤ p≤ P

P[Sk(τk,y)≥ sk]≥ rk for 1≤ k ≤ K

P[S0(τ0,y)≥ s0]≥ r0 ;

where sk,p, sp, sk, s0 are targets of service level and rk,p, rp, rk, r0 are given constants in

(0,1).
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The average waiting time constraints are of the form:

P[Wk,p(y)≤ wk,p]≥ vk,p for 1≤ k ≤ K and 1≤ p≤ P

P[Wp(y)≤ wp]≥ vp for 1≤ p≤ P

P[Wk(y)≤ wk]≥ vk for 1≤ k ≤ K

P[W0(y)≤ w0]≥ v0 ;

where wk,p, wp, wk, w0 are targets of average waiting time and vk,p, vp, vk, v0 are given

constants in (0,1).

A shift is a time pattern that specifies the periods in which an agent is available to

handle calls. In practice, it is defined by its start period (the period in which the agent

starts working), break periods (the periods when the agent stops working, for instance,

morning and afternoon coffee breaks, as well as a longer lunch break), and end period

(the period when the agent finishes the workday).

Let {1, ...,Q} be the set of all admissible shifts. To simplify the exposition, we

assume that this set is the same for all agent types; this assumption could easily be

relaxed if needed, by introducing specific shift sets for each agent type. The admissible

shifts are specified via a P×Q matrix B0 whose element (p,q) is Bp,q = 1 if an agent with

shift q works in period p, and 0 otherwise. A vector x = (x1,1, ...,x1,Q, ...,xI,1, ...,xI,Q),

where xi,q is the number of agents of type i working shift q, is a schedule. The cost vector

is c = (c1,1, ...,c1,Q, ...,cI,1, ...,cI,Q), where ci,q is the cost of an agent of type i with shift

q. To any given shift vector x, there corresponds the staffing vector y = Bx, where B is

a block-diagonal matrix with I identical blocks B0, if we assume that each agent of type

i works as a type-i agent for the entire shift. We make the following natural assumption

that every period is covered by at least one shift.

Assumption 2.3.1. For every period p there is at least one shift q such that Bp,q = 1.

Calculating the cost function is usually relatively straightforward. We can calculate

the cost of each group in each shift, and multiply by the number of agents of corre-

sponding group working in the shift to get the overall cost. The cost function is defined

by:
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f (y) = min
x

ctx =
I

∑
i=1

Q

∑
q=1

ci,qxi,q

subject to:
Bx≥ y

x≥ 0 and integer .
(2.10)

It follows by Assumption 2.3.1 that (2.10) is feasible for any y. The value f (y) gives the

minimum cost set of shifts that can cover the desired work requirements vector y. We

make the following assumption on the cost vector.

Assumption 2.3.2. The cost vector c is positive.

According to Assumption 2.3.2, since c is positive and moreover, the entries in B are

either 0 or 1, the α-level set of f ,

{y ∈ N: ∃x≥ 0 and integer, Bx≥ y, cT x≤ α},

is finite, for any α ∈ R.

Define:

h1
k,p(y) = P[Sk,p(τk,p,y)≥ sk,p]− rk,p for k = 1, ...,K, p = 1, ...,P

h1
0,p(y) = P[Sp(τp,y)≥ sp]− rp for p = 1, ...,P

h1
k,0(y) = P[Sk(τk,y)≥ sk]− rk for k = 1, ...,K

h1
0,0(y) = P[S0(τ0,y)≥ s0]− r0

and

h2
k,p(y) = P[Wk,p(y)≤ wk,p]− vk,p for k = 1, ...,K, p = 1, ...,P

h2
0,p(y) = P[Wp(y)≤ wp]− vp for p = 1, ...,P

h2
k,0(y) = P[Wk(y)≤ wk]− vk for k = 1, ...,K

h2
0,0(y) = P[W0(y)≤ w0]− v0.

Let g : RIP→ R2(KP+K+P+1) be a function defined by:

g = (h1
0,0,h

1
0,1, ...,h

1
0,P,h

1
1,0, ...,h

1
1,P, ...,h

1
K,0, ...,h

1
K,P,
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h2
0,0,h

2
0,1, ...,h

2
0,P,h

2
1,0, ...,h

2
1,P, ...,h

2
K,0, ...,h

2
K,P)

def
:= (g1,g2, ...,g2(KP+K+P+1)).

We are now ready to formulate the problem of minimizing scheduling costs subject

to satisfying chance constraints in service level and average waiting time:

min
y

f (y)

subject to:
g(y)≥ 0

y≥ 0 and integer.
(P0)

Note that problem (P0) is equivalent to the scheduling problem:

min
x

ctx =
I

∑
i=1

Q

∑
q=1

ci,qxi,q

subject to:

Bx≥ y

P[Sk,p(τk,p,y)≥ sk,p]≥ rk,p for 1≤ k ≤ K and 1≤ p≤ P

P[Sp(τp,y)≥ sp]≥ rp for 1≤ p≤ P

P[Sk(τk,y)≥ sk]≥ rk for 1≤ k ≤ K

P[S0(τ0,y)≥ s0]≥ r0

P[Wk,p(y)≤ wk,p]≥ vk,p for 1≤ k ≤ K and 1≤ p≤ P

P[Wp(y)≤ wp]≥ vp for 1≤ p≤ P

P[Wk(y)≤ wk]≥ vk for 1≤ k ≤ K

P[W0(y)≤ w0]≥ v0

x,y≥ 0 and integer .

(P1)

The staffing problem is a relaxation of the scheduling problem where we forget

about the admissibility of schedules and just assume that any staffing is admissible. The
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staffing cost vector in this setting is d = (d1,1, ...,d1,P, ...,dI,1, ...,dI,P)
t where di,p is the

cost of an agent of group i in period p. We have:

min
y

dty =
I

∑
i=1

P

∑
p=1

di,pyi,p

subject to:

P[Sk,p(τk,p,y)≥ sk,p]≥ rk,p for 1≤ k ≤ K and 1≤ p≤ P

P[Sp(τp,y)≥ sp]≥ rp for 1≤ p≤ P

P[Sk(τk,y)≥ sk]≥ rk for 1≤ k ≤ K

P[S0(τ0,y)≥ s0]≥ r0

P[Wk,p(y)≤ wk,p]≥ vk,p for 1≤ k ≤ K and 1≤ p≤ P

P[Wp(y)≤ wp]≥ vp for 1≤ p≤ P

P[Wk(y)≤ wk]≥ vk for 1≤ k ≤ K

P[W0(y)≤ w0]≥ v0

y≥ 0 and integer .

(P2)

In the special case where we consider one period at a time, we have d = (d1, ...,dI)
t

where di is the cost of an agent of type i, suppose that d is positive and y = (y1, ...,yI)
t

where yi is the number of agents of type i. In this context, we often assume that the

system is in steady-state over the given period (but we may also assume arbitrary initial

conditions). The optimization problem then reduces to:

min
y

dty =
I

∑
i=1

diyi
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subject to:
P[Sk(τk,y)≥ sk]≥ rk for 1≤ k ≤ K

P[S0(τ0,y)≥ s0]≥ r0

P[Wk(y)≤ wk]≥ vk for 1≤ k ≤ K

P[W0(y)≤ w0]≥ v0

y≥ 0 and integer .

(P3)

In the case where we consider one call type, one agent group and P periods, we have

d = (d1, ...,dP)
t where dp is the cost of an agent in period p and y = (y1, ...,yP)

t where

yp is the number of agents in period p. The optimization problem then reduces to:

min
y

dty =
P

∑
p=1

dpyp

subject to:
P[Sp(τp,y)≥ sp]≥ rp for 1≤ p≤ P

P[S0(τ0,y)≥ s0]≥ r0

P[Wp(y)≤ wp]≥ vp for 1≤ p≤ P

P[W0(y)≤ w0]≥ v0

y≥ 0 and integer .

(P4)

The underlying model is typically so complex that an algebraic expression for g(y)

can not be easily obtained. Therefore, simulation could be the only viable method for

estimating g(y). In the next section we formulate an optimization problem which is an

approximate of (P0) obtained by replacing the probability values by sample averages

and prove statements about the convergence of solutions of this sample problem to the

solutions of the original problem (P0) as the sample size increases.



CHAPTER 3

SAMPLE AVERAGE APPROXIMATION OF THE CHANCE-CONSTRAINED

STAFFING PROBLEM

The probabilities that the service level and average waiting time are satisfied in a

given period involved in the constraints are estimated by simulation. Suppose we simu-

late the center N times, independently, over its P periods of operation. Let ω represent

the source of randomness, i.e., the sequence of all independent U(0,1) random variates

that drive the successive simulation runs (regardless of their number). When simulating

the call center for different values of a staffing level y, we assume that the same uniform

random numbers are used for the same purpose for all values of y, for each day. This

is implemented by using random number packages that provide multiple streams and

substreams (L’Ecuyer [25], L’Ecuyer et al. [27]).

Suppose we perform N simulation runs to get the estimates of probabilities. We con-

sider the distribution of the values of the service level and average waiting time over the

individual runs. The empirical service-level of a simulation run, defined as the observed

number of calls answered within the time limit divided by the total number of calls in

this run, is a function of the staffing level y and of ω . We denote the empirical service

level by the d-th replication by Ŝd
N,k,p(τk,p,y,ω) for call type k in period p; Ŝd

N,p(τp,y,ω)

aggregated over period p; Ŝd
N,k(τk,y,ω) aggregated for all call type k; and Ŝd

N,0(τ0,y,ω)

aggregated overall. Similarly, the empirical average waiting time of a simulation run,

defined as the total of waiting times of calls divided the total number of calls in this

replication, is also a function of y and of ω . We denote the empirical average waiting

time by the d-th replication by Ŵ d
N,k,p(τk,p,y,ω) for call type k in period p; Ŵ d

N,p(τp,y,ω)

aggregated over period p; Ŵ d
N,k(τk,y,ω) aggregated for all call type k; and Ŵ d

N,0(τ0,y,ω)

aggregated overall. To compute these functions at different values of y, we simply use

simulation with common random numbers, i.e., make sure that the same random num-

bers are used at the same place for all values of y (Law [24], Chapter 10). For simplicity

of notations, we omit ω from the notations.
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Let

h
1
k,p(y;N) =

∑
N
d=1 I[Ŝd

N,k,p(τk,p,y)≥ sk,p]

N
− rk,p for k = 1, ...,K, p = 1, ...,P;

h
1
0,p(y;N) =

∑
N
d=1 I[Ŝd

N,p(τp,y)≥ sp]

N
− rp for p = 1, ...,P;

h
1
k,0(y;N) =

∑
N
d=1 I[Ŝd

N,k(τk,y)≥ sk]

N
− rk for k = 1, ...,K;

h
1
0,0(y;N) =

∑
N
d=1 I[Ŝd

N,0(τ0,y)≥ s0]

N
− r0;

and

h
2
k,p(y;N) =

∑
N
d=1 I[Ŵ d

N,k,p(y)≤ wk,p]

N
− vk,p for k = 1, ...,K, p = 1, ...,P;

h
2
0,p(y;N) =

∑
N
d=1 I[Ŵ d

N,p(y)≤ wp]

N
− vp for p = 1, ...,P;

h
2
k,0(y;N) =

∑
N
d=1 I[Ŵ d

N,k(y)≤ wk]

N
− vk for k = 1, ...,K;

h
2
0,0(y;N) =

∑
N
d=1 I[Ŵ d

N,0(y)≤ w0]

N
− v0;

where I is the indicator function:

I[A] =

1 if the clause A is true,

0 otherwise.

Let g : RIP×N→ R2(KP+K+P+1) be the function of (y,N):

g = (h
1
0,0,h

1
0,1, ...,h

1
0,P,h

1
1,0, ...,h

1
1,P, ...,h

1
K,0, ...,h

1
K,P,

h
2
0,0,h

2
0,1, ...,h

2
0,P,h

2
1,0, ...,h

2
1,P, ...,h

2
K,0, ...,h

2
K,P).

def
:= (g1,g2, ...,g2(KP+K+P+1)).

We will replace the probabilities in the optimization problem by the averages in the sam-
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ple problem, and we use these notations to formulate the Sample Average Approximation

(SAA) problem:

min
y

f (y)

subject to:
g(y;N)≥ 0

y≥ 0 and integer.
(S1)

A similar formulation can be given for the other problems, replacing the probabil-

ities on the left sides of the constrains by the sample means everywhere. The chance-

constrained staffing problem for one call type, one skill agent, over a time interval di-

vided into periods becomes:

min
y

dty =
P

∑
p=1

dpyp

subject to:
∑

N
d=1 I[Ŝd

N,p(τp,y)≥ sp]

N
≥ rp for 1≤ p≤ P

∑
N
d=1 I[Ŝd

N,0(τ0,y)≥ s0]

N
≥ r0

∑
N
d=1 I[Ŵ d

N,p(y)≤ wp]

N
≥ vp for 1≤ p≤ P

∑
N
d=1 I[Ŵ d

N,0(y)≤ w0]

N
≥ v0

y ≥ 0 and integer .

(S2)

3.1 Almost Sure Convergence of Optimal Solutions of the Sample Average Ap-

proximation Problem

We insist on the fact that when ω is fixed, these sample problems are purely de-

terministic. These are the problems we solve, instead of the original problems (P0) to

(S1).

We will study the convergence of the optimal solution of the sample problem to that

of the original problem as N → ∞, under the assumption that ω is really an infinite se-

quence of i.i.d. random variables. Some notations as well as the process of our proof
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are similar with the proof in Section 4 in Atlason et al. [1] with some variations. In

that section, they prove the convergence of solutions of the sample average approxi-

mation to solutions of the original staffing problem. However, the constraints in their

original problem are not chance constraints, they are in terms of infinite horizon ser-

vice levels. Therefore, we have some modifications to adopt for our chance-constrained

staffing problem. We are interested in the properties of the optimal solutions of (S1) as

the sample size N gets large. As in Atlason et al. [1], we use the Strong Law of Large

Numbers (SLLN) to turn out that any optimal solution of (P0) that satisfies g(y) > 0,

i.e., g j(y) > 0 for all 1 ≤ j ≤ 2(KP+K +P+ 1), is an optimal solution of (S1) with

probability 1 (w.p.1) as N goes to infinity.

We say that the property A(N) holds for all N large enough w.p.1 if and only if

P[∃N0 < ∞ : A(N) holds ∀N ≥ N0] = 1.

The SLLN states that the sample average converges almost surely to the expected

value:

Xn =
X1 + ...+Xn

n
a.s→ µ for n→ ∞

where X1,X2, ... is an infinite sequence of i.i.d. random variables with expected value

E[X1] = E[X2] = ...= µ and E[|X j|]< ∞ for j = 1,2, ....

That is, P[limn→∞ Xn = µ] = 1.

We introduce some additional notations as in Atlason et al. [1]. Let

g(y;∞) := lim
N→∞

g(y;N),

F∗ := the optimal value of (P0)

and define the sets

Y ∗ := the set of optimal solutions to (P0),

Y ∗0 := {y ∈ Y ∗ : g(y)> 0},

Y1 := {y ∈ ZIP
+ : f (y)≤ F∗,g(y) 6≥ 0},

Y ∗N := the set of optimal solution of (S1).
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Note that Y1 is the set of solutions to (P0) that have the same or lower cost than an optimal

solution, and satisfy all constraints except the probability constraints. We are concerned

with solutions in this set since they could be feasible (optimal) for the sample problem

(S1) if the difference between the sample average g(.;N) and g is sufficiently large. We

show that when Y ∗0 is not empty, Y ∗0 ⊆ Y ∗N ⊆ Y ∗ for all N large enough, w.p.1.

The sets Y ∗, Y ∗N and Y ∗0 are finite by Assumption 2.3.2. (The sets Y ∗, Y ∗N and Y ∗0 can

be empty). Furthermore, if Y ∗ is nonempty then F∗ < ∞ and then, again by Assumption

2.3.2, the set Y1 is finite.

We start with two lemmas. The first one establishes properties of g(y;∞) by repeat-

edly applying the SLLN. The second shows that solutions to (P0) satisfying g(y) > 0,

and infeasible solutions, will be feasible and infeasible, respectively, w.p.1 for problem

(S1) when N gets large. The only condition g(y) has to satisfy is that it is finite for

all y ∈ ZIP
+ . That assumption is obviously satisfied because the values of probability

functions never exceed 1.

Define

‖g‖= max
y∈ZIP

+

‖g(y)‖
∞
= max

y∈ZIP
+

max
j=1,...,2(KP+K+P+1)

|g j(y)|.

Lemma 3.1.1. 1. Suppose that ‖g(y)‖
∞
< ∞ for some fixed y∈ZIP

+ . Then g(y;∞) = g(y)

w.p.1.

2. Suppose that ‖g‖
∞
< ∞ and Γ⊂ ZIP

+ is finite. Then g(y;∞) = g(y) ∀y ∈ Γ w.p.1.

Proof. 1. For all 1≤ k ≤ K, 1≤ p≤ P and 1≤ d ≤ N, we notice that:

E[I[Ŝd
N,k,p(τk,p,y)≥ sk,p]] = P[Ŝd

N,k,p(τk,p,y)≥ sk,p] = P[Sk,p(τk,p,y)≥ sk,p],

E[I[Ŝd
N,p(τp,y)≥ sp]] = P[Ŝd

N,p(τp,y)≥ sp] = P[Sp(τp,y)≥ sp],

E[I[Ŝd
N,k(τk,y)≥ sk]] = P[Ŝd

N,k(τk,y)≥ sk] = P[Sk(τk,y)≥ sk],

E[I[Ŝd
N,0(τ0,y)≥ s0]] = P[Ŝd

N,0(τ0,y)≥ s0] = P[S0(τ0,y)≥ s0],

E[I[Ŵ d
N,k,p(y)≤ wk,p]] = P[Ŵ d

N,k,p(y)≤ wk,p] = P[Wk,p(y)≤ wk,p],

E[I[Ŵ d
N,p(y)≤ wp]] = P[Ŵ d

N,p(y)≤ wp] = P[Wp(y)≤ wp],
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E[I[Ŵ d
N,k(y)≤ wk]] = P[Ŵ d

N,k(y)≤ wk] = P[Wk(y)≤ wk]

E[I[Ŵ d
N,0(y)≤ w0]] = P[Ŵ d

N,0(y)≤ w0] = P[W0(y)≤ w0].

By using the SLLN:

lim
N→∞

∑
N
d=1 I[Ŝd

N,k,p(τk,p,y)≥ sk,p]

N
] = P[Sk,p(τk,p,y)≥ sk,p] w.p.1.

Similarly, we have:

lim
N→∞

∑
N
d=1 I[Ŝd

N,p(τp,y)≥ sp]

N
] = P[Sp(τp,y)≥ sp] w.p.1,

lim
N→∞

∑
N
d=1 I[Ŝd

N,k(τk,y)≥ sk]

N
] = P[Sk(τk,y)≥ sk] w.p.1,

lim
N→∞

∑
N
d=1 I[Ŝd

N,0(τ0,y)≥ s0]

N
] = P[S0(τ0,y)≥ s0] w.p.1,

lim
N→∞

∑
N
d=1 I[Ŵ d

N,k,p(y)≤ wk,p]

N
= P[Wk,p(y)≤ wk,p] w.p.1,

lim
N→∞

∑
N
d=1 I[Ŵ d

N,p(y)≤ wp]

N
= P[Wp(y)≤ wp] w.p.1,

lim
N→∞

∑
N
d=1 I[Ŵ d

N,k(y)≤ wk]

N
= P[Wk(y)≤ wk] w.p.1,

lim
N→∞

∑
N
d=1 I[Ŵ d

N,0(y)≤ w0]

N
= P[W0(y)≤ w0] w.p.1.

So g j(y;∞) = g j(y) w.p.1 for j ∈ {1, ...,2(KP+K +P+1)}.
Then

P[g(y;∞) = g(y)]≥ 1−
2(KP+K+P+1)

∑
j=1

P[g j(y;∞) 6= g j(y)] = 1
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by Boole’s inequality (3.1), stated as follow:

P

(
n⋃

i=1

Ai

)
≤

N

∑
i=1

P(Ai). (3.1)

2. Note that

P[g(y;∞) = g(y): ∀y ∈ Γ]≥ 1−∑
y∈Γ

P[g(y;∞) 6= g(y)] = 1

since Γ is finite.

Lemma 3.1.2. Suppose that ‖g‖< ∞ and that Assumption 2.3.2 holds. Then

1. g(y;N)≥ 0∀y ∈ Y ∗0 for all N large enough w.p.1.

2. All y ∈ Y1 are infeasible for the SAA problem (S1) for all N large enough w.p.1 if

F∗ < ∞.

Lemma (3.1.2) proof is very similar to that of Lemma 3 in Atlason et al. [1].

Proof. 1. The result is trivial if Y ∗0 is empty, so suppose it is not. Let

δ = min
y∈Y ∗0

min
j=1,...,2(KP+K+P+1)

g j(y).

Then δ > 0 by the definition of Y ∗0 . Let

N0 = inf{n0 : max
y∈Y ∗0
‖g(y;N)−g(y)‖∞ < δ , ∀N ≥ n0},

with the infimum defined as +∞ if the set is empty. Then g(y;N)≥ 0,∀y ∈Y ∗0 ,∀N ≥ N0.

The set Y ∗0 is finite, so limN→∞ g(y;n) = g(y),∀y ∈ Y ∗0 w.p.1 by part 2 of Lemma 3.1.1.

Therefore N0 < ∞ w.p.1.

2. The result is trivial if Y1 is empty, so suppose it is not. Let

δ = min
y∈Y1

max
j=1,...,2(KP+K+P+1)

{−g j(y)}.
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Then δ > 0, since g j(y)< 0, for at least one j ∈ {1, ...,2(KP+K+P+1)},∀y ∈Y1.

Let

N1 = inf{n1 : max
y∈Y1
‖g(y)−g(y;N)‖∞ < δ ,∀N ≥ n1}

and then all y ∈Y1 are infeasible for (S1) for all N ≥ N1. The set Y1 is finite by Assump-

tion 2.3.2 and since F∗ < ∞, so

lim
N→∞

g(y;N) = g(y),∀y ∈ Y1

w.p.1 by part 2 of Lemma 3.1.1. Therefore, N1 < ∞ w.p.1.

Lemma 3.1.2 shows that all the “interior” optimal solutions for the original problem

are feasible for the SAA problem w.p.1 as the sample size is large enough. Furthermore,

all solutions that satisfy the common constraints of both problems, except the probability

constraints, and have at most the same cost as an optimal solution, become infeasible for

the SAA problem w.p.1. Therefore, Atlason et al. [1] prove an important result that for

a large enough sample size, an optimal solution for the SAA problem is indeed optimal

for the original problem.

Theorem 3.1.3. Suppose that ‖g‖< ∞ and that Assumption 2.3.2 holds. Then Y ∗0 ⊆ Y ∗N
for all N large enough w.p.1. Furthermore, if Y ∗0 is nonempty then Y ∗0 ⊆ Y ∗N ⊆ Y ∗ for all

N large enough w.p.1.

Applying this theorem in the specific case Y ∗0 = Y ∗ = {y∗}, Atlason et al. [1] obtain

the following corollary:

Corollary 3.1.4. Suppose that ‖g‖ < ∞ and that Assumption 2.3.2 holds and that (P0)

has a unique optimal solution, y∗, such that g(y∗) > 0. Then y∗ is the unique optimal

solution for (P2) for all N large enough w.p.1.
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3.2 Exponential Rate of Convergence of Optimal Solutions of the Sample Prob-

lems

In the previous subsection, we showed that we can expect to get an optimal solution

for the original problem (P0) by solving the SAA problem (S1) if we choose a large

sample size. In this section, we show that the probability of getting an optimal solution

this way approaches one exponentially fast as we increase the sample size. We use large

deviations theory and a result due to Dai et al. [15] to prove our statement. The following

theorem is an intermediate result from Theorem 3.1 in Dai et al. [15]:

Theorem 3.2.1. Let H : RIP×Ω→ R and assume that there exist γ > 0,θ0 > 0 and

η : Ω→ R such that

|H(y,ω)| ≤ γη(ω), E[eθη(ω)]< ∞,

for all y ∈ Rp and for all 0≤ θ ≤ θ0, where ω is a random element taking values in the

space Ω. Then for any δ > 0, there exists a > 0, b > 0 such that for all any y ∈ RIP

P[|h(y)−h(y,N)| ≥ δ ]≤ ae−bN

for all N > 0, where h(y) = E[H(y,ω)] and h(y,N) is a sample mean of N independent

and identically distributed realizations of H(y,ω).

Set

H1
k,p(y,ω) = I[SN,k,p(τk,p,y)≥ sk,p]− rk,p for 1≤ k ≤ K,1≤ p≤ P;

H1
0,p(y,ω) = I[SN,p(τp,y)≥ sp]− rp for 1≤ p≤ P;

H1
k,0(y,ω) = I[SN,k(τk,y)≥ sk]− rk for 1≤ k ≤ K;

H1
0,0(y,ω) = I[SN,0(τ0,y)≥ s0]− r0;

H2
k,p(y,ω) = I[WN,k,p(y)≤ wk,p]− vk,p for 1≤ k ≤ K,1≤ p≤ P;

H2
0,p(y,ω) = I[WN,p(y)≤ wp]− vp for 1≤ p≤ P;

H2
k,0(y,ω) = I[WN,k(y)≤ wk]− vk for 1≤ k ≤ K;

H2
0,0(y,ω) = I[WN,0(y)≤ w0]− v0.
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Since |Ht
k,p(y,ω)| ≤ 2 for all t ∈ {1,2}, 0 ≤ k ≤ K, 0 ≤ p ≤ P, for all y ∈ RIP, we can

apply the previous theorem with γ = 2, any θ0 > 0 and η = 1. Before we prove the

exponential rate of convergence, we restate Lemma 3.2.2 in Atlason et al. [1] which

shows that for any N, Y ∗0 ⊆ Y ∗N ⊆ Y ∗ precisely when all the solutions in Y ∗0 are feasible

for the SAA problem and all infeasible solutions for (P0) that are equally good or better,

i.e., are in the set Y1, are also infeasible for (S1).

Lemma 3.2.2. Let N > 0 be an arbitrary integer and let Y ∗0 be nonempty. The properties

1. g(y,N)≥ 0 ∀y ∈ Y ∗0 , and

2. g(y,N)< 0 ∀y ∈ Y1

hold if and only if Y ∗0 ⊆ Y ∗N ⊆ Y ∗.

The following theorem shows that the probability of getting an optimal solution by

solving the SAA problem approaches one exponentially fast as we increase the sample

size. The proof is similar to that of Theorem 3.2.3 in Atlason et al. [1].

Theorem 3.2.3. Suppose that Assumption 2.3.2 holds and that Y ∗0 is nonempty. Then

there exist α > 0, β > 0 such that

P[Y ∗0 ⊆ Y ∗N ⊆ Y ∗]≥ 1−αe−βN

Proof. Define
δ1 := min

y∈Y ∗0
min

j∈{1,...,2(KP+K+P+1)}
{g j(y)},

j(y) := argmax
j∈{1,...,2(KP+K+P+1)}

{−g j(y)},

δ2 := min
y∈Y1
{−g j(y)(y)},

δ := min{δ1,δ2}

Here δ1 > 0 is the minimal slack value in the constraints g(y) ≥ 0 for any solution

y ∈ Y ∗0 . Similarly, δ2 > 0 is the minimal violation in the constraints g(y)≥ 0 induced by
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any solution y ∈ Y1. Thus,

P[Y ∗0 ⊆ Y ∗N ⊆ Y ∗] = P[(g(y,N)≥ 0∀y ∈ Y ∗0 )∩ (g(y,N)< 0∀y ∈ Y1)] (3.2)

= 1−P[(∃y ∈ Y ∗0 s.t. g(y;N)< 0)∪ (∃y ∈ Y1 s.t. g(y;N)≥ 0)]

≥ 1− ∑
y∈Y ∗0

2(KP+K+P+1)

∑
j=1

P[g j(y;N)< 0]− ∑
y∈Y1

P[g(y;N)≥ 0] (3.3)

≥ 1− ∑
y∈Y ∗0

2(KP+K+P+1)

∑
j=1

P[|g j(y;N)−g j(y)| ≥ δ ]

− ∑
y∈Y1

P[|g j(y)(y;N)−g j(y)(y)| ≥ δ ] (3.4)

≥ 1− ∑
y∈Y ∗0

2(KP+K+P+1)

∑
j=1

a je−b jN− ∑
y∈Y1

a j(y)e
−b j(y)N (3.5)

≥ 1−αe−βN .

Here

α = #Y ∗0
2(KP+K+P+1)

∑
j=1

a j + ∑
y∈Y1

a j(y)

and

β = min
j=1,...,2(KP+K+P+1)

b j

where #Y ∗0 is the cardinality of the set Y ∗0 .

The sets Y ∗0 and Y1 are finite by Assumption 2.3.2, so α < ∞. Equation (3.2) follows

by Lemma 3.2.2. Equation (3.3) is Boole’s inequality (3.1). Equation (3.4) follows since

P[g(y;N)≥ 0]≤ P[g j(y)(y;N)≥ 0] and g j(y)≥ δ1 ≥ δ for y ∈ Y ∗0 and g j(y)(y)≥ δ2 ≥ δ

for y ∈ Y1. Finally, (3.5) follows from Theorem 3.2.1.

Motivated by the results of this chapter, we would like to propose an algorithm to

solve the sample chance-constrained scheduling problem (S1). However, in this thesis,

we only concentrate on solving the staffing problem for the restricted case where all

agents are identical and can answer all call types.



CHAPTER 4

SIMULATION METHODS

In this chapter, we propose three algorithms to solve our chance-constrained staffing

problem where all agents are identical and can serve all call types, over a time interval

divided into periods. This could correspond to one day divided into 48 half-hour periods,

for example, in the situation where the call center opens 24 hours a day. In order to

simplify, we suppose that all the value costs dp = 1 for all 1≤ p≤ P. The general idea is

to replace the problem (P4) by a sample version (S2), and then use simulation methods

to solve this sample problem.

4.1 General idea for simulation algorithms

We propose three simulation-based optimization algorithms to solve the sample prob-

lem. All of them are rooted in the same idea, with some variations in the implementation.

They can be decomposed in five stages, as described below:

Stage 1: Initialize We can choose an arbitrary initial staffing level. Two specific

strategies are considered below. The simplest way is to start with a staffing equal

to 0 for all periods. We can also choose an initial staffing level by using the

Erlang C formula since, in some cases, we may expect that Erlang C gives a

staffing level which is close to a good solution. Note that Erlang C gives a staffing

level satisfying the constraints on the expected service level in the long run (see

Section 2.1).

With the initial staffing, there may exist some chance constraints in our sample

problem (S2) that are satisfied while others are not. One natural approach would

be to increase the staff number in some periods in which the constraints on the

service level or average waiting time are violated, until these constraints are sat-

isfied.

Stage 2: Increase We consider the periods in which the constraints are not satisfied,
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and increase the number of agents in these periods until the constraints in these

periods are satisfied.

Stage 3: Decrease After stage 2, all constraints in periods are satisfied. However,

we can sometimes decrease the number of agents in several periods such that

the constraints in these periods are still satisfied. In stage 3, we decrease the

number of agents as much as possible, under the condition that the constraints in

the individual periods are still satisfied.

Stage 4: Increase-Last We consider the constraints over the whole day. These

constraints may be not satisfied. We continue increasing the staffing level until

the constraints over the whole day are satisfied.

Stage 5: Correction Changing the staffing in one period can alter the performance

(such as service level, etc.) in other periods as well. Atlason et al. [1] present

an example showing that the staffing level in one period can have a considerable

effect on the service level in another period. In that example, they explain the

reason why the service level depends on the staffing level in the previous period.

That is because a low staffing level in an earlier period results in a queue build-

up, which increases waiting in the next period. They also explain the reason why

the staffing level in a later period affects the service level in an earlier period, is

that arrival calls in the earlier period may still be waiting at the beginning of the

next period and thus are served earlier if there are more servers in that period.

In some call centers, e.g., the emergency 911 call center, this effect is very small

because there is rarely a queue in the system (the agents are not very busy), but

in general, this effect could be very important. Since our algorithms are based on

changing the number of staffing in periods, the manner and the order of periods

of changing the number of agents may have noticeable affect on the results.

Therefore, to improve the quality of solutions, after the four stages, we add an-

other stage, say stage Correction. In this stage, we consider all periods, from

the first period. For each period, we try to decrease the number of agents in this

period as much as possible, provided that the staffing level is still feasible for the
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sample problem.

In the next section, we will describe the three algorithms in more details as well as

the differences between them.

4.2 Simulation algorithm 1: CCS1

The original method CCS1 is very simple to implement.

In stage 2, we consider the periods in which the constraints are not satisfied. For

each of them, we increase the number of agents in this period by adding one unit at each

iteration, until the constraints in this period are satisfied. After stage 2, all constraints in

periods are satisfied.

In stage 3, at each iteration, we consider only one period, from the first period. We

try to decrease the number of agents in this period as much as possible provided that all

constraints in this period are still satisfied. Then, we consider the next period and repeat

this process.

If the constraints in the whole day are not satisfied by using the staffing levels ob-

tained at stage 3, in stage 4, we will increase the staffing levels until these constraints are

satisfied. We may have plenty of choices to choose the periods in which we increase the

number of agents. Here are several examples.

— At each iteration, we choose the period with the smallest service level, and add

one agent in this period. After adding the new agent and running simulation, we

check if the constraints over the whole day are satisfied. This stage is stopped as

soon as these constraints are satisfied.

— We consider the differences between the estimations of the probabilities that the

constraints on the SL are satisfied and the target of the probabilities in all periods.

The number of agents in the period with the lowest difference would be increased.

For more detail, we consider constraints on the SL in all periods p = 1, ...,P.

After setting any new staffing level and running simulations, we can compute:

∑
N
d=1 I[Ŝd

N,p(τp,y)≥ sp]

N
.
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We denote:

∆p =
∑

N
d=1 I[Ŝd

N,p(τp,y)≥ sp]

N
− rp for all p = 1, ...,P.

In stage 4, the number of agents in the period in which ∆p is lowest will be in-

creased. In the numerical experiment, we use this method to increase the number

of agents. It is also expressed in details of the algorithm CCS1 below.

4.3 Simulation algorithm 2: CCS2

In CCS1, in stage 2, stage 3 and stage 4, we change the number of agents by at most

one unit in a single period at each iteration. After each change of the number of agents,

we perform a simulation. This approach can be time-consuming as it can require many

simulations. In order to save computational time, in CCS2, we change (increase and

decrease) the number of agents in several periods at the same time, i.e., in each iteration,

we will increase or decrease the number of agents by at most one unit in each period, but

in all selected periods (where increase is required or decrease appears to be acceptable)

simultaneously.

We have observed a significant decrease of the required CPU time when implement-

ing these modifications. We can see it in the next sections.

4.4 Simulation algorithm 3: CCS3

In the two above algorithms, the numbers of agents in each periods are changed by

increasing or decreasing only one unit each time. Algorithm CCS3 is a modified version

of CCS2, as we now use the bisection on the number of agents in stages 2 and 3. If the

difference between the optimal solution and the initial solution is large, this approach can

reduce the required CPU time, as the number of increases or decreases may be lower.

The stage 4 is the same as for CCS1.
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Algorithm 1
1: Require: P and other data for the model (arrival process, service time distribu-

tions,...).
2: Ensure: an estimation of an optimal solution y .
3: Begin
4: Initialization
5: P← Number of periods;
6: N← Number of replications;
7: y = {y1, . . . ,yp}; // Initial solution
8: // Increase
9: for p : 1→ P do

10: while yp does not satisfy the constraints in period p do
11: yp← yp +1;
12: Simulation with new staffings y;
13: end while
14: end for
15: // Decrease
16: for p : 1→ P do
17: while yp satisfies the constraints in period p do
18: yp← yp−1;
19: Simulation with new staffings y;
20: end while
21: yp← yp +1;
22: end for
23: // Increase-Last
24: ∆ = (∆1, ...,∆P);

25: for p : 1→ P do ∆p =
∑

N
d=1 I[Ŝ

d
N,p(τp,y)≥sp]

N − rp;
26: end for
27: while y does not satisfy the constraints over the whole day do
28: k← argminp=1,...,P ∆p;
29: yk← yk +1;
30: Simulation with new staffings y;
31: end while
32: // Correction
33: for p : 1→ P do
34: while y is feasible do
35: yp← yp−1;
36: Simulation with new staffings y;
37: end while
38: yp← yp +1;
39: end for
40: End
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Algorithm 2
1: Require: P and other data for the model (arrival process, service time distribu-

tions,...).
2: Ensure: an estimation of an optimal solution y .
3: Begin
4: Initialization
5: P← Number of periods;
6: N← Number of replications;
7: y = {y1, . . . ,yp}; // Initial solution
8: //Increase
9: u = (u1, ...,uP) = (1, ...,1);

10: repeat
11: for p : 1→ P do
12: if yp satisfies the constraints in period p then
13: u j← 0;
14: end if
15: yp← yp +up;
16: end for
17: Simulation with new staffings y;
18: until u = 0;
19: // Decrease
20: u = (u1, ...,uP) = (1, ...,1);
21: while u 6= 0 do
22: for p : 1→ P do
23: yp← yp−up;
24: end for
25: Simulation with new staffings y;
26: for p : 1→ P do
27: if yp does not satisfy the constraints in period p then
28: yp← yp +up; up← 0;
29: end if
30: end for
31: end while
32: Simulation with new staffings y;
33: // Increase-Last
34: u = (u1, ...,uP) = (1, ...,1);
35: while y do not satisfy the constraints over the whole day do
36: for p : 1→ P do
37: yp← yp +up;
38: end for
39: Simulation with new staffings y;
40: end while
41: . Continued on next page ...
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42: Sorting y by decreasing order of service level {yk1, ...,ykP};
43: t = 1;
44: while y is feasible do
45: ykt ← ykt −1;
46: Simulation with new staffings y;
47: t← t +1;
48: end while
49: ykt−1 ← ykt−1 +1;
50: // Correction
51: for p : 1→ P do
52: while y is feasible do
53: yp← yp−1;
54: Simulation with new staffings y;
55: end while
56: yp← yp +1;
57: end for
58: End

4.5 Analysis of the algorithms

Proposition 4.5.1. Suppose that the sample problem (S2) is feasible. Then all three

algorithms terminate at feasible solutions, in a finite number of iterations.

Proof. Suppose that y∗ = (y∗1, ...,y
∗
P) is a feasible solution of the sample problem (S2),

that y0 = (y01, ...,y0P) is an initial staffing level, and that our algorithms do not stop after

a finite number of iterations.

Assume also that the stage Increase do not stop after a finite number of iterations,

i.e., our algorithms cannot find a staffing level which satisfies the constraints in all peri-

ods. However, for each 1 ≤ p ≤ P, after a finite numbers of increases of the staffing in

the period p, the number of agents in this period will be equal or greater to y∗p. Therefore,

the three algorithms can always find solutions which satisfy all the constraints for any

period after a finite number of iterations.

In the stage Decrease, we decrease the staffing in all periods such that they still

satisfy the constraints in all periods. Since the number of agents in each period is non-

negative, this stage terminates after a finite number of iterations.

Suppose now that the stage Increase-Last do not stop after a finite number of
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Algorithm 3
1: Require: P and other data for the model (arrival process, service time distribu-

tions,...).
2: Ensure: an estimation of an optimal solution y .
3: Begin
4: Initialization
5: P← Number of periods;
6: N← Number of replications;
7: y = (y1, . . . ,yp); // Initial solution
8: x = (x1, ...,xP);
9: // Increase

10: u = (u1, ...,uP) = (1, ...,1);
11: repeat
12: for p : 1→ P do
13: yp← yp +up;
14: end for
15: for p : 1→ P do
16: if y satisfies the constraints in period p then
17: if up 6= 0 then
18: xp = yp−up;
19: end if
20: up← 0;
21: else
22: up← 2∗up;
23: end if
24: end for
25: Simulation with new staffings y;
26: until u = 0;
27: // Decrease
28: repeat
29: for j : 1→ P do
30: αp← b(xp + yp)/2c;
31: end for
32: Simulation with the staffings (α1, ...,αP);
33: for p : 1→ P do
34: if αp satisfies the constraints in period p then
35: yp← αp;
36: else
37: xp← αp;
38: end if
39: end for
40: until (yp− xp ≤ 1 for all p);
41: . Continued on next page ...
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42: // Increase-Last
43: ∆ = (∆1, ...,∆P);

44: for p : 1→ P do ∆p =
∑

N
d=1 I[Ŝ

d
N,p(τp,y)≥sp]

N − rp;
45: end for
46: while y does not satisfy the constraints over the whole day do
47: k← argmin j=1,...,P ∆p;
48: yk← yk +1;
49: Simulation with new staffings y;
50: end while
51: // Correction
52: for p : 1→ P do
53: while y is feasible do
54: yp← yp−1;
55: Simulation with new staffings y;
56: end while
57: yp← yp +1;
58: end for
59: End

iterations, i.e., we can not increase the staffings to satisfy the constraints in the whole day.

However, after a finite number of increases, we will obtain a staffing level y = (y1, ...,yP)

such that yp ≥ y∗p for all 1≤ p≤ P. Thus, this staffing level satisfies the constraints over

the whole day. Therefore, the stage Increase-Last stops after a finite number of

iterations.

Similarly, the stage Correction also terminates after a finite number of iterations.

In conclusion, all three algorithms terminate after a finite number of iterations. Ob-

viously, the three algorithms return staffing levels which satisfy all the constraints of our

sample problem (S2), so they deliver upper bounds for the cost of our sample problem

(S2). Moreover, in our algorithms, in the stage Decrease, we try to decrease the num-

ber of agents as much as possible, and the stage Increase-Last stops as soon as we

find a staffing level which satisfies the constraints over the whole day. After that, in the

stage Correction, we try to reduce the number of agents in all periods as much as

possible, provided that we still obtain feasible solutions. Therefore, we could expect that
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our algorithms give good heuristic solutions for our sample problem.

As discussed in Chapter 1, in the staffing problems where the service level constraints

are on long term averages, there are many methods to solve these problems. We are also

interested in applying these methods for our chance-constrained staffing problem. One

of them is the cutting plane method, that we discuss in Section 2.1. Compared with this

method, the three methods we proposed above are much easier to implement and do not

require a linear programming solver.

Among the three algorithms, the algorithm CCS1 is simplest, but the computational

time of running this algorithm is very large, compared with the two others.

4.6 Out-of-sample analysis

After obtaining a final staffing level for the sample problem, this solution should

be assessed for accuracy using an independent (out-of-sample) evaluation of the final

retained solution, with a much larger sample size, say M � N. This evaluation gives

us a more accurate estimate of the probabilities in the constraints of the original prob-

lem. Moreover, this evaluation is what really counts when we assess the quality of the

solutions from our algorithms. After observing these probabilities in the out-of-sample

simulation, we should increase the number of agents in the periods in which the con-

straints are violated, and we may decrease the staff in the periods in which the estimates

of the probabilities is much larger than the targets. After improving the staffing level, we

can continue using another independent (out-of-sample) evaluation the model with the

new staffings, by using a larger sample size, say M′�M. Based on this evaluation, we

may continue improving the quality of the solution. This process can be repeated. Each

time an out-of-sample simulation with a larger sample size is used, we try to improve

the solutions, based on this evaluation, in order to get a staffing level which is closer to

the optimal staffing. Obviously, we obtain a better solution with a larger sample size for

the out-of-sample simulation.
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NUMERICAL EXPERIMENTS

In the previous chapter, we have proposed three algorithms to estimate the required

staffing level for the chance-constrained staffing problem. In order to assess the perfor-

mance of these algorithms, as well as the impact of flexibility on solutions, a number of

models were fitted by our algorithms. These models were constructed to be representa-

tive of real data sets obtained from a 24-hour emergency call center (911).

5.1 Arrival process

In this section, we give definitions of several arrival processes, based on Oreshkin

et al. [30].

We consider one day of operation of a call center. The opening hours are divided

into P time periods of equal length. Let X= (X1, . . . ,XP) be the vector of arrival counts

in those P periods. Assuming that the arrivals are from a Poisson process with a random

rate Λp, constant over period p. Suppose Λ = (Λ1, . . . ,ΛP) and Λp = Bpλp where Bp

is a non-negative random variable with E[Bp] = 1 for each p. Bp is called the busyness

factor for period p and denoting B= (B1, . . . ,BP). To summarize, we have:

Λp = Bpλp and Xp ∼ Poisson(Λp),

where Poisson(λ ) denotes the Poisson distribution with mean λ . Let Γ(a,b) denote a

gamma distribution with mean a/b and variance a/b2. Here are several arrival processes

we will consider in our models:

— The first case is the degenerate case where Bp = 1 for all p. It gives an ordinary

nonhomogenous Poisson arrival process with piecewise constant rate. We will

refer to this case simply as PWCP.

— In the second special case, one takes Bp = B for all p, suppose B has a gamma

distribution Γ(γ,γ). We call this model PWCPB.
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— The third setting uses independent busyness factors Bp for the different periods

of the day. Suppose Bp has a gamma distribution Γ(ρp,ρp). We refer to this

model as PG.

— In the fourth case, we consider the following two-level arrival process model,

named PGB, based on the multiplicative combination of independent period busy-

ness factors B̂p and the busyness factor for the day, B. We assume that B, B̂1,. . . ,

B̂P are independent with

B∼ Γ(β ,β ) and B̂p ∼ Γ(αp,αp) for each p,

for some positive parameters β , α1,. . . , αP, and we take

Bp = B̂pB

as the busyness factor of period p.

— The last case we consider is denoted PGNR. It is based on a normal copula for

the vector B = (B1, . . . ,BP). More specifically, each Bp is assumed to have a

Γ(αp,αp) distribution, with cumulative distribution function (cdf) Gp, and can

be expressed as Bp = G−1
p (Φ(Zp)), where Φ is the standard normal cdf and Z =

(Z1, . . . ,ZP) ∼ Normal(0,RZ), a normal vector with mean zero and covariance

matrix RZ .

5.2 An emergency call center

5.2.1 Data from an emergency call center

The emergency call center operates 24 hours a day for 7 days a week. There is

one skill group. The center receives calls categorized in several dozen types. For the

results reported here, a subset of those types for which the daily patterns were similar is

selected and the aggregated arrival process for those types is considered. These results

are representative of a larger set of statistical analyses performed over different subsets

and over individual call types having sufficiently large volume. The days are divided
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into P = 48 half-hour periods. Suppose that the callers do not abandon and the service

time is modelled using the JohnsonSU distribution. The models use the different arrival

processes defined above. The numerical examples considered here are models obtained

from real data sets from the 911 call center in Montreal, on Monday and Thursday. We

shall denote each model by the name of the arrival process after the name of the day,

e.g., MondayPWCP denotes the model with nonhomogenous Poisson arrival process

with piecewise constant rate, on Monday.

5.2.2 A call center with very low occupancy

5.2.2.1 Parameters

The emergency call center 911 in Montreal requires that the SL must be very high

and the average waiting times are very low, i.e., the agents have a low occupancy. The

acceptable waiting time is 2 seconds, and the target of SL is 0.95. In our experiments

in this section, we choose the parameters as follow: the acceptable waiting times in the

SL constraints are τ0 = τp = 2 seconds for all 1≤ p≤ P, the targets of service levels are

s0 = sp = 0.95 for all p, the targets for the probabilities that the constraints on the SL

are satisfied are r0 = 0.95 and rp = 0.85 for all p, the acceptable average waiting time in

the AWT constraints are w0 = wp = 2 seconds, the targets for the probabilities that the

constraints on the average waiting times are satisfied are v0 = 0.95 and vp = 0.85 for all

p.

We next turn to experiments with the data sets which we presented above. In order

to evaluate the numerical potential of our three algorithms (CCS1, CCS2, CCS3) and

compare them, we estimate the staffings for ten models by our algorithms in different

cases. For each period, the initial staffing level is set to 0 or is given by the Erlang C

formula. The computational times are observed to evaluate and compare the performance

of the algorithms.
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5.2.2.2 Comparisons of the three algorithms

We consider here our three algorithms with the initial staffings obtained by using

the Erlang C formula, and by setting staff to 0 for all periods. Note that in these cases,

Erlang C is used to find the staffing levels such that the proportion of calls answered

within 2 seconds exceeds 95%.

Firstly, we consider the computational time of the three algorithms. We use these

algorithms with the sample sizes 500, 1000 and 2000 for ten models. In all cases,

the computational time of CCS1 is much higher, compared with that of the two other

methods. The difference in the CPU times for CCS2 and CCS3 is not significant. The

computational times of all three methods are better when using Erlang C to initialize the

staffing level. Moreover, all the results show that when the sample size increases, the

optimization time of each method also increases.

The three algorithms give very similar final solutions in all cases. Figure 5.1 shows

the detailed total costs when we optimize staffing level for ten models by using the

three algorithms with 1000 replications, and the same sequence of random variables.

The difference between the results of the three algorithms could be explained by the

variations in the way the methods change the number of agents and the order of periods in

which we change the staffings. All of them have impacts on the final solutions. However,

according to Figure 5.1, there are eight models which have the same results, and for the

two models MondayPGNR and ThursdayPGB, the differences of the results of the

three algorithms are only one agent (less than 0.23%) . Therefore, to assess the quality

of solutions of our algorithms, we only consider method CCS3 with initial staffings

obtained from the Erlang C formula.

5.2.2.3 Analysis of the staffing levels obtained from Erlang C and our algorithms

In each model in this case, Erlang C gives a staffing level which is less than the

staffing level obtained from our method CCS3. Figure 5.2 shows the staffing level ob-

tained by Erlang C and by our method CCS3 with the sample size 1000 for the model

MondayPGB. According to our observations, although the Erlang C formula gives the
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Figure 5.1 – Total costs of final solutions with the three algorithms for 1000 replications.

staffings in all periods which are less or equal than the staffings obtained by CCS3, the

distribution of the staffing level obtained from Erlang C is quite similar to the distribu-

tion of the staffing level obtained from our algorithms. For example, in both cases, the

numbers of agents in periods 9, 10, 11 are lowest, and the numbers of agents in periods

31, 32, 33 are highest. This can be explained by the different arrival rates of incoming

calls between periods.

Figure 5.2 – Staffing levels obtained from Erlang C and algorithm CSS3 for 1000 repli-
cations of MondayPGB.

Next, we assess the efficiency of staffing levels obtained by our algorithms in com-

parison with using Erlang C formula. We use Erlang C to find the staffing levels such

that the proportion of calls answered within 2 seconds is greater than 95%. After that, we
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evaluate this staffing level out-of-sample with a sample size 10000. Figure 5.3 shows the

distribution of the service level in the whole day of the model MondayPGNR with the

staffing level obtained by Erlang C. We also observe the proportion of days for which

the constraints on the service level and the average waiting time, for each period, are

satisfied, over 10000 simulated days, in Figure 5.4 and Figure 5.5. The results show that

for 87.5% of the periods, the SL constraints are violated, and in 10.4% of the periods

the constraints on the AWT are not satisfied. The numerical results also show that the

probability that the service level over the whole day meets the demand is only 77.76%,

while our target is 95%. In conclusion, in these models of 911, Erlang C formula gives

staffing levels which are not good for our chance-constrained problem.

Figure 5.3 – The distribution of the SL in the whole day of the model MondayPGNR with
the staffing level obtained by Erlang C.

Next, we analyse the quality of solutions obtained by our algorithms. We use the

method CCS3 to optimize the staffing level for the ten models with the sample size 1000.

After that, we evaluate our solutions out-of-sample with the sample size 10000. Table 5.I

shows the constraints which are not satisfied in the out-of-sample evaluations, for each

model. According to these results, in all models we tried, for out-of-sample evaluations,

the algorithm CCS3 gives us the staffing levels which satisfy most constraints. Moreover,
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Figure 5.4 – Proportion of the days where the SL constraint is satisfied, for each period,
over 10000 simulated days, for the MondayPGNRmodel, with the staffing level obtained
by Erlang C.

when we consider the violated constraints, we see that the estimated probabilities in these

constraints are very close to the target of 0.85. It means that CCS3 gives good results in

these cases. Figure 5.6 shows the distribution of the service level in the whole day of the

model MondayPGNR, with the staffing level obtained by CCS3. The numerical result

shows that the probability that the service level over the whole day meets the demand is

99%, which exceeds our target of 95%. More specifically, we observe the proportion of

the days where the constraints on the service level and average waiting time are satisfied,

for each period, over 10000 simulated days, in Figure5.7 and Figure 5.8. According to

these results, all chance constraints on the AWT and most constraints on the SL (except

for the constraint in period 34) are satisfied. The estimated probability that the constraint

on the SL in period 34 is satisfied, is 0.8419. This value is very close to the target of

0.85.

To improve the quality of these solutions, we try to increase the number of agents

in periods where the constraints are not satisfied. We show an example of the model

MondayPGNR. According to Figure 5.7, the SL constraint in period 34 is not satisfied.

Then we try to increase the number of agents in period 34, from 11 to 12, and perform
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Figure 5.5 – Proportion of the days where the AWT constraint is satisfied, for each pe-
riod, over 10000 simulated days, for the MondayPGNR model, with the staffing level
obtained by Erlang C.

an out-of-sample evaluation for the model MondayPGNR with this new staffing level.

According to Figure 5.9, the estimated probability that the SL constraint in period 34 is

satisfied, is increased to 0.943, i.e. the chance constraint in SL in this period is satisfied.

Now we try to improve the solutions by decreasing the number of agents. According

to Figure 5.7, the estimated probability that the constraint on the SL in period 12 is

satisfied is very large (0.9639), compared with the target of 0.85. We may expect that

we can decrease the staff in this period to still obtain a feasible solution for an out-of-

sample evaluation. We try to decrease the number of agents in period 12, from 5 to 4,

and perform an out-of-sample evaluation for the model MondayPGNR with this new

staffing level. According to Figure 5.10, the estimated probability that the constraint on

the SL in period 12 is satisfied is 0.8321, i.e., this staffing level is infeasible for the out-

of-sample evaluation. We repeated this process for our ten models, and we conclude that

in these cases, from the solutions obtained by the algorithm CCS3, we cannot decrease

the number of agents in any period to obtain better results.
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Models Violated constraints

MondayPGB

MondayPGNR P[S34(2,y)≥ 0.95] = 0.8431
MondayPG P[S5(2,y)≥ 0.95] = 0.8466; P[S34(2,y)≥ 0.95] = 0.8444
MondayPWCPB

MondayPWCP P[S27(2,y)≥ 0.95] = 0.8465; P[S43(2,y)≥ 0.95] = 0.8444
ThursdayPGB P[S24(2,y)≥ 0.95] = 0.8315
ThursdayPGNR

ThursdayPG

ThursdayPWCPB P[S45(2,y)≥ 0.95] = 0.8477
ThursdayPWCP P[S25(2,y)≥ 0.95] = 0.8492

Table 5.I – Violated constraints for out-of-sample simulations of the ten models.

5.2.2.4 Analysis of the ten call center models

We remind that in our algorithms, simulation is used to estimate the service level

and average waiting time for a given set of staffing levels. According to this, we can

compute the estimated probabilities that the SL and AWT constraints are satisfied. Each

time running our algorithm to optimize staffing level for a model, a sequence of random

variables is used to perform a simulation. In this context, we evaluate the property of

each model. We do it as follows: we use CCS3 to optimize staffing levels ten times with

ten different sequences of random variables, for each model. The sample size is 1000.

Table 5.II reports the total costs for ten simulation’s times and the standard deviation

of total staffing costs of ten models. According to our observation, we realize that the

eight models of the arrival processes PGB, PGNR, PG, PWCP (on two different days)

have very low standard deviations. It means that these models are reliable over different

samples, i.e. using different sample sequences to optimize the staffing costs for these

models, we obtain staffing levels with similar total costs. However, the models of the

arrival process PWCPB on two different days have the highest standard deviations, about

ten times higher than for other models. It shows the unreliable property in the solution

of these models. The difference of the total costs obtained during the ten optimization

runs, for each model, are very large. For example, for the model MondayPWCPB, for a
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Figure 5.6 – The distribution of the service level in the whole day of the model
MondayPGNR with the staffing level obtained by CCS3.

sample sequence, we obtain the total cost of 370, while for another sample sequence, the

total cost obtained is 421. The different between these costs are too large. We simulate

this model with the staffing level with total cost 370, by using other sequence random

variables, and observe that most chance constraints are violated. There are 38 periods

where the estimated probabilities that the constraints on the SL are less than the target

of 0.85, a result not acceptable. The most plausible explanation is that, for a model with

the arrival process PWCPB, there is a large variance in the call volumes. This model

does not fit the variance equally well for all periods of a day (see Avramidis et al. [2]

and Channouf and L’Ecuyer [13]). To obtain better results for these models, we should

increase the sample size.

5.2.3 A low occupancy call center

5.2.3.1 Parameters

In this section, we will assess the performance of our algorithms to optimize the

staffing level in a call center where the QoS constraints are less demanding and the

occupancy is higher compared with the call center in the previous section. The accept-
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Figure 5.7 – Proportion of the days where the SL constraint is satisfied, for each period,
over 10000 simulated days, for the MondayPGNRmodel, with the staffing level obtained
by CCS3.

able waiting time is 2 minutes, and the target of the SL is 0.8. More specifically, we

choose the parameters as follow: the acceptable waiting times in SL constraints are

τ0 = τp = 120 seconds for all 1 ≤ p ≤ P, the targets of service levels are s0 = sp = 0.8

for all p, the targets for the probabilities that the constraints on the SL are satisfied are

r0 = 0.95 and rp = 0.85 for all p, the acceptable average waiting time in the AWT con-

straints are w0 = wp = 120 seconds, the targets for the probabilities that the constraints

on the AWT are satisfied are v0 = 0.95 and vp = 0.85 for all p.

We still consider ten models which use different arrival processes as in the previous

section, with some changes in targets of the SL and the acceptable waiting times. To

avoid any confusion with the models in Section 5.2.2, we append the mark “*” with their

names, e.g., MondayPWCP∗ denotes the model with nonhomogenous Poisson arrival

process with piecewise constant rate, on Monday, in case the targets of service level are

0.8 and the acceptable waiting times are 120 seconds.
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Figure 5.8 – Proportion of the days where the AWT constraint is satisfied, for each pe-
riod, over 10000 simulated days, for the MondayPGNR model, with the staffing level
obtained by CCS3.

5.2.3.2 Analysis of staffing levels obtained from Erlang C and our algorithms

In all ten models we tried, the number of agents obtained by Erlang C is less or equal

to the number of agents obtained by CCS3, in each period. However, the differences be-

tween these staffing levels obtained by Erlang C and by CCS3 are very small. Now we

assess the quality of the solutions obtain from Erlang C and CCS3 by performing out-of-

sample simulations with 10000 replications. We consider the model MondayPGB∗. Fig-

ure 5.11 shows the staffing levels obtained by Erlang C and by CCS3 for MondayPGB∗.

Note that the sample size is 1000. These staffing levels are different by only one agent in

period 8. Figure 5.12 shows the proportion of the days where the constraint in SL is sat-

isfied, for each period, over 10000 simulated days, of the model MondayPGB∗, with the

staffing level obtained by Erlang C. According to this result, the estimated probability

that the constraint in SL is satisfied, in period 8, is only 0.8199, it is less than the target

of 0.85. It means the staffing level obtained by Erlang C is infeasible for our chance-

constrained problem. Figure 5.13 shows the estimated probability that the constraint on

the SL is satisfied, for each period, of the model MondayPGB∗ with the staffing level
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Figure 5.9 – Proportion of the days where the SL constraint is satisfied, for each period,
over 10000 simulated days, for the MondayPGNRmodel, with the staffing level obtained
by increasing one agent in period 34 from the staffing level obtained by CCS3.

obtained by CCS3. From our observation, the estimated probability that the constraint

on the SL is satisfied in period 8, is much higher than the target of 0.85 (0.9917). As we

observed in this figure, this staffing level is feasible for our problem.

5.2.3.3 Analysis of solutions obtained by CCS3

In this section, we assess the quality of staffing levels obtained from CCS3 for

the ten models. First, we obtain the solutions by using CCS3 to optimize staffings

for our models with the sample size 1000. Then, we perform out-of-sample simula-

tions with 10000 replications for these models with these new staffings. Table 5.III

shows the constraints which are not satisfied in these out-of-sample simulations. There

are eight models where all constraints are satisfied, and only two, MondayPGNR∗ and

ThursdayPWCP∗, where a violated constraint exists. However, the estimated probabil-

ities that the constraints on the SL are satisfied, in these constraints, are very close to our

target of 0.85.

To improve these solutions, we try to increase the number of agents in these periods.
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Figure 5.10 – Proportion of the days where the SL constraint was satisfied, for each
period, over 10000 simulated days, for the MondayPGBNR model, with the staffing
level obtained by decreasing one agent in period 12 from the staffing level obtained by
CCS3.

Figure 5.14 shows the proportion of the days where the SL constraint is satisfied, over

10000 simulated days, for the MondayPGNR∗ model, with the staffing level obtained by

CCS3, and Figure 5.15 shows the proportion of days where the SL constraint is satis-

fied, over 10000 simulated days, for the MondayPGNR∗ model, with the staffing level

obtained by adding one agent in period 43 from the staffing level obtained from CCS3.

According to this Figure, all the constraints are satisfied, the estimated probability that

the constraint on the SL in period 43 is now 0.9736, much higher than 0.85.

We now continue trying to improve the solution of this model. According to Fig-

ure 5.14, the estimated probability that the constraint on the SL in period 8 is highest

(0.9906). Thus, we try to decrease the number of agents in this period, from 3 to 2,

and perform an out-of-sample evaluation with 10000 replications. Figure 5.16 shows the

estimated probability that the constraint on the SL is satisfied, for each period, in this

case. As we saw in this Figure, the estimated probability that the constraint on the SL

in period 8 is satisfied, is 0.8048. It is now less than the target of 0.85, i.e., the new

staffing level is infeasible. Therefore, we cannot decrease any agent in this period. For
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Sample 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean Std (σ )

MondayPGB 423 422 422 423 422 422 419 426 421 420 422 1.7885
MondayPGNR 421 423 422 423 423 421 423 421 424 422 422.3 1.00499
MondayPG 421 420 421 422 421 422 420 421 422 419 420.9 0.9434
MondayPWCPB 421 370 415 414 399 417 387 420 427 402 407.2 16.8392
MondayPWCP 413 414 415 415 413 415 415 413 412 413 413.8 1.077
ThursdayPGB 432 428 433 430 434 430 430 431 428 429 430.5 1.9104
ThursdayPGNR 430 431 433 431 427 430 431 433 431 432 430.9 1.6401
ThursdayPG 433 429 431 429 429 431 429 428 430 432 430.1 1.5133
ThursdayPWCPB 417 421 404 427 426 464 389 399 412 424 418.3 19.3393
ThursdayPWCP 423 424 421 420 421 421 421 423 422 422 421.8 1.1662

Table 5.II – Mean and standard deviation of the staffing costs with the sample size 1000.

Figure 5.11 – Staffing levels obtained by Erlang C and CCS3 of the MondayPGB∗ model.

each of ten models, after obtaining the staffing level by using CCS3, we try to decrease

the number of staffing in each period, but these staffing levels are infeasible. Thus, we

can expect that CCS3 gives good results in these cases.

5.3 A call center with high occupancy

5.3.1 Parameters

In this section, we consider a call center which has higher occupancy. The acceptable

waiting time now is 5 minutes, and the target of the SL is 0.8. More specifically, we

choose the parameters as follow: the acceptable waiting times in the SL constraints are
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Figure 5.12 – Proportion of the days where the SL constraint is satisfied, for each period,
over 10000 simulated days, for the MondayPGB∗ model with the staffing level obtained
by Erlang C.

τ0 = τp = 300 seconds for all 1≤ p≤ P, the targets of service levels are s0 = sp = 0.80

for all p, the targets of the probabilities that the constraints on the SL are satisfied are r0 =

0.95 and rp = 0.85 for all p, the acceptable average waiting time in the AWT constraints

are w0 = wp = 300 seconds, the targets of the probabilities that the constraints on AWT

are satisfied are v0 = 0.95 and vp = 0.85 for all p. We still consider ten models, using

the different arrival processes in the previous sections, with some changes in targets of

SL and acceptable waiting times. To avoid confusion with the models in Section 5.2.2

and Section 5.2.3, we the mark “**” with their names, e.g. MondayPWCP∗∗ denotes

the model with nonhomogenous Poisson arrival process with piecewise constant rate, on

Monday, in case the targets of the SL are 0.8 and the acceptable waiting times are 300

seconds.

5.3.2 Analysis of staffing levels obtained by Erlang C and method CCS3

As we discussed in two previous sections, the number of agents in each period ob-

tained by Erlang C is less or equal the number of agents obtained by CCS3. Nevertheless,
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Figure 5.13 – Proportion of the days where the SL constraint is satisfied, for each period,
over 10000 simulated days, for the MondayPGB∗ model with the staffing level obtained
by CCS3.

in this case with higher acceptable waiting time, the staffing levels obtained by Erlang

C are greater or equal to the staffing levels obtained by CCS3. Figure 5.17 shows the

staffings obtained by Erlang C and by CCS3 for MondayPGB∗∗.

5.3.3 Analysis of the solutions of our algorithms

We use CCS3 to optimize the staffing for our ten models with the sample size 1000.

In order to assess the quality of these solutions, we perform out-of-sample simulations

with 10000 replications with the found staffings. In each model, all constraints are sat-

isfied in the out-of-sample evaluation. For all the models considered in the two previous

sections, we realize that the stage Correction does not change the staffing in any

period. However, for the models in this section, the stage Correction helps reducing

the number of agents in some periods. Figure 5.18 shows the staffing levels obtained by

CCS3 before and after adding the new stage Correction. According to this Figure,

the number of agents in periods 3, 14, 16, 42, 48 are decreased. Now we explain why

the stage Correction changes the result in this case. As we discussed in Section 4.1,

changing the staffing in one period can change the performance (such as service level,
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Models Violated constraints

MondayPGB∗

MondayPGNR∗ P[S43(120,y)≥ 0.8] = 0.848
MondayPG∗

MondayPWCPB∗

MondayPWCP∗

ThursdayPGB∗

ThursdayPGNR∗

ThursdayPG∗

ThursdayPWCPB∗

ThursdayPWCP∗ P[S9(120,y)≥ 0.8] = 0.8412

Table 5.III – The violated constraints for the out-of-sample simulation of the ten models
with low occupancy.

etc.) in other periods as well. In the case of an emergency call center, since it has low

occupancy (the acceptable waiting time is only 2 seconds or 2 minutes), there is rarely

a queue in the system (the agents are not very busy), so this effect is very small. How-

ever, in this case, the occupancy is high (the acceptable waiting time is 300 seconds), the

dependence between periods is larger. So, when we decrease or increase the staffings

in a period, it has impact on the performance in other periods. We remind that in our

algorithm CCS3, we change (increase and decrease) the number of agents in several pe-

riods at the same time, i.e., in each iteration, we will increase or decrease the number

of agents in all selected periods (where increase is required or decrease appears to be

acceptable) simultaneously. Now we show a specific example. Suppose that in the cur-

rent iteration, we obtain a staffing level which does not satisfy the constraints in SL in

periods 2 and 3. Then, in the next iteration, the number of agents in both these periods is

increased. However, when increasing the staffings in period 2, not only the constraint in

period 2, but also the constraint in period 3, is satisfied. However, CCS3 still increases

the staffs in period 3, possibly overestimating the staffing levels.

In order to assess the quality of the result for the model MondayPGB∗∗, we perform

an out-of-sample evaluation with 10000 replications. Figure 5.19 shows the proportion

of the days where the SL constraint in each period was satisfied, over 10000 simulated
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Figure 5.14 – Proportion of the days where the SL constraint is satisfied, over 10000 sim-
ulated days, for the MondayPGNR∗ model, with the staffing level obtained from CCS3.

days, for the MondayPGB∗∗ model, with this new staffing level. According to this Fig-

ure, the estimated probabilities that the SL constraints are satisfied in all periods are

higher than the target of 0.85. As we observed in Figure 5.19, the estimated probability

in period 11 is still very high (0.998). We may expect that we can get a better result,

by decreasing the staffs in period 11. However, after we reduce one agent in period 11,

the estimated probability that the SL constraint in this period is satisfied, is 0.7559 (see

Figure 5.20), less than the target of 0.85. We did the same process for all our models, and

we conclude that, in all models we tried, by using our algorithms, we get good results,

and we cannot decrease any agent in any period to obtain better results.

5.4 A call center with larger arrival rate

5.4.1 Parameters

In the previous sections, we have assessed the performance of our algorithms by

using data from an emergency call center 911 in Montreal, in different cases with the

occupancy is very low (the AWT is 2 seconds), low (the AWT is 2 minutes) and high (the

AWT is 5 minutes). When performing out-of-sample simulations these models using the
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Figure 5.15 – Proportion of the days where the SL constraint is satisfied, over 10000 sim-
ulated days, for the MondayPGNR∗ model, with the staffing level obtained by increasing
one agent in period 43 from the staffing level obtained by CCS3.

staffings obtained by our algorithms, with the much higher sample sizes, most constraints

are satisfied. The difference between the estimated probabilities and the targets, in all

violated constraints, are very small. Moreover, we cannot improve these staffings by

decreasing any agent in any period. Therefore, the three algorithms give good results

in these cases. All these models used in the previous sections have low traffic. In this

section, we would like to assess the quality of the three algorithms in a call center with

higher traffic. The arrival rate in each period is ten times higher, compared to the call

center in 911. We consider eight models which use different arrival processes (PGB, PG,

PGNR, PWCP), on Monday and Thursday. The acceptable waiting time is 2 minutes,

and the target of the SL is 0.8. More specifically, the acceptable waiting times in the SL

constraints are τ0 = τp = 120 seconds for all 1≤ p≤ P, the targets of service levels are

s0 = sp = 0.8 for all p, the targets for the probabilities that the constraints on the SL are

satisfied are r0 = 0.95 and rp = 0.85 for all p, the acceptable average waiting time in the

AWT constraints is w0 = wp = 120 seconds for all p, the targets for the probabilities that

the constraints on the AWT are satisfied are v0 = 0.95 and vp = 0.85 for all p.

To avoid confusion with the models in Section 5.2.2, we append the mark “2” with
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Figure 5.16 – Proportion of the days where the SL constraint is satisfied, over 10000
simulated days, for the MondayPGBNR∗ model, with the staffing level obtained by de-
creasing one agent in period 8 from the staffing level obtained by CCS3.

their names, e.g., MondayPWCP2 denotes the model with nonhomogenous Poisson ar-

rival process and piecewise constant rate, on Monday, the targets of the SL are 0.8 and

the acceptable waiting times are 120 seconds, the arrival rate in each period is ten time

higher, compared with the call center 911.

5.4.2 Analysis of staffings obtained by Erlang C and CCS3

In each model we tried, Erlang C gives a staffing level which is less than the staffing

level obtained from our method CCS3. Figure 5.21 shows the staffing level obtained by

Erlang C and by our method CCS3 with the sample size 1000, for the model MondayPGB2.

According to our observations, the differences between the staffings obtained by Erlang

C and CCS3 are very small. Therefore, when we use the three algorithms to optimize

staffing levels, initializing the staffings by using the Erlang C formula will help reducing

the CPU time.



67

Figure 5.17 – Staffing levels obtained by Erlang C and CCS3 of the MondayPGB∗∗

model.

Figure 5.18 – Staffing levels obtained from CCS3 before and after adding stage
Correction of MondayPGB∗∗.

5.4.3 Analysis of the solutions of our algorithms

In this section, we assess the quality of staffing levels obtained from CCS3 for the

eight models. Fist, we obtain the solutions by using CCS3 to optimize staffings for our

eight models with the sample size 1000. Then, we perform out-of-sample simulations

with 10000 replications for these models with the new staffings. Table 5.IV shows the

constraints which are not satisfied in these out-of-sample evaluations.

As we observed, for all models we tried, there are few violated constraints. However,

the estimated probabilities in these constraints are very close to the targets of 0.95 for
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Figure 5.19 – Proportion of the days where the SL constraint is satisfied, over 10000
simulated days, for the MondayPGB∗∗ model, with the staffing level obtained by CCS3.

the whole day and 0.85 for each period. To improve the quality of these solutions, we

increase the staffing in the periods in which a constraint is not satisfied. Now, we try

to improve the solutions, by decreasing the number of agents in some periods. Figure

5.22 shows the proportion of the days where the SL constraint is satisfied, and Figure

5.23 shows the distribution of the SL in the whole day, over 10000 simulated days,

for the MondayPWCP2 model, with the staffing level obtained by CCS3. According to

Figure 5.22, the estimated probability that the constraint in SL in period 46 is very high

(0.9545). Thus, we try to decrease the number of agents in this period, from 35 to 34,

and perform an out-of-sample evaluation. Figure 5.24 shows the estimated probability

that the constraint on the SL is satisfied, for each period, in this case. As we saw in

this figure, the estimated probabilities that the constraint in SL in period 46 and 47 are

satisfied, are decreased. The constraint on the SL in period 46 is still satisfied, the

estimated probability is now decreased to 0.91. However, the estimated probability that

the constraint on the SL in period 47 is now 0.8355, i.e., this constraint is not satisfied.

When the staffing in period 46 is decreased, many arrival calls in this period are not

served, and they have to wait in a queue, so the waiting in the next period tends to
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Figure 5.20 – Proportion of the days where the SL constraint is satisfied, over 10000 sim-
ulated days, for the MondayPGB∗∗ model, with the staffing level obtained by decreasing
one agent in period 11 from the staffing level obtained by CCS3.

increase. It means that the service level in period 47 depends on the staffing level in

the previous period. Thus, the estimated probability that the constraint on the SL in

period 47 is decreased to less than the target 0.85. In the examples which we consider

in the previous sections, when we decrease the staffings in a period from the staffings

obtained by our algorithms, then this does not effect to another period much. However,

in this case, when we decrease the number of agents in a period, the performance in other

periods are effected as well. When the arrival rate in each period is high, the dependence

between periods is large. In the eight models considered in this section, from the results

obtained by CCS3, when we decrease the number of staffs in a period, the performance

in other periods are changed as well, and the constraints in some periods can be violated.

5.5 Summary

In this section, we have analysed the performance of our three algorithms in several

cases: for an emergency call center with very low occupancy, low occupancy and high
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Figure 5.21 – Staffing levels obtained from Erlang C and algorithms for 1000 replica-
tions of MondayPGB2.

Models Violated constraints

MondayPGB2 P[S0(120,y)≥ 0.8] = 0.9453
MondayPGNR2

MondayPG2 P[S47(120,y)≥ 0.8] = 0.8451
MondayPWCP2 P[S29(120,y)≥ 0.8] = 0.8430; P[S30(120,y)≥ 0.8] = 0.8432; P[S34(120,y)≥ 0.8] = 0.8422
ThursdayPGB2 P[S0(120,y)≥ 0.8] = 0.92
ThursdayPGNR2 P[S0(120,y)≥ 0.8] = 0.9319; P[S9(120,y)≥ 0.8] = 0.8432
ThursdayPG2 P[S46(120,y)≥ 0.8] = 0.8475
ThursdayPWCP2 P[S19(120,y)≥ 0.8] = 0.8455; P[S25(120,y)≥ 0.8] = 0.8468

Table 5.IV – The constraints which are not satisfied for the out-of-sample simulation of
the eight models.

occupancy; and for a call center with higher arrival rates. We compare the quality of

solutions obtained by our algorithms and by the Erlang C formula. In all cases in our

experiment, our algorithms always give better results than Erlang C. Moreover, we assess

the quality of solutions of our algorithms by performing out-of-sample evaluations. We

also analyse the dependence between periods in the models with high occupancy and the

models with heavy traffic. In conclusion, our algorithms give good results in the models

that we tried.
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Figure 5.22 – Proportion of the days where the SL constraint is satisfied, for each pe-
riod, over 10000 simulated days, for the MondayPWCP2 model, with the staffing level
obtained by CCS3.

Figure 5.23 – The distribution of the service level in the whole day of the model
MondayPWCP2 with the staffing level obtained by CCS3.
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Figure 5.24 – Proportion of the days where the SL constraint is satisfied, over 10000 sim-
ulated days, for the MondayPWCP2 model, with the staffing level obtained by decreasing
one agent in period 46 from the staffing level obtained by CCS3.



CHAPTER 6

CONCLUSIONS AND FURTHER RESEARCH PERSPECTIVES

In this final chapter, we review the research contributions of this dissertation and

discuss directions for future research.

6.1 Conclusions

In this thesis, we have modelled the chance-constrained staffing problem which re-

quires that the QoS constraints are met with high probability with respect to the uncer-

tainty in the demand rate. We were interested in constraints on the service level and

the daily average waiting time. The QoS estimates are based on simulation with time-

varying and stochastic arrivals rate. We defined the sample average approximation of

this problem and studied the convergence of the optimal solution of the sample prob-

lem to that of the original problem. We showed that we can get an optimal solution for

the original problem by solving the sample problem if we choose a large sample size.

Moreover, we showed that the probability that the optimal solution of the sample prob-

lem is an optimal solution of the original problem, approaches 1 exponentially fast as

we increase the sample size. The method of combining simulation and optimization has

potential applications in solving the staffing problem. In this thesis, we proposed three

simulation-based optimization algorithms to solve our chance-constrained staffing prob-

lem with multiple call types, one agent group and multiple periods. All of them are based

on the same idea with some variations in changing staff in periods. In this context, we

introduced two ways to initialize the staffing levels: by using the Erlang C formula, or

by setting the staff number equal to 0 for all periods. In algorithm CCS1, we increase or

decrease the number of agents in a single period at most one unit at each iteration, while

in method CCS2, in each iteration, the number of agents are increased or decreased by

at most one unit, but in all required periods simultaneously. To improve this method, we

use bisection to increase or decrease the number of staffing in algorithm CCS3.
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We made several observations about the performance of these methods when apply-

ing them in different situations. First, we considered call center models with different

arrival processes in case of low occupancy. These models are obtained from data of an

emergency call center 911 in Montreal. We compared the performance of the three al-

gorithms in several cases: initial staffing obtained by using the Erlang C formula and

initial staffing equal to 0 for all periods. In each situation, the difference of the solutions

of these methods is very small if we use the same sequence of random draws. The CPU

time of the three algorithms are reduced when we use Erlang C to initialize the staffings.

However, the computational times of these algorithms vary wildly. Method CCS1 is

always the slowest in all cases that we tried. To assess the quality of the solutions, we

performed out-of-sample evaluations with much larger sample sizes. In this case, our

methods gave good staffing levels which satisfy most constraints, and we could not de-

crease any agent in any period to get better results. The quality of the found solution

tends to be better with larger sample sizes. We also analysed our call center models by

using our algorithms. We conclude that the call center models which uses a Poisson

process with piecewise constant rate approximation with common daily business factor

(PWCPB) give large variances in the call volume, so the solutions to optimize staffings

in these models have large standard deviations. To investigate the quality of the methods

in other cases, we consider some call center models where the occupancy is higher and

the QoS constraints are less demanding. In the case where the acceptable waiting time is

2 minutes or 5 minutes, our methods still give good results. In all models, the solutions

satisfy most constraints. For the models with acceptable waiting times of 2 seconds or

2 minutes, we observe that the last stage Correction does not change the number

of agents in any period. On the other hand, when we increase the acceptable time to 5

minutes, our algorithms without the stage Correction overestimates the staffing lev-

els. It can be explained by the fact that in these models, the SL and AWT in one period

can depend on the number of agents in other periods, either before or after. The stage

Correction helps improving the quality of the solutions. This stage helps reducing

the agents in several periods under the condition that all constraints are still satisfied.

After adding this stage, our algorithms give good results in all models we tried, i.e., in
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the out-of-sample evaluation, most constraints are satisfied, and we cannot decrease any

agent in any period to obtain better results.

After that, we consider another call center in which the arrival rate in each period is

ten times higher, compared with the call center 911. When we perform out-of-sample

simulations, in all models in this case, most constraints are satisfied. Then, we try to

decrease the staff in a period, and observe the the SL changes not only for this period,

but also for contiguous periods. The estimated probability on the SL in some periods

decrease to be less than the target. The result is that, in a call center with heavy traffic

of arrival calls, the dependence of performance between periods is large. In conclusion,

our algorithms give good results in these models that we tried.

6.2 Further research perspectives

In order to extend the idea in this thesis, we will continue investigating the staffing

and scheduling problem in call centers with chance constraints. As far as we discussed

in this thesis, although the three algorithms we proposed are very easy to implement

and give good results in the models that we tried, they solve the staffing problem only

for a special case where all agents can answer all types of calls. Therefore, we would

like to apply other methods to solve the chance constraints staffing problem. In Chapter

1, we have mentioned various algorithms to solve the staffing problems subject to the

constraints in terms of infinite horizon service levels. One of them is the cutting plane

method (Atlason et al. [1], Cez̧ik and L’Ecuyer [12], etc.) that applies to minimization

problems where both the objective function and feasible region (of the continuous relax-

ation of the integer problem) need to be convex. Atlason et al. [1] use this method to

optimize the schedule of agents in a single-call-type and single-skill call center. Cez̧ik

and L’Ecuyer [12] extend this method to the multiskill setting. We think about apply-

ing this cutting plane method for our chance-constrained problem in a single skill call

center. The cost in our problem is linear and we will assume that the probability that

the constraint on the service level, or average waiting time, is satisfied, for each period,

is a concave function. We relax the nonlinear probability constraints of (S2) to convert
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the chance-constrained staffing problem into a linear integer problem. We then solve the

linear integer problem and run a simulation with the staffing levels obtained from the

solution. If the probabilities meet the constraints as approximated by the sample average

then we stop with an optimal solution to (S2). If a probability constraint is violated then

we add a linear constraint to the relaxed problem that eliminates the current solution but

does not exclude any feasible solution to the sample problem. The procedure is then

repeated. Similar to the cutting plane method to solve the staffing problem in Atlason

et al. [1], the cutting plane method for chance-constrained staffing problems uses simula-

tions to generate the cuts and evaluate the function values instead of having an algebraic

form for the function and using analytically determined gradients to generate the cuts.

We would expect that this is an interesting direction for our future research. Hopefully,

this cutting plane method would solve the staffing problem with a single call type very

quickly and may return good results, and we can extend this method for the schedule

problem for call centers with chance constraints. However, it would be more difficult to

implement than our three methods discussed in this thesis. We may expect that by using

this method, we can also solve the chance-constrained staffing and schedule problems

for multiskill call centers.
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