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Summary

The Randomized Quasi Monte Carlo method (RQMC) is often used to estimate an inte-
gral over the s-dimensional unit cube (0,1)s. This integral is interpreted as the mathematical
expectation of some random variable X. It is well known that RQMC estimators can, under
some conditions, converge at a faster rate than crude Monte Carlo estimators of the integral.

For Markov chains simulation on a large number of steps by using RQMC, little exists.
The most promising approach proposed to date is the array-RQMC method. This method
simulates n copies of the chain in parallel using a set of independent RQMC points at each
step, and sorts the chains using a specific sorting function after each step. This method has
given empirically significant results in terms of convergence rates on a few examples (i.e. a
much better convergence rate than that observed with Monte Carlo standard). However, the
convergence rates observed empirically have not yet been theoretically proven.

In the first part of this thesis, we examine how RQMC can improve the convergence rate
when estimating not only X’s expectation, but also its distribution. In the second part, we
examine how RQMC can be used for Markov chains simulation on a large number of steps
using the array-RQMC method.

Our thesis contains four articles. In the first article, we study the effectiveness of replacing
Monte Carlo (MC) by either randomized quasi Monte Carlo (RQMC) or stratification to show
how they can be applied to make samples more representative. Furthermore, we show how
these methods can help to reduce the integrated variance (IV) and the mean integrated square
error (MISE) for the kernel density estimators (KDEs). We provide both theoretical and
empirical results on the convergence rates and show that the RQMC and stratified sampling
estimators can achieve significant IV and MISE reductions with even faster convergence rates
compared to MC in some situations, while leaving the bias unchanged. In the second article,
we examine the combination of RQMC with a conditional Monte Carlo approach to density
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estimation. This approach is defined by taking the stochastic derivative of a conditional
CDF of X and provides a large improvement when applied.

Using array-RQMC in order to price an Asian option under an ordinary geometric Brow-
nian motion process with fixed volatility has already been attempted in the past and a
convergence rate of O(n−2) was observed for the variance. In the third article, we study the
pricing of Asian options when the underlying process has stochastic volatility. More specifi-
cally, we examine the variance-gamma, Heston, and Ornstein-Uhlenbeck stochastic volatility
models. We show how applying the array-RQMC method for pricing Asian and European
options can significantly reduce the variance.

An efficient sample path algorithm called (fixed-step) τ -leaping can be used to simulate
stochastic biological systems as well as well-stirred chemical reaction systems. The crude
Monte Carlo (MC) method is a feasible approach when it comes to simulating these sample
paths. Simulating the Markov chain for fixed-step τ -leaping via ordinary randomized quasi-
Monte Carlo (RQMC) has already been explored empirically and, when the dimension of the
problem increased, the convergence rate of the variance was realigned with those observed
in several numerical experiments using MC. In the last article, we study the combination of
array-RQMC with this algorithm and empirically demonstrate that array-RQMC provides a
significant reduction in the variance compared to the standard MC algorithm.

Key words: simulation, quasi-Monte Carlo, Markov chain, variance reduction, density
estimation.
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Résumé

La méthode Quasi-Monte Carlo Randomisé (RQMC) est souvent utilisée pour estimer
une intégrale sur le cube unitaire (0,1)s de dimension s. Cette intégrale est interprétée comme
l’espérance mathématique d’une variable aléatoire X. Il est bien connu que, sous certaines
conditions, les estimateurs d’intégrales par RQMC peuvent converger plus rapidement que
les estimateurs par Monte Carlo.

Pour la simulation de chaînes de Markov sur un grand nombre d’étapes en utilisant
RQMC, il existe peu de résultats. L’approche la plus prometteuse proposée à ce jour est la
méthode array-RQMC. Cette méthode simule, en parallèle, n copies de la chaîne en utilisant
un ensemble de points RQMC aléatoires et indépendants à chaque étape et trie ces chaînes
en utilisant une fonction de tri spécifique après chaque étape. Cette méthode a donné,
de manière empirique, des résultats significatifs sur quelques exemples (soit, un taux de
convergence bien meilleur que celui observé avec Monte Carlo standard). Par contre, les
taux de convergence observés empiriquement n’ont pas encore été prouvés théoriquement.

Dans la première partie de cette thèse, nous examinons comment RQMC peut améliorer,
non seulement, le taux de convergence lors de l’estimation de l’espérance de X mais aussi lors
de l’estimation de sa densité. Dans la deuxième partie, nous examinons comment RQMC
peut être utilisé pour la simulation de chaînes de Markov sur un grand nombre d’étapes à
l’aide de la méthode array-RQMC.

Notre thèse contient quatre articles. Dans le premier article, nous étudions l’efficacité
gagnée en remplaçant Monte Carlo (MC) par les méthodes de Quasi-Monte Carlo Randomisé
(RQMC) ainsi que celle de la stratification. Nous allons ensuite montrer comment ces méth-
odes peuvent être utilisées pour rendre un échantillon plus représentatif. De plus, nous allons
montrer comment ces méthodes peuvent aider à réduire la variance intégrée (IV) et l’erreur
quadratique moyenne intégrée (MISE) pour les estimateurs de densité par noyau (KDE).
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Nous fournissons des résultats théoriques et empiriques sur les taux de convergence et nous
montrons que les estimateurs par RQMC et par stratification peuvent atteindre des réduc-
tions significatives en IV et MISE ainsi que des taux de convergence encore plus rapides que
MC pour certaines situations, tout en laissant le biais inchangé. Dans le deuxième article,
nous examinons la combinaison de RQMC avec une approche Monte Carlo conditionnelle
pour l’estimation de la densité. Cette approche est définie en prenant la dérivée stochastique
d’une CDF conditionnelle de X et offre une grande amélioration lorsqu’elle est appliquée.

L’utilisation de la méthode array-RQMC pour évaluer une option asiatique sous un pro-
cessus ordinaire de mouvement brownien géométrique avec une volatilité fixe a déjà été tentée
dans le passé et un taux de convergence de O(n−2) a été observé pour la variance. Dans le
troisième article, nous étudions le prix des options asiatiques lorsque le processus sous-jacent
présente une volatilité stochastique. Plus spécifiquement, nous examinons les modèles de
volatilité stochastique variance-gamma, Heston ainsi que Ornstein-Uhlenbeck. Nous mon-
trons comment l’application de la méthode array-RQMC pour la détermination du prix des
options asiatiques et européennes peut réduire considérablement la variance.

L’algorithme τ -leaping est utilisé dans la simulation des systèmes biologiques stochas-
tiques. La méthode Monte Carlo (MC) est une approche possible pour la simulation de ces
systèmes. Simuler la chaîne de Markov pour une discrétisation du temps de longueur τ via
la méthode quasi-Monte Carlo randomisé (RQMC) a déjà été explorée empiriquement dans
plusieurs expériences numériques et les taux de convergence observés pour la variance, lorsque
la dimension augmente, s’alignent avec ceux observés avec MC. Dans le dernier article, nous
étudions la combinaison de array-RQMC avec cet algorithme et démontrons empiriquement
que array-RQMC fournit une réduction significative de la variance par rapport à la méthode
de MC standard.

Mots-clés: simulation, quasi-Monte Carlo, chaînes de Markov, réduction de variance,
estimation de la densité.

viii



Contents

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxiii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

Chapter 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. MC, QMC, RQMC, and Array-RQMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1. Density estimation by RQMC methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2. RQMC for simulation of Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3. Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2. Background on MC, QMC and Randomized QMC . . . . . . . . . . 15

2.1. Classical Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. Variance Reduction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1. Stratified Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2. Conditional Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3. Quasi-Monte Carlo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1. Discrepancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

ix



2.3.2. Construction of Point Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4. Randomized Quasi-Monte Carlo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1. Randomizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2. Baker’s transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.3. Variance Decomposition and Effective Dimension. . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5. The Array-RQMC method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1. Markov Chain Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2. Array-RQMC method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.3. Array-RQMC algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5.4. Sorting Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.5. Convergence results and proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.5.1. Variance bound for stratified sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 3. Article 1: Density Estimation by Randomized Quasi-Monte

Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2. Kernel density estimators with MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3. Error and variance bounds for RQMC integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4. Bounding the convergence rate of the AIV for a KDE with RQMC . . . . . . . . . . . 43

3.5. Stratified sampling of [0,1)s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6. Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.1. Experimental setting and regression models for the local behavior of the IV,

ISB, and MISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6.2. A normalized sum of standard normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6.3. Displacement of a cantilevel beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

x



3.6.4. A weighted sum of lognormals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Chapter 4. Article 2: Monte Carlo and Quasi-Monte Carlo Density Estimation

via Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2. Model and conditional density estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1. Density estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.2. Conditioning and the stochastic derivative as an unbiased density estimator 74
4.2.3. Small examples to provide insight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.4. Convex combination of conditional density estimators . . . . . . . . . . . . . . . . . . . . . 80
4.2.5. A GLR density estimator (GLRDE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3. Combining RQMC with the CMC density estimator . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4. Examples and numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.1. Experimental setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.2. A sum of normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.3. Displacement of a cantilever beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.4. Buckling strength of a steel plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.5. A stochastic activity network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4.6. Density of the failure time of a system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.7. Density of waiting times in a single queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4.7.1. Model with independent days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.4.7.2. Steady-state model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.7.3. The GLRDE estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.7.4. Numerical results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xi



4.4.8. A change of variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.4.9. A function of a multivariate normal vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.4.10. Estimating a quantile with a confidence interval . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Chapter 5. Article 3: Array-RQMC for option pricing under stochastic

volatility models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2. Background: Markov Chain Model, RQMC, and Array-RQMC . . . . . . . . . . . . . . . 118

5.3. Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4. Option Pricing Under A Varaince-Gamma Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5. Option Pricing Under The Heston Volatility Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6. Option Pricing Under The Ornstein-Uhlenbeck Volatility Model . . . . . . . . . . . . . . 130

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Chapter 6. Article 4: Variance Reduction with Array-RQMC for Tau-

Leaping Simulation of Stochastic Biological and Chemical

Reaction Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.2. The CTMC Model and the τ -Leaping Algorithm for Reaction Networks . . . . . 140

6.3. Array-RQMC to Simulate the DTMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xii



6.3.1. The Array-RQMC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3.2. Sorting Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3.3. RQMC Point Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.4. Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.4.1. Reversible isomerization system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.4.2. Schlögl system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.4.3. The cyclic adenosine monophosphate activation of protein kinase A model 155

6.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Chapter 7. Conclusion and Future Research Perspectives . . . . . . . . . . . . . . . . . 161

7.1. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.2. Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Appendix A. Supplement to Chapter 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-i

A.1. A normalized sum of standard normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-i

A.2. Displacement of a cantilevel beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-iv

A.3. A weighted sum of lognormals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-iv

A.4. Detailed Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-vi

Appendix B. Supplement to Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-i

B.1. Variance Gamma model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-i

B.2. Heston volatility model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-i

B.3. Ornstein-Uhlenbeck volatility model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-ii

Appendix C. Supplement to chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-i

xiii



C.1. Linear Birth-Death Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-i

C.2. Enzyme kinetic reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-ii

C.3. Mitogen activated protein kinase cascade model . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C-iii

xiv



List of Tables

3.1 Parameter estimates for the KDE, for a sum of normals, over [−2,2]. . . . . . . . . . . . . 56

3.2 Parameter estimates for the KDE under Sobol’+LMS, for a weighted sum of
normals with aj = 2−j. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Experimental results for the KDE, for the displacement of a cantilever beam, over
the interval [0.407,1.515]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Experimental results for the density estimation of the option payoff over the
interval [0, 27.13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Values of ν̂ and e19 for a CDE, and a convex combination of CDEs, a GLRDE,
and a KDE, for a sum of d = k normals with aj = 1, over [−2,2]. . . . . . . . . . . . . . . . . 89

4.2 Values of ν̂ and e19 with a CDE for selected choices of G−k, for a linear combination
of d = 11 normals with a2

j = 21−j. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Values of ν̂ and e19 with a CDE for each choice of G−k, for the best convex
combination, for the GLRDE, and for the KDE, for the cantilever beam model. . 92

4.4 Distribution of each parameter for the buckling strength model. . . . . . . . . . . . . . . . . . 94

4.5 Values of ν̂ and e19 with a CDE for G−5, G−6, their combination, GLRDE, and
the KDE, for the buckling strength model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Values of ν̂ and e19 with the CDE and KDE, for the SAN example. . . . . . . . . . . . . 98

4.7 Values of ν̂ and e19 with the CDE, for the network reliability example. . . . . . . . . . 100

4.8 Values of ν̂ and e19 for the single queue example, finite-horizon case. . . . . . . . . . . . . 106

4.9 Values of ν̂ and e19 for the single queue example, steady-state case. . . . . . . . . . . . . . 106

4.10 Values of ν̂ and e19 for the Asian option, with sequential and bridge CDE
constructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

xv



5.1 Regression slopes β̂ for log2 Var[µ̂arqmc
n ] vs log2(n), and VRF compared with MC

for n = 220, denoted VRF20, for the Asian option under the VG model . . . . . . . . . 125

5.2 Regression slopes β̂ for log2 Var[µ̂arqmc
n ] vs log2(n), and VRF compared with MC

for n = 220, denoted VRF20, for the Asian option under the Heston model. . . . . . 128

5.3 Regression slopes β̂ for log2 Var[µ̂arqmc
n ] vs log2(n), and VRF compared with MC

for n = 220, denoted VRF20, for the European and Asian options under the
Ornstein-Uhlenbeck model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.1 Estimated rates β̂, VRF19, and EIF19, for the reversible isomerization example,
for various choices of (T,s,τ). MC refers to ordinary MC, RQMC is classical
RQMC with Sobol’ points and LMS randomization, and the other four rows are
for Array-RQMC with different RQMC point sets. "MC Var" is Var[g(Xs)], the
variance per run with MC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.2 Estimated variance rates β̂, EIF19 and VRF19 for the Schlögl system, with various
types of sorts for Array-RQMC.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3 Estimated rates β̂, VRF19, and EIF19 for PKA with T = 0.05, s = 256.. . . . . . . . . 157

6.4 Estimated rates β̂, VRF19, and EIF19 for PKAr with T = 0.05, s = 256. . . . . . . . . 157

A.1 Parameter estimates for the histogram estimator, for a sum of normals, over
(−2,2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-ii

A.2 Parameter estimates for the Histogram under Sobol’+LMS, for a weighted sum of
normals with aj = 2−j over [−2,2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-iii

A.3 Experimental results for the density estimation of the displacement of a cantilever
beam, with a histogram, over the interval (0.407,1.515). . . . . . . . . . . . . . . . . . . . . . . . . . A-v

A.4 Experimental results for the density estimation of the option payoff, with a
histogram, over the interval (0,27.13). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-v

A.5 Parameter estimates for the histogram estimator, for a sum of normals, over
(−2,2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-vii

A.6 Parameter estimates for the KDE, for a sum of normals, over (−2,2).. . . . . . . . . . . .A-viii

xvi



A.7 Parameter estimates for the histogram, for a weighted sum of normals with
aj = 2−j. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-ix

A.8 Parameter estimates for the KDE, for a weighted sum of normals with aj = 2−j. A-x

A.9 Experimental results for the density estimation of the displacement of a cantilever
beam, over the interval [0.407,1.515]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-x

A.10 Experimental results for the density estimation of the option payoff over the
interval (0,27.13) with lattice rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-xi

A.11 Experimental results for the density estimation of the option payoff over the
interval (0,27.13) with lattice rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-xi

B.1 Regression slopes β̂ and VRF20, c=8 (left) and c=16 (right), for BGSS , BGBS,
and DGBS, for the Asian option under a variance gamma process. . . . . . . . . . . . . . B-i

B.2 Regression slopes β̂ and VRF20, for the Asian option under the Heston model by
using the RQMC method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B-ii

B.3 Regression slopes β̂ and VRF20, for the Asian option under the Ornstein model. B-ii

C.1 Regression slopes for log2(n) Var[µ̂arqmc
n ] vs log2 n, VFR for RQMC vs MC for

m = 100, n = 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-ii

C.2 Enzyme kinetic reaction, E : Estimated variance rates β̂ and VRF20 withm = 100
and n = 220. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C-iii

C.3 Enzyme kinetic reaction, P : Estimated variance rates β̂ and VRF20 with m = 100
and n = 220. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C-iv

C.4 MAPK cascade model, MAPK: Estimated variance rates β̂ for n = 213, . . . ,220

and VRF20 with m = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C-v

C.5 MAPK cascade model, MAPKpp: Estimated variance rates β̂ for n = 213, . . . ,220

and VRF20 with m = 100.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C-vi

C.6 MAPK cascade model, MAPKPP−P: Estimated variance rates β̂ for n = 213, . . . ,220

and VRF20 with m = 100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .C-vi

xvii





List of Figures

3.1 log2(IV) for the KDE with Sobol’+NUS for s = 1 (left) and s = 20 (right). . . . . . . 57

3.2 Estimated β, δ, and e19 with MC, Stratification, Sobol’+LMS, and Sobol’+NUS. 57

3.3 Estimated density of X̃, the relative displacement of a cantilever beam. . . . . . . . . . 60

3.4 Estimated MISE (left) and IV (right) as a function of n for h = 2−6, for the
cantilever example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Estimated density of the option payoff X −K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Estimated MISE as a function of n (left) and estimated IV as a function of n for
h = 1/2 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Exact density of X for the model in Example 4.2.2 with ε = 3/4 (left) and ε = 1/16
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Five realizations of the density conditional on G−k (blue), their average (red), and
the true density (thick black) for k = 1 (left), k = 2 (middle), and k = 3 (right),
for the cantilever example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 The CDE under MC (red), under RQMC (green) and the true density (black,
dashed) for G−1 with n = 210 (left) and for G−2 with n = 216 (right), for the
cantilever example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 MISE vs n in log-log scale for the G = G−5 (left) and G = G−6 (right) for the
buckling strength model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 A stochastic activity network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 MISE vs n in log-log scale, for the SAN example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.7 Density (left) and log IV as a function of log n (right) for the network failure time.101

xix



4.8 Estimated density (left) and log IV as a function of log n (right) for the single
queue over a finite-horizon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.9 Estimated density (left) and log IV as a function of log n (right) for the single
queue in steady-state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.10 Estimated density (left) and log IV as a function of log n (left) for the Asian
option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.11 Five realizations of the density estimator (blue), their average (red), and the true
density (thick black) for the sequential CDE (left) and the bridge CDE (right),
for the Asian option example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 Plots of empirical log2 Var[µ̂arqmc
n ] vs log2(n) for various sorts and point sets, based

on m = 100 independent replications. Above: with split sort (Left) and batch sort
(right) and Below: with Hilbert sort (Left) and linear map sort (right).. . . . . . . . . . 126

5.2 Plots of empirical log2 Var[µ̂arqmc
n ] vs log2(n) for various sorts and point sets, based

on m = 100 independent replications, for the Heston model. Asian option (above)
and European option (below), with split sort (left), batch sort (middle), and
Hilbert sort (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1 Estimated Var[µ̂n] as a function of n, in log-log scale, for the reversible isomerization
system, with T = 1.6 and s = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.2 Empirical variance of the sorting methods vs n in a log-log scale, T=4, s=128,
for the OSLAIF sort and various point sets (left) and for various sorts with
Sobol+LMS (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.3 The mean with n = 219 (left) and the trajectories of X1(t) for n = 16 chains for
t ≤ 32 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.1 Estimated β, δ, and e19 (= − log2(MISE) for n = 219) for the histogram over
(−2,2), with Monte Carlo, stratification, Sobol’+LMS, and Sobol’+NUS. . . . . . . . .A-ii

xx



A.2 Estimated MISE as a function of n for the cantilever example for the histogram
(left) and Estimated IV as a function of n for fixed h; we took h = 2−6 = 1/64
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-v

A.3 Estimated MISE as a function of n for the option payoff example for the histogram
(left) and estimated IV as a function of n for h = 1/2 for the histogram (right). .A-vi

C.1 Estimated Variance as a function of n for the Linear birth-deat hprocess. . . . . . . . .C-ii

xxi





List of Abbreviations

AIV Asymptotic Integrated Variance
AISB Asymptotic Integrated Square Bias
AMISE Asymptotic Mean Integrated Square Error
DTMC Discrete Time Markov Chain
GMVT Generalized Mean Value Theorem
GSS Gamma Sequential Sampling
i.i.d Independent and identically distributed
IV Integrated Variance
ISB Integrated Square Bias
KDE Kernel Density Estimator
MC Monte Carlo
MISE Mean Integrated Square Error
NUS Nested Uniform Scramble
QMC Quasi Monte Carlo
RQMC Randomized Quasi Monte Carlo
Var Variance
VG Variance Gamma
VRF Variance Reduction Factor

xxiii





Acknowledgements

I would like to express my sincere gratitude to my advisor Prof. Pierre L’Ecuyer for the
continuous support of my Ph.D study and research, for his patience, motivation, enthusiasm,
immense knowledge and for supporting me financially during my studies. His guidance helped
me all along research and writing of this thesis. I could not have imagined having a better
advisor and mentor for my Ph.D study.

This work has been supported by an IVADO Research Grant, an NSERC-Canada Discov-
ery Grant, a Canada Research Chair, and an Inria International Chair, to Pierre L’Ecuyer.

I would also like to acknowledge Prof. Art Owen of the Department of Statistics at
Stanford University as the co-author of one of my article, and I am gratefully indebted to
his very valuable comments. Moreover, I would like to specially thank Florian Puchhammer,
with who I collaborated a lot during this thesis, for his help and support.

Last but not least, I would like to thank my parents, for giving birth to me in the first
place and supporting me spiritually throughout my life. I would like also to thank my sister,
brothers, friends and all my Department colleagues for their support and encouragement.

xxv





Chapter 1

Introduction

1.1. MC, QMC, RQMC, and Array-RQMC

The Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods are powerful tools for es-
timating high-dimensional integrals that can represent the mathematical expectation E[X] of
a random variable X (Asmussen and Glynn, 2007; Dick and Pillichshammer, 2010; Glasser-
man, 2004; L’Ecuyer, 2009, 2018). The MC method estimates these integrals by using
random sampling and it has a convergence rate of O(n−1/2) for the error, where n is the
number of function evaluations. This convergence rate, though independent of the dimen-
sion, is very slow. The QMC methods replace random numbers with low discrepancy points
or quasi-random numbers, which are deterministic. A QMC algorithm has a deterministic
error bound of O(n−1(log n)s) for functions of bounded variation in the sense of Hardy-
Krause (HK) variation, where s is the dimension (Dick and Pillichshammer, 2010). This is
asymptotically superior to the rate of MC. However, this method has difficulty producing a
reliable error estimator.

The Randomized Quasi-Monte Carlo (RQMC) methods turn QMC into variance reduc-
tion methods by carefully randomizing the points set (L’Ecuyer, 2009, 2018; L’Ecuyer and
Lemieux, 2000). They are hybrid techniques that combine clever integration rules with some
randomness in order to provide an unbiased estimator with a variance bound that converges
at a faster rate than the MC variance, under certain conditions. The classical variance
bound would be the square of the QMC worst-case bound. But there are also certain RQMC
settings in which the variance converges faster, e.g., at rate O(n−α+ε) for any ε > 0, where
α can be larger than 2 (L’Ecuyer et al., 2020a). On the other hand, this variance bound,



based on the KH inequality, is often very loose and practically useless when the dimension
is more than a half-dozen, unless the sample size is astronomically large. Nevertheless, in
applications, the true RQMC variance is often much smaller than the true MC variance,
even if the bound is larger than the MC variance.

Some examples of RQMC point sets are: randomly shifted lattice rules, scrambled digital
nets, and digital nets with a random digital shift. Another sampling method called stratified
sampling is also used for integral estimation where the unit cube is partitionned into n boxes
of equal volume and one point is generated randomly and uniformly in each box.

The array-RQMC algorithm was introduced in L’Ecuyer et al. (2006, 2008) for the express
purpose of using RQMC for Markov chain simulation on a large number of steps. This method
is designed to work with an array of discrete time Markov chains (DTMC) simulated in
parallel and is suitable for Markov chains that evolve for a large number of steps. The idea
of this method is to simulate n chains in parallel and use a RQMC point set to advance all
the chains by one step at a time, and sorts the chains with a specific sorting function after
each step. This method leads to highly promising empirical results (the observed convergenre
rates are much better than for Monte Carlo) on a few applications, such as computational
finance for instance. See L’Ecuyer et al. (2008).

1.2. Objectives and Contributions

In this thesis, we explore the effectiveness of replacing the MC algorithm by the RQMC
algorithm or the stratified sampling algorithm over the unit cube to estimate the density
of a random variable X. The goal is to reduce the integrated variance (IV) and the mean
integrated square error (MISE) for two density estimators, histogram and kernel density
estimator (KDE). We also propose a conditional Monte Carlo method (CMC) to estimate the
density function of the output of a simulation model. By conditioning on a random variable,
the empirical distribution can be smoothed, and we can take a derivative to obtain the density
estimator and then apply RQMC to further improve the convergence rate of the MISE.
Furthermore, we examine the performance of the array-RQMC method for the simulation
of a molecular biological systems by testing it on several examples. We demonstrate the
potential of the array-RQMC method when paired with these applications which have higher
dimensional states and a larger number of reaction types. Moreover, we study the application
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of array-RQMC for option pricing when the underlying process has stochastic volatility. We
examine in particular the variance-gamma model, the Heston model, and the Ornstein-
Uhlenbeck model.

This thesis involves two parts: the first part studies density estimation by using RQMC,
and the second part studies the use of RQMC for the simulation of Markov chains.

1.2.1. Density estimation by RQMC methods

We consider a setting in which we want to estimate the distribution of X = g(U) where
U = (U1, . . . ,Us) ∼ U(0,1)s (uniform over the unit hypercube) and g : (0,1)s → R. We
suppose that X has density f over R. We aim to estimate f over some bounded interval
[a,b], supposing that g(u) can be computed easily for any u ∈ (0,1)s.

To estimate the density f , there are several approaches whose asymptotic convergence
rates differ. In this thesis we denote by f̂n the density estimator with a sample of size n, and
the quality of the estimator can be measured by the mean integrated square error (MISE),
defined as

MISE = E
∫ b

a
(f̂n(x)− f(x))2dx,

which we want to minimize. The MISE may be decomposed as the sum of the integrated

variance (IV) and the integrated square bias (ISB):

MISE = IV + ISB =
∫ b

a
E(f̂n(x)− E[f̂n(x)])2dx+

∫ b

a
(E[f̂n(x)]− f(x))2dx.

A first (simple) density estimator is a histogram with bin (rectangle) width h, for which
the MISE converges to 0 as O(n−2/3) if h is chosen optimally as a function of n. A kernel

density estimators (KDE) is defined by selecting a kernel density k, and a constant h > 0
called the bandwidth that serves as a horizontal kernel stretching factor (Marron and Wand,
1992; Scott, 2015; Wand and Jones, 1995). Given a sample X1, . . . ,Xn, the KDE is defined
by

fn(x) = 1
nh

n∑
i=1

k
(x−Xi

h

)
(1.2.1)

for all x ∈ R. For a KDE with optimal h, the MISE converges as O(n−4/5), for various
choices of kernel. However, the optimal h (or a very good h) is usually hard to find in
practice. Although kernel density estimators have better asymptotic theoretical properties
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than histograms, the latter are still widely used by practitioners, mainly because of their
simplicity and ease of interpretation.

Our first objective is to examine how replacing the Monte Carlo (MC) by the stratifi-
cation and RQMC algorithms can help enhance, by using a kind of non-parametric density
estimation mechanism (kernel density estimator), the asymptotic convergence rates of the
IV and MISE. Then, we evaluate the improvements obtained relative to the IV and MISE
by using an appropriate finite sample size n.

Note that for the kernel desnity estimator, with MC the IV and ISB converge asO(1/(nh))
andO(h4), respectively. Only the rate of the integrated bias differs. Replacing MC by RQMC
with the same n and h may change the variance, but should not change the bias, because,
for any x ∈ [a,b], f̂n(x) is an average which has the same expectation with RQMC as with
MC. Therefore, we focus mostly on the behavior of the IV and we study how RQMC can
reduce it and improve its rate of convergence.

With RQMC, We investigate the following model for the IV as a function of n and h :

IV = Cn−βh−δ + o(n−βh−δ) (1.2.2)

when nβhδ →∞ and h→ 0, for some parameters C > 0, β > 0, and δ > 0 which depend on
the problem and the RQMC method. We can estimate the parameters C, β, and δ by using
linear regression on the log of the IV. The IV value is estimated based on experiments with
several values of n and h. In those experiments, we will use powers of two from 214 to 219

for n, and a few values of h for each n.
The model presented in (1.2.2) will generally not work for the entire range of values of n

and h. The idea is to find parameter values that provide a good approximation in a region
that is relevant for the application at hand, and more particularly in the region where h
minimizes the MISE as a function of n. In general, we do not know this region a priori,
so, in practice, we may have to (re)learn this region given some model parameter estimates
and (re)learn the model parameters given an estimate of the relevant region, iteratively. For
given estimates of the model parameters, the optimal bandwidth h under this model can be
estimated in the same way as with MC, but using the new expression for the IV.

Given that a KDE, at any given point, is an average (like the estimator of an expectation)
it would seem natural to use RQMC to estimate the density as well, and to use the same
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types of techniques (based on Koksma-Hlawka (HK)) to obtain variance and MISE bounds.
At first, we expected that the HK inequality would provide bounds on the IV of the KDE
and that this would, in turn, imply a faster convergence for RQCM than for MC. From there,
we expected that the MISE would also follow a faster convergence rate. Unfortunately, our
theoretical results did not agree with these expectations. It turns out that the KH bounds
are not as good as we had hoped. We found that the best upper bound on the IV that KH
gave us was O(n−2+εh−2s) for any ε > 0, while the ISB remained O(h4) as with MC. This
provided a bound of O(n−4/(2+s)+ε) on the MISE if we choose h to minimize this bound. For
comparison, the MISE rate for the KDE under MC is O(n−4/5). The factor h−2s in the IV
bound comes from the increase of the Hardy-Krause variation of each summand as a function
of the underlying uniforms when h decreases. This increases the variation of the function
that appears in the bound, and this impact grows exponentially in s. In order to exploit the
smaller power of n in the IV bound to reduce the MISE bound, one must simultaneously
decrease the ISB. By taking a smaller h, one can achieve this, which in turn drastically
increases the IV bound. As a result, the bound on the MISE converges at a slower rate than
anticipated and offers a slower rate compared to that observed with MC when s ≥ 4. For a
special type of RQMC method, namely a digital net with a nested uniform scramble, we also
prove that the IV and MISE rates are never worse than those of MC (Ben Abdellah et al.,
2019a).

For the combination of KDE with a stratification of the unit hypercube into subcubes, we
also prove a different set of bounds on the IV and MISE, under the assumption that g is mono-
tone. We obtain bounds that converge as O(n−(s+1)/sh−2) for the IV and O(n−(2/3)(s+1)/s)
for the MISE. The latter beats the MC rate for all s < 5. These bounds are obtained by
bounding the variance directly. They do not involve the KH inequality nor the notion of
variation and do not contain a power of 1/h that increases with s. We show examples where
the IV and the MISE with stratification behave just like the bounds. These results do not
imply that stratification works better than RQMC and the fact that the KH-based bounds
on the IV and the MISE are not good for s ≥ 4 does not mean that RQMC does not reduce
the IV and the MISE. These are only upper bounds, and the true MISE may converge at a
faster rate than these KH upper bounds (Ben Abdellah et al., 2019a).
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It will be convenient to study empirically how the KDE really behaves in terms of IV and
MISE under RQMC and stratification in actual simulations. With these sampling methods,
we also need a procedure to select a good bandwidth h for the KDE as it will generally vary
from a good h with MC. Our goal is to empirically evaluate the improvements in the IV
and MISE achieved for reasonable sample sizes n in actual simulations. To do that, we use
a regression model in log scale to estimate the IV and the MISE as functions of h and n,
and the optimal h as a function of n, find a way to estimate its parameters (the constant
term for the integrated bias expression is particularly difficult to estimate), test its goodness
of fit, and then compare the accurate MISE estimates with RQMC to those obtained with
standard MC. This model is expected to give a reasonably accurate approximation only for
(n,h) in the selected region of interest and not necessarily everywhere, and the coefficients
that we estimate may differ from the asymptotic ones.

We find that, empirically, combining RQMC with KDE often brings a significant im-
provement to the IV and the MISE compared to MC. This improvement is even present if
there are more than three dimensions (which is a case where the KH bound converges more
slowly than the MC rate for the KDE). Even when the MISE rate is not improved, there
can still be a significant gain in the constant and in the actual MISE value. Moreover, in all
our experiments, RQMC is never worse than MC. Proving those gains in theorems would be
very hard, hence the importance of having various types of numerical examples.

Our second objective is to construct a density estimators that can avoid the bias. We
first construct a smooth CDF estimator through conditional Monte Carlo (CMC) which we
call conditional density estimator (CDE). The sample derivative of this estimator is used to
estimate the density. Furthermore, this estimator is unbiased under appropriate conditions
and its variance is uniformly bounded by a constant divided by n, so its MISE is O(n−1). The
concept of using CMC was mentioned by Asmussen and Glynn (2007), page 146, Example 4.3,
and further studied in Asmussen (2018). They estimated the density of a sum of continuous
random variables each of which has a known distribution from which we can sample exactly.
Asmussen (2018) merely removes one term of the sum and takes the conditional distribution
of the sum given the other terms to estimate the cdf, the density, the value at risk, and the
conditional value at risk of the sum.

6



Here, we estimate the CDF and density of X in a more general setting where we hide
more than just one random variable to do the conditioning. We then provide conditions
under which the density estimator can be demonstrated to be unbiased. A main condition
is that the conditional CDF must be a continuous function at point x in which the density
is estimated. Sometimes this can be accomplished by hiding, not only one, but multiple
variables. The variance of the density estimator can only rely heavily on which variable(s)
we hide, i.e., on what we are conditioning for.

Once we have a smooth density estimators, we can use a second approach to further
enhance the convergence rate, by replacing the independent uniform random numbers driving
the simulation with randomized quasi-Monte Carlo (RQMC) points. Under some conditions,
we demonstrate that by combining these two approaches, we can obtain a density estimator
whose MISE converges at a faster rate than O(n−1), namely O(n−2+ε) for any ε > 0. We
also observe this faster rate empirically on numerical examples (L’Ecuyer et al., 2020b).

Other Monte Carlo density estimators were proposed recently, based on the concept of
estimating the cdf derivative using a likelihood ratio (LR) method. This general approach
permits to estimate the derivative of the expectation of a random variable with respect to
some parameter of the underlying distribution when this random variable is discontinuous
(Glynn, 1987; L’Ecuyer, 1990). The approach proposed by Laub et al. (2019) combines a
clever change of variable with the LR method to estimate the density of a sum of random
variables as in Asmussen (2018), but in a setting where the random variables are dependent.
Peng et al. (2018) suggested a generalized version of the LR gradient estimator (GLR) to
estimate the derivative of an expectation with respect to a more general model parameter.
Lei et al. (2018) then sketched out how GLR could be used to estimate a density. We compare
our method with these GLR-based estimators in our numerical illustrations.

1.2.2. RQMC for simulation of Markov Chains

Markov chains are used frequently in various areas, including statistics, machine learning,
queueing theory, option pricing, etc. Numerical methods are available for computing steady-
state probabilities or average cost/reward for Markov chain models. In principle, they could
be applied to compute performance measures for entire simulation models. But from a
practical viewpoint, these methods usually break down when the dimension of the state
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space becomes too large, because they then require excessive computing times and memory.
With simulation, in contrast, it is not the case when the state space is high-dimensional.

One of the robust and efficient Monte Carlo algorithm that has been established in
order to efficiently explore a high dimensional space is the sequential Monte Carlo sampler
(Del Moral et al., 2006). It is a class of algorithms for recursively computing Monte Carlo
approximations of a sequence of distributions. The initial motivation of SMC was the filtering
of state space models. They have been primarily used as "particle filters" to solve optimal
filtering problems and, due to the fact that they provide a simple way of approximating
complex filtering distribution sequentially in time, they have a wide-spread use in various
applications including tracking, computer vision and digital communication. In addition,
they give an unbiased estimate of the normalizing constant of the posterior distribution
which can be one quantity of interest in the inference problem to deal with.

L’Ecuyer et al. (2007, 2008) have introduced a new RQMC algorithm, called array-
RQMC, specially designed for Markov chains which evolves over several steps. They provide
examples showing that their method can sometimes dramatically reduce the variance (or
average square error), by several orders of magnitude compared with standard Monte Carlo.
The idea of this method is to simulate n realizations of a Markov chain in such a way that
each chain evolves according to its exact probability law, but the chains are not indepen-
dent of each other. The goal is to induce some form of negative dependence between the
realizations so that at any given step j, the distance (or discrepancy ) between the empirical
distribution of the n states and the theoretical distribution of the state at step j converges
at a faster rate as a function of n compared to if the realizations were independent. This can
improve the simulation efficiency for Markov chains simulated over several hundred steps.
The applications include queueing systems, option pricing in finance, reliability and risk
assessment models, and many more.

L’Ecuyer (2018), have empirically observed in a one-dimensional example that the con-
vergence rate of the variance and the error converge as O(n−3/2) for a discontinuous cost
function, a much faster rate (about O(n−3.4)) is obtained for the variance when the func-
tion cost is continuously differentiable, and still about O(n−5/2) when the function cost is
continuous but not differentiable. In a two-dimensional example of Asian options with a
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continuous but not differentiable cost function, they have observed a O(n−2) convergence
rate for the variance.

Array-RQMC in combination with several splitting variants and importance sampling
were examined and tested by L’Ecuyer et al. (2007). Stratification improves the multinomial
resampling process and it is shown that the combination with RQMC methods reduces
variance and improve the efficiency factors. For multilevel splitting, the array-RQMC is
applied separately for each step to estimate the corresponding probability. At any time a
chain reaches the next level, it will be placed in a special state and waits there until the step
is over. At the end of the step, we split the chains that have reached the target level k and
restart the array-RQMC algorithm from there.

Pricing an American-style option and computing an optimal exercise strategy is a subclass
of Markov decision process problem problems. It belongs to a large class of stochastic optimal
stopping problems for which the standard tools are stochastic control theory and dynamic
programming recurrence equations. When the state space is high-dimensional and/or the
random variables have too complicated distributions of probability, these standard tools are
not practical because the equations are difficult to solve numerically (Glasserman, 2004).
Dion and L’Ecuyer (2010) have combined RQMC with approximate dynamic programming
and, by making comparisons in terms of the expected values of the returned policies, it was
empirically observed that RQMC reduces both the variance of bias between the expected
payoff and the option price and additional to that, it returns better policies. For RQMC
and array-RQMC, Sobol’ nets with a linear scrambling and a random digital shift have been
used, and the findings achieved are very similar for randomly-shifted lattice rule followed by
baker’s transformation.

Gerber and Chopin (2015) have proposed a sequential quasi Monte Carlo (SQMC) method
which is a class of algorithms obtained by introducing QMC point sets into SMC. It is related
to, and may be seen as an extension of, the array-RQMC algorithm to particle filtering.
Its error rate is o(n−1/2), which is smaller than the Monte Carlo rate, and o(n−1) is the
convergence rate for the variance. The complexity of SQMC is O(n log n), where n is
the number of simulations at each iteration. They have shown that SQMC is amenable to
the same extensions as standard SMC, such as unbiased likelihood evaluation. They have
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also obtained several convergence results and provided numerical evidence that SQMC may
significantly outperform SMC in practical scenarios.

The pricing of an Asian option combined with array-RQMC, to estimate the expectation
of its payoff, when the underlying process evolves as a geometric Brownian motion (GBM)
with fixed volatility, and the state is two-dimensional (it contains the current value of the
GBM and its running average) and a single random number is needed at each step, so
the required RQMC points are three-dimensional, was already studied by L’Ecuyer (2018);
L’Ecuyer et al. (2009) and they have observed a O(n−2) convergence rate for the variance,
in a range of reasonable values of n, compared with O(n−1) for independent random points
(Monte Carlo). For n = 220 (about one million chains), the variance ratio between Monte
Carlo and Array-RQMC was around 2 to 4 millions.

Our third objective is to investigate how well the array-RQMC method would perform
when the underlying process is more involved, e.g., when it has stochastic volatility. This is
relevant because stochastic volatility models are more realistic than the plain GBM model
(Madan and Seneta, 1990; Madan et al., 1998). Success is not guaranteed because the
dimension of the required RQMC points is larger.

We extend this empirical analysis to price this option under a variance gamma (VG)
process. The VG process is a Brownian motion with a random time change that follows a
stationary gamma process. In that case the RQMC points must be four-dimensional instead
of three-dimensional because the state has two dimensions and we need two uniform random
numbers at each step. Also, we examine the Heston and Ornstein volatility models which are
some of the most popular stochastic volatility option pricing models. They are motivated
by the widespread evidence that volatility is stochastic and that the distribution of risky
asset returns has tail(s) thicker than that of a normal distribution. For these models to price
asian options, the RQMC points must be five-dimensional instead of three-dimensional and
we need two uniform random numbers at each step. On the other hand, European options
require a four-dimensional RQMC points (Ben Abdellah et al., 2019b).

Stochastic modelling of molecular biological systems has become an increasingly impor-
tant area of research in recent years. Since intrinsic and extrinsic noise sources may play a
crucial role in such systems, introducing randomness to the models appears to be a more and
more popular and reasonable approach. We are particularly interested in chemical reaction
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systems contained inside a single fixed volume, at constant temperature, where we assume
that the system of molecules is well-mixed. Currently, the Stochastic Simulation Algorithm
(SSA), introduced by Gillespie (1977), is probably one of the best known procedures for
performing stochastic simulations of such systems of chemical reactions. SSA, however, has
the drawback that it simulates each and every reaction that takes place in the system se-
quentially. Thus, this approach requires a large amount of computation time if the number
of molecules or reactions is large.

To speed up the simulation, one can move from simulating a continuous time Markov
chain to the simulation of a discrete time Markov chain (DTMC). More precisely, Gillespie
(2001) introduced the τ -leap method as an approximate simulation strategy. Using Poisson
random numbers for the number of reactions of each type that fire in a certain time interval
of length τ , it is possible to leap over many reaction events in one step. If, in addition, τ is
not chosen too large, this procedure still approximates the exact stochastic simulation well.

For the simulation of DTMCs several, viable, approaches are known, with simulation
by crude Monte Carlo (MC) being probably the most prominent one. In many fields of
application it is known, however, that replacing the i.i.d. points used for MC by random-
ized quasi-Monte Carlo (RQMC) point sets can yield a significant improvement in terms
of variance reduction. In a recent paper, Beentjes and Baker (2019) examine whether the
benefits of RQMC emerge in such chemical reaction systems with τ -leaping as well. Based
on numerical experiments implemented for three testing examples, they found that RQMC
indeed leads to a significant reduction of the variance. However, when the dimension of
the RQMC point set is large, even though the convergence rates of the variance in terms of
the number of points n looked well for small n (approximately n−2), this rate appeared to
deteriorate towards the MC rate of, roughly, n−1 for larger n.

Our fourth objective is to combine array-RQMC with the fixed-step τ -leaping and to
examine the performance of this method in this molecular biological context by testing it on
several examples. Furthermore, we want to demonstrate the potential of this method when we
use standard multivariate sorts for further applications which have higher dimensional states
and a larger number of reaction types. The structure of these examples enables us to define
and use very simple sorting algorithms that significantly improve performance compared to
the other multivariate sorts. A general approach for enhancing standard multivariate sorts
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is to find an importance function that maps the states to the real numbers and then sort
them by their mapped values. This not only reduces the dimensionality of the problem, but
it can also increase efficiency if it is easy to evaluate the importance function. Naturally, this
function should maintain all the significant state information at which it is assessed, which
is not always achievable. As evidence that this strategy can work for chemical reaction
networks, we generate sample data with plain MC and use it to fit very simple models of
such importance functions. The variance we observe with this approach, in our examples,
is always comparable to that of the best multivariate sorts. Note that we are not studying
the behavior of the bias induced by τ -leaping for well-mixed chemical reaction network. We
are rather investigating the performance of array-RQMC and how much it can decrease the
variance of such simulations (Puchhammer et al., 2020).

1.3. Thesis structure

In the following we present the outline of the thesis:

• In chapter 2, a background is presented. We start by describing the principle char-
acteristics of standard Monte Carlo (MC) and some examples of variance reduction
techniques are described, like stratification. Also, we describe the principle char-
acteristics of the Quasi-Monte Carlo (QMC) and Randomized Quasi-Monte Carlo
(RQMC) methods. We discuss the main classes of point set constructions: lattice
rules and digital nets, and the types of randomizations. The Array-RQMC method is
described in more details with a presentation of the general principle as well as some
discussion regarding its advantages over traditional Monte-Carlo algorithms, and we
give general convergence results for this method.

• Chapter 3 presents the first article "Density estimation by Randomized Quasi-Monte
Carlo", which has been accepted for publication in SIAM/ASA Journal on Uncer-
tainty Quantification.

• Chapter 4 presents the second article "Monte Carlo and Quasi-Monte Carlo Density
Estimation via Conditioning", which is currently under revision in INFORMS Journal
on Computing.
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• Chapter 5 presents the third article "Array-RQMC for option pricing under stochas-
tic volatility models", which has been published in the proceedings of the Winter
Simulation Conference.

• Chapter 6, presents the fourth article "Variance Reduction with Array-RQMC for
Tau-Leaping Simulation of Stochastic Biological and Chemical Reaction Networks",
which has been submitted for publication in The Bulletin of Mathematical Biology
Journal.

• In Chapter 7, we finish this thesis by providing conclusions and future research per-
spectives that have arisen from the results of this dissertation.

Finally, we include the following three appendices:

• Appendix A: Supplements to Chapter 3 including detailed estimation results.

• Appendix B: Supplements to Chapter 5 including detailed estimation results.

• Appendix C: Supplements to Chapter 6, including further examples.
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Chapter 2

Background on MC, QMC and Randomized QMC

In this chapter, we give an overview of general Monte Carlo techniques and we offer a
basic review of quasi-Monte Carlo methods (QMC), the randomizations that turn them into
variance-reduction techniques, the integration error and variance bound obtained for each
method and the main classes of point set constructions: lattice rules and digital nets. The
Array-RQMC method is described to develop the idea of using the RQMC method for the
simulation of Markov chains.

2.1. Classical Monte Carlo Method

In the context of numerical integration, the principal idea of the Monte Carlo method is
to estimate an integral by random sampling. In general, this integral is usually with respect
to a non-uniform density π over the real espace

µ =
∫
Rs
g(x)π(x)dx = Eπ[g(X)]. (2.1.1)

This method draw an i.i.d sample from the distribution of interest π which can then be
used to to approximate the average of g(X). The basic idea is that any probability measure,
π, defined with respect to a measure space, Rs, can be approximated using the following
empirical measure:

πn(dx) = 1
n

n−1∑
i=0

δXi
(dx) (2.1.2)



where {Xi}n−1
i=0 , is a sequence of n i.i.d samples of law π, and one assumes π(dx) admits a

density denoted π(x) with respect to the Lebesgue measure.
The facility of computing this approximation has led to wide-spread use of Monte Carlo

techniques, specifically with respect to approximating difficult integrals. In what is known
as "crude Monte Carlo Sampling", one can generate samples, X0,...,Xn−1, from the density
π(x). Then these samples may be used to obtain an empirical average, which can be used
as an approximation to the solution of the integral in (2.1.1)

µ̂n = 1
n

n−1∑
i=0

g(Xi). (2.1.3)

Then, by applying the Strong Law of Large Numbers, it can be seen that µ̂ converges almost
surely to µ and has variance σ2/n, for a suitable class of functions g. We have

σ2 := Var[g(Xi)] =
∫
Rs
g2(x)π(x)dx− µ2 (2.1.4)

then, µ̂n is an unbiased estimator of µ and we have

E[µ̂n] = µ, Var[µ̂n] = σ2

n
= O(n−1) (2.1.5)

The empirical variance of g(x) is computed by

S2
n = 1

n

n−1∑
i=0

[
g(Xi)− µ̂n

]2

. (2.1.6)

Using this approximation and apply the Central Limit Theorem we have the following con-
vergence

√
n
µ̂n − µ
Sn

⇒ N (0,1). (2.1.7)

This convergence of µ̂n permits the computation of an asymptotically valid confidence
interval for µ, and the error |µ̂n − µ| converge to zero as O(n− 1

2 ) in probability.
By using a change of variable g(Xi) = f(Ui) for some function f : (0,1)s −→ R, this

integral can be written as an integral over the s-dimensional unit hypercube (0,1)s = {u =
(u1,...,us) : 0 < uj < 1 for all j}, i.e.,

µ =
∫ 1

0
.....

∫ 1

0
f(u1,...,us)du1....dus =

∫
(0,1)s

f(u)du

= E(f(U)),
(2.1.8)
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where u represents a point in (0,1)s, and U ∼ U(0,1)s is a random point with the uniform
distribution over the unit hypercube. One can then rewrite (2.1.3) as

µ̂n = 1
n

n−1∑
i=0

f(Ui) (2.1.9)

where U0,...,Un−1 are independent random vectors uniformly distributed over (0,1)s.

2.2. Variance Reduction Methods

The purpose of variance reduction techniques is to increase accuracy in the estimated
variable by a decreased sample standard deviation per sample, instead of larger number of
samples.

2.2.1. Stratified Sampling

This technique consists to partition the sample space into m pieces and involves sampling
from each piece separately (Haber, 1966; L’Ecuyer and Buist, 2008). Suppose we want to
compute the expectation

µ = E(f(X)) =
∫
Rs
f(x)π(x)dx (2.2.1)

where X is the Rs valued random variable with density π(x). Let (Di, 1 ≤ i ≤ m) be a
partition of Rs. The expectation can be written as

µ = E(f(X)) =
m∑
i=1

E(I(X∈Di)f(X)) =
m∑
i=1

E(f(X)|X ∈ Di)P (X ∈ Di) (2.2.2)

where I is the indicator function and

E(f(X)|X ∈ Di) = E(I(X∈Di)f(X))
P (X ∈ Di)

. (2.2.3)

Let, Xi be a random variable whose law is the law of X conditioned by (X ∈ Di), with
density

I(X∈Di)π(X)∫
Di
π(y)dy . (2.2.4)

Then E(f(X)|X ∈ Di) can be interpreted as E(f(Xi)). By using the Monte Carlo method,
when the numbers pi = P (X ∈ Di) can be explicitly computed, we can approximate each
conditional expectation E(f(X)|X ∈ Di) = µi by

µ̃i = (f(Xi,1) + ...+ f(Xi,ni
))

ni
(2.2.5)
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where Xi,1, ...,Xi,n are independent copies of Xi . We have an estimator µ̃ of µ:

µ̃ =
m∑
i=1

piµ̃i (2.2.6)

Consequently, the variance of µ̃ given by
m∑
i=1

p2
i

σ2
i

ni
, (2.2.7)

where, σ2
i is the variance of f(Xi). For the total number of the simulations ∑m

i=1 ni = n and

ni = n
piσi∑m
i=1 piσi

(2.2.8)

the variance of µ̃ is

Var(µ̃) = 1
n

(
m∑
i=1

piσi

)2

. (2.2.9)

One can write

Var(f(X)) = E(f(X)2)− E(f(X))2

=
m∑
i=1

piE(f 2(X)|X ∈ Di)−
(

m∑
i=1

piE(f(X)|X ∈ Di)
)2

=
m∑
i=1

piVar(f(X)|X ∈ Di) +
m∑
i=1

piE(f(X)|X ∈ Di)2 −
(

m∑
i=1

piE(f(X)|X ∈ Di)
)2

.

(2.2.10)

According to the convexity inequality for X2, we get (∑m
i=1 piσi)2 ≤ ∑m

i=1 piσ
2
i if ∑m

i=1 pi = 1
and, indeed, the variance is smaller than one obtained without stratification:

Var(f(X)) ≥
m∑
i=1

piVar(f(X)|X ∈ Di) ≥
(

m∑
i=1

piσi

)2

. (2.2.11)

If we want to stratify over the unit hypercube [0,1]s, let {D1,...,Dm} be a partition of [0,1]s.
For example we can partition the unit cube into m rectangular boxes of equal size. Let
{V1,...,Vm} be independent random variables, with Vi uniformly distributed over Di. Then

µ̃ =
m∑
i=1

f(Vi) (2.2.12)

is an unbiased estimator of µ and for a regular f , one has Var(µ̃) smaller that the variance
by using MC. This technique was used by L’Ecuyer (2018) in a one dimensional example,
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and they have observed an improvement from O(n−1) to at least O(n−3/2) for the rate of
the mean square discrepancy and at least a rate of O(n−2) for the variance, for five types
of function cost in an application of array-RQMC. A convergence rate of O(n−3/2) for the
variance was proved in L’Ecuyer et al. (2008) for the case where the sample is stratified and
the state is one-dimensional.

2.2.2. Conditional Monte Carlo

Conditional Monte Carlo (CMC) is a variance reduction method which improves the
efficiency of a given estimator by conditioning it to a particular collection of information
L. That is, suppose that we want to estimate X, The CMC estimator can be written as
Xe = E(X|L), This estimator is clearly unbiased and by the Rao-Blackwell Theorem it
follows that

Var[X] = E[Var[X|L]] + Var[E[X|L]], (2.2.13)

Thus, we have
Var(Xe) = Var(X)− E[Var[X|L]] ≤ Var(X). (2.2.14)

Therefore, this method always provides a variance reduction by choosing a L such that it
is possible to simulate the events in L and the conditional expectation E[X|L] is known in
closed form.

2.3. Quasi-Monte Carlo

QMC replaces the independent and identically distributed uniform random points Ui in
(2.1.9) by a set of n points, Pn = {u0,...,un−1}, chosen deterministically to be more uniform
over the unit hypercube (0,1)s than a typical set of random points. The estimator µ̂n is
replaced by the deterministic approximation

µ̄n = 1
n

n−1∑
i=0

f(ui) (2.3.1)

2.3.1. Discrepancy

There are many ways of measuring the uniformity of Pn, this is usually done via measures
of non-uniformity called discrepancy. Formally, the general formula of discrepancy is defined
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as
D(Pn;A) = sup

A∈A

∣∣∣∣∣ 1n
n−1∑
i=0

1(ui ∈ A)− λs(A)
∣∣∣∣∣ (2.3.2)

where λs(A) is the volume (Lebesgue measure on Rs) of A, and A is a set of measurable sets.
Two discrepancies are particularly useful: the extreme discrepancy, which is the discrepancy
relative to the set A of s-dimensional intervals [a,b] := Πs

i=1[ai,bi], 0 ≤ ai < bi < 1,

D(Pn) = sup
[a,b]

∣∣∣∣∣ 1n
n−1∑
i=0

1(ui ∈ [a,b])− Πs
i=1(bi − ai)

∣∣∣∣∣ (2.3.3)

and the star discrepancy, defined as

D∗(Pn) = sup
[0,b]

∣∣∣∣∣ 1n
n−1∑
i=0

1(ui ∈ [0,b])− Πs
i=1bi

∣∣∣∣∣ (2.3.4)

where again [0,b] := Πs
i=1[0,bi], 0 < bi < 1.

These two discrepancies are related as follows (Niederreiter, 1992)
D∗(Pn) ≤ D(Pn) ≤ 2sD∗(Pn) (2.3.5)

A general worst-case error bound is given by Koksma-Hlawka inequality
| µ̂n − µ |≤ D∗(Pn)V (f) (2.3.6)

where V (f) can be interpreted as a measure of variation of the function f , and D(Pn) is the
discrepancy of Pn. Thus, if the function that we want to integrate has bounded variation
V (f), for a sequence of point sets {Pn, n ≥ 1}, the integration error converges to zero at
the worst at the same rate as D(Pn). If this rate beats O(n− 1

2 ), at that point we are doing
asymptotically better than MC in two ways: the convergence is faster and we have a worst-
case bound instead of just a confidence interval.

The quantity V (f) is usually too hard to calculate in practice, and the inequality of
Koksma-Hlawka is primarily used to determine the rate of the asymptotic error through
D∗(Pn). When Pn is a low-discrepancy point set so that D∗(Pn) = O(n−1(lnn)s) and the
integration error | µ̂n − µ | converges as O(n−1(lnn)s) . This type of upper bound indicates
that the advantage of the QMC methods over MC rate O(n−1/2) will eventually be lost as the
dimension s increases (because the ln is not negligible when s increases), or more precisely,
it suggests that QMC methods will require a sample size n too large, for practical purposes,
to improve upon MC when s is large.
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2.3.2. Construction of Point Sets

The two primary classes of approaches for constructing the point sets are lattice rules and
digital nets (see Owen (1998a), Niederreiter (1992), and L’Ecuyer (2009)). An integration
lattice is a vector space of the form

Ls =
{
v =

s∑
j=1

hjvj such that each hj ∈ Z
}
, (2.3.7)

where v1,...,vs ∈ Rs are linearly independent over R and where Ls contains Zs, the set of
integer vectors. The QMC approximation of µ with Pn = Ls ∩ [0,1)s is a lattice rule, and
the dual lattice is defined as

L∗s =
{
h ∈ Rs : htv ∈ Z for all v ∈ Ls}. (2.3.8)

The rank of Ls is the smallest r such that one can find a basis of the form v1,...,vs,er+1,...,es,
where ej is the j-th unit vector in s dimensions. The point sets corresponding to the lattice
rule with a rank of 1 can be written as

Pn = {v = iv1 mod 1, i = 0,...,n− 1}

= {(i a1 mod n)/n, i = 0,...,n− 1},
(2.3.9)

where a1 = (a1,...,as) and v1 = a1/n. The set Pn is fully projected-regular if and only if
r = 1 and gcd(aj,n) = 1 for each j.

Korobov rules are a special case of lattice rules that are easy to implement, as we now
describing. For a given sample size n, the only parameter required to generate a point set
Pn in s dimensions is an integer a relatively prime to n . We then get

Pn = { i
n

(1,a,a2,...,as−1)mod 1, i = 0,...,n− 1} (2.3.10)

where the modulo 1 is applied component-wise.
Another main class of construction methods of low-discrepancy point sets and sequences

is the digital nets. Let b ≥ 2 be an arbitrary integer, usually a prime number, called the base.
To define a net of n = bk points in s dimensions, we select s generator matrices C1,...,Cs,
which are matrices whose elements are in Zb = {0,..,b − 1}. The matrix Cj determines
coordinate j of all the points, for j ≥ 1. To define the i-th point ui, for i = 0,...,bk − 1 write
the digital expansion of i in base b and multiply the vector of its digits by Cj, modulo b, to
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obtain the digits of the expansion of ui,j, the j-th coordinate of ui. That is, the point set
thus obtained is a digital net in base b.

i =
k−1∑
l=0

ai,lb
l, (2.3.11)


ui,j,1

ui,j,2
...

 = Cj



ai,0

ai,1
...

ai,k−1


mod b, (2.3.12)

ui,j =
∞∑
l=1

ui,j,lb
−l, (2.3.13)

ui = (ui,1,...,ui,s). (2.3.14)

A Sobol net is a special case of the digital net where b = 2 and the generator matrices Cj
are upper triangular binary matrices with 1’s on the diagonal :

Cj =



1 vj,1,2 · · · vj,1,c · · ·

0 1 · · · vj,2,c · · ·
... 0 . . . ...

... 1


. (2.3.15)

The bits in column c of Cj can be represented as an odd integer smaller than 2c:

mj,1 = 1,

mj,2 = 2vj,1,2 + 1,
...

mj,c = 2c−1vj,1,c + ...+ 2vj,c−1,c + 1 =
c∑
l=1

2c−1vj,l,c,

(2.3.16)

where vj,c,c = 1. Thus, the column c contains the c digits of the binary expansion of mj,c,
from the most to the least significant, followed by zeros. Sobol’ calls the real numbers
vj,c = 2−cmj,c, for c = 1, ..., k and j = 1, ..., s, the direction numbers. To determine the
integers mj,c, for each j, we first choose a primitive polynomial over F2, say

fj(z) = zdj + aj,1z
dj−1 + ...+ aj,dj

, (2.3.17)
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of degree dj, and choose the first dj integers mj,1, ...,mj,dj
. The integers mj,dj

,mj,dj+1, ... are
then determined by the recurrence

mj,c = 2aj,1mj,c−1 ⊕ ...⊕ 2dj−1aj,dj−1mj,c−dj+1 ⊕ 2dj

mj,c−dj
⊕mj,c−dj

(2.3.18)

for c ≥ dj , or equivalently,

vj,l,c = aj,1vj,l,c−1 ⊕ ...⊕ aj,dj−1vj,l,c−dj+1 ⊕ vj,l,c−dj
⊕ vj,l+dj ,c−dj

(2.3.19)

for l ≥ 1, where ⊕ denotes the bit-wise exclusive-or operation.

2.4. Randomized Quasi-Monte Carlo

The difficulty of obtaining accurate error estimators with QMC can be addressed by
switching to randomized QMC (RQMC) which turns QMC into a variance-reduction tech-
nique (L’Ecuyer, 2009, 2018; L’Ecuyer and Lemieux, 2000, 2002; Owen, 1998a). The concept
is to randomize Pn, in order to induce negative dependence between the points ui by gener-
ating them as follows :

each point ui is distributed uniformly over [0,1)s , anda)

the point set Pn = {u0,...,un−1} covers [0,1)s more evenly than a set of independent

random points.

b)

RQMC point sets generate unbiased integral estimators, and the variance of the estimators
can be estimated from independent estimator replicates. Then, we estimate µ by µ̂rqmc,n

which is defined as :
µ̂rqmc,n = 1

n

n−1∑
i=0

f(ui). (2.4.1)

This µ̂rqmc,n is an unbiased estimator of µ and, by taking m independent randomizations
of Pn, an unbiased estimator of Var[µ̂rqmc,n] is obtained and a confidence interval for µ can
eventually be calculated.

The difficulty encountered with all RQMC methods is that the dimension s can be very
large and thus this RQMC scheme typically becomes ineffective.

2.4.1. Randomizations

We give a detailed description of the different randomizations that we will use in our
simulation.
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Random shift modulo 1 : given a single uniform random variableU, it shift the entire
point set Pn randomly, by adding U modulo 1, for each coordinate (Cranley and Patterson,
1976; L’Ecuyer and Lemieux, 2000). The randomized set P̃n := {ũi ; i = 0,1,...,n − 1} is
defined by

ũi = (ui + U) mod 1. (2.4.2)

Each shifted point is evenly distributed over [0,1)s with this randomization. Hence, even if
the dimension s is much larger than the number of points n and if many coordinates of a
given ui are equal, these coordinates become independent after the randomization. Therefore
each point has the same distribution as in the MC method; the only difference is that the n
points of the shifted lattice are not independent.

Digital shift in base b : if Pn is a digital net in base b, an analogue method of the
previous one is to write a b-ary representation of a vector U and add it to each point of
Pn using operations over Fb (Dick and Pillichshammer, 2010; L’Ecuyer, 2018; L’Ecuyer and
Lemieux, 1999, 2002). More precisely, if U = (U1,...,Us) and

Uj =
∞∑
l=1

dj,lb
−l, ui,j =

∞∑
l=1

ui,j,lb
−l, (2.4.3)

we compute
(ui + U) mod b = (ũi,1,...,ũi,s), (2.4.4)

where
ũi,j =

∞∑
l=1

((ui,j,l + dj,l) mod b)b−l. (2.4.5)

This randomization was suggested for point sets based on linear recurrences modulo 2. It is
also used in an arbitrary base. It is best suited for digital nets in base b and its application
maintains any projection’s uniformity.

Random Linear Matrix Scrambling : This randomization was proposed by Ma-
tousěk (1998) and discussed by Hong and Hickernell (2003); Owen (2003). It is obtained
by applying a random matrix scramble, the idea is to generate s lower-triangular matrices
L1,...,Ls with index inN∗×N∗ and elements chosen randomly, independently over {0,...,b−1}
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The digits ũi,j,1,ũi,j,2,... of a randomized coordinate ũi,j are then obtained as
ũi,j,1

ũi,j,2
...

 = Lj


ui,j,1

ui,j,2
...

+ dj, (2.4.6)

where the s vectors d1,...,ds with index inN∗ and entries independently and uniformly dis-
tributed over {0,...,b−1}. A digital shift applied afterwards ensures that every point obtained
is uniformly distributed in [0, 1)s. This technique preserves the properties of equidistribution
of the original set.

Nested uniform scramble : Let a ∈ [0, 1) have base b expansion a = ∑∞
k=1 akb

−k,
where ak ∈ Zb. We apply random permutations to the digits ak yielding uk ∈ Zb and deliver
u = ∑∞

k=1 ukb−k. u are generated as follows : u1 = π•(a1) where π• is a uniform random
permutation. Then u2 = π•a1(a2), u3 = π•a1a2(a3) and uk+1 = π•a1a2...ak

(ak+1) where all
of these permutations are independent and uniform. Owen (1995, 1997) proved that if the
function f is periodic and enough smooth, for digital nets in base b with bounded t and fixed
s, the variance converges as O(n−3(log(n))s−1), which is better than the random digital shift.

2.4.2. Baker’s transformation

For a randomly-shifted lattice rule, a simple technique that often reduces the variance
significantly is the baker transformation, which transforms each coordinate u to 2u if u < 1/2
and to 2(1 − u) if u ≥ 1/2, this transformation improves the convergence rate when the
function is non-periodic. Hickernell (2002) has shown that this technique reduces the variance
to O(n−4+ε) for non-periodic smooth functions. On the other hand, it also increases the
variation of the integrand, so it may increase the variance (moderately) in other cases.

2.4.3. Variance Decomposition and Effective Dimension

When the dimension s is large, filling up the unit hypercube [0, 1)s very uniformly is
practically impossible. However, in many practical settings, the s-dimensional function f

can be well approximated by a sum of lower-dimensional function, that depend only on a
small number of coordinates of u. The idea is to write f as :

f(u) =
∑

v⊆{1,...,s}
fv(u),
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where fv(u) depends only on the coordinates of u that belong to the set u, and the variance
σ2 decomposes as σ2 = ∑

v⊆{1,...,s} σ
2
v where σ2

v = Var[fv(U)] for U uniformly distributed over
[0, 1)s. This is known as an ANOVA decomposition of f . It often occurs that only a small
fraction of the σ2

v ’s contribute to almost all the variance σ2. Then, to obtain a significant
variance reduction, it is sufficient to construct Pn so that the projections of the point Pn on
those important subsets v are very uniform. This can be realized by giving more weights to
these projections in the discrepancy criterion used to construct the points.

We say that f has effective dimension d in proportion ρ in the superposition sense (Owen,
1998b) if ∑

|v|≤d
σ2
v ≥ ρσ2

If ρ is close to 1, this means that f is well approximated by a sum of d-dimensional (or less)
functions.

We say that f has effective dimension d in proportion ρ in the successive-dimensions
sense (L’Ecuyer and Lemieux, 2000) if

∑
v⊆{i,...,i+d−1},0≤i≤s−d

σ2
v ≥ ρσ2

There are cases where the first few random numbers of the simulation are much more
important than the others. If

∑
v⊆{1,...,d}

σ2
v ≥ ρσ2,

then f has effective dimension d in proportion ρ in the truncation sense (Caflisch et al.,
1997).

2.5. The Array-RQMC method

2.5.1. Markov Chain Model

We want to simulate n realizations of a Markov chain in a way that each chain evolves
according to its exact probability law, but the chains are not independent of each other. We
want to induce some form of negative dependence between the realizations so that at any
given step j, the distance (or discrepancy) between the empirical distribution of the n states
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and the theoretical distribution of the state at step j converges at a faster rate as a function
of n than if the realizations were independent. That is, faster than O(n−1/2). There are
methods such as randomized quasi-Monte Carlo (RQMC), stratified sampling, etc., that can
give such super-canonical rates when estimating an integral by averaging values of a function
over a highly-uniform (or low-discrepancy) point set. The difference here is that we want
the low-discrepancy of the empirical distribution of the n states to be preserved from one
step to the next when the Markov chains evolve.
Context and problem :

In the context of simulating Markov chains by randomized quasi-Monte Carlo (RQMC),
we have the following setting proposed by L’Ecuyer et al. (2008, 2009), based on an idea that
originates from Lécot (1989) for deterministic systems. In this case, we have a discrete-time
Markov chain {Xj, j ≥ 0} defined by a stochastic recurrence over a measurable state space
χ:

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1, (2.5.1)

whereU1,U2,... are independent random vectors uniformly distributed over the d-dimensional
unit cube [0,1)d (hence-forth denoted Uj ∼ U [0,1)d), for some functions ϕj : χ× (0,1)d → χ.
We want to estimate the expected total cost µ = E[Y ], where

Y =
τ∑
j=1

g(Xj) (2.5.2)

for some measurable cost functions g : χ→ R and fixed time horizon τ .
There is a state-dependent cost Yj = g(Xj) at each step j. We estimate E[Yj] by the average
(unbiased estimator) based on the n realizations {Xi,j, j ≥ 0}, i = 0,...,n− 1:

Ȳn,j = 1
n

n−1∑
i=0

Yi,j = 1
n

n−1∑
i=0

g(Xi,j). (2.5.3)

Estimation by MC : For i = 0,...,n− 1, generate Xi,j = ϕj(Xi,j−1,Ui,j), j = 1,...,τ , where
the Ui,j’s are i.i.d. U(0,1)d. We estimate µ by

µ̂n = 1
n

n∑
i=1

τ∑
j=1

g(Xi,j) = 1
n

n∑
i=1

Yi = 1
n

n−1∑
i=0

τ∑
j=1

g(ϕ(Xi,j−1,Ui,j)). (2.5.4)
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Estimation by QMC : Let s = τd, we replace the n independent random points Vi =
(Ui,1,...,Ui,s) used in MC by a point set Pn = (V0,....,Vn−1) that is evenly distributed over
[0,1]s, in order to reduce the error compared with MC.
Estimation by RQMC : The points Vi are randomized so that :

each point Vi is distributed uniformly over [0,1)s , anda)

the point set Pn = {V0,...,Vn−1} covers [0,1)s more evenly than a set of independent

random points.

b)

We generate one RQMC point for each sample path, we put Vi = (Ui,1,...,Ui,τ ) ∈ (0,1)s =
(0,1)dτ . By doing this, we estimate µ by µ̂rqmc,n which is defined as :

µ̂rqmc,n = 1
n

n∑
i=1

τ∑
j=1

g(Xi,j) (2.5.5)

2.5.2. Array-RQMC method

The array-RQMC method was proposed by L’Ecuyer et al. (2008). Either τ is a random
stopping time with respect to the filtration F{(j,Xj), j ≥ 0} , E[τ ] < ∞, or τ is fixed, this
method operates in the same way. It replaces the RQMC point set in [0,1)s by τ RQMC
point sets in [0,1)d and simulates an array of n chains in parallel.

We use a mapping function h: χ −→ [0,1)l for some small integer l ≥ 1 where X̃j = h(Xj)
contains all the information in Xj that is appropriate for the probability law of the future
evolution of the chain. At each step, the n copies of the chain Xj are sorted in some order
based on the transformed X̃j, and then matched to n RQMC points based on that order.
For some function ϕ̃j and if X̃j−1 has a density fj over [0,1)l, let µj be the expected cost at
step j, where

µj = E[gj(Xj)] = E[gj(ϕ̃j(X̃j−1,Uj))] =
∫

[0,1)c+l
fj(w)gj(ϕ̃j(w,u))dwdu. (2.5.6)

For each step j, let X0,j,...,Xn−1,j be the n realisations of Xj and X̃i,j = h(Xi,j).
Given that X̃i,j−1 is assumed uniform over [0,1)l and Ui,j ∼ U([0,1)d), we construct a
(d + l)-dimensional RQMC point set defined as Qn = {(X̃i,j−1,Ui,j), 0 ≤ i < n} with
global negative dependence across the chains in a way that the empirical distibution of
Sn,j = {X0,j,...,Xn−1,j} provides a better approximation of the theoretical distribution of Xj

than for MC. This property will have to be preserved at the next step, for the points X̃i,j,
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so we can use induction to argue that it holds at all steps. We construct a low discrepancy
point set Q̃n = {(wi,Ui,j), 0 ≤ i ≤ n− 1} in which wi ∈ [0,1)l are fixed and Xi,j is computed
by permuting the states Xi,j−1, by using a permutation πj, so that Xπj(i),j−1 is close to wi
for each i and Qn is close to Q̃n after the permutation of the points. The expected cost µj
is then estimated by

µ̂arqmc,j,n = 1
n

n−1∑
i=0

gj(Xi,j)

= 1
n

n−1∑
i=0

gj(ϕ̃j(X̃πj(i),j−1,Ui,j))) ≈
1
n

n−1∑
i=0

(gj ◦ ϕ̃j)(wi,Ui,j))),
(2.5.7)

which can be seen as a semi-RQMC estimator. The first l coordinates of the points are (in
general) not randomized; they are only used to match the points to the chains. As a special
case, if c = 1, one can take wi = (i + 0.5)/n or i/n and the best match is obtained by just
sorting the states by increasing order of X̃i,j−1. In this case, this wi can be only implicit (not
stored explicitly) because the points do not need to be sorted at each step.

2.5.3. Array-RQMC algorithm

Algorithm 1 describes in general the array-RQMC method such as µ is estimated by
an unbiased estimator µ̂arqmc,n and the empirical variance of m independent realizations of
µ̂arqmc,n provides an unbiased estimator of Var[µ̂arqmc,n].

Algorithm 1 Array-RQMC Algorithm
Xi,0 ← x0 for i = 0,...,n− 1;
for j = 1,2,...,τ do

Compute an appropriate permutation πj of the n states, based on the h(Xi,j−1), to
match them with the RQMC points;
Randomized afresh {U0,j,...,Un−1,j} in Q̃n;
let i ← 0;
while i < n do

Xi,j = ϕj(Xπj(i),j−1,Ui,j);
i← i+ 1;

end while
µ̂arqmc,j,n = 1

n

∑n−1
i=0 gj(Xi,j)

end for
Estimate µ by µ̂arqmc,n = ∑τ

j=0 µ̂arqmc,j,n
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2.5.4. Sorting Strategies

When l > 1, the states and the points are mapped by applying a multivariate sort to the
states in [0,1)l. A multivariate batch sort is defined as follows, it separates the objects in
n1 batches of size n/n1 such that each object in a batch is smaller or equal to the objects
in the next batches and the states are sorted by the first coordinate. Then, each batch is
separated in n2 batches by the same way but the states in this case are sorted by the second
coordinate. And so on. The integers n1,n2,...,nd are chosen such as the product n1n2...nd

is equal to n. A variant of the batch sort in which n = 2e and n1 = n2 = ... = ne = 2, is
called split sort, it sorts by first coordinate in two packets and sort each packet by second
coordinate in two packets, and so on, recursively. In these two sorts, the state space does
not have to be mapped to the unit hypercube [0,1)l.

A widely used technique for ordering multivariate objects is a space-filling curve. It is
defined as a continuous map H : [0, 1] −→ [0, 1]l that fills completely [0, 1]l and its pseudo-
inverse h : [0, 1]l −→ [0, 1] verifing for any x ∈ [0, 1]l , H ◦ h(x) = x. For l = 1, the map H
and its pseudo-inverse h are the identity mappings, i.e. H(x) = h(x) = x, ∀x ∈ [0, 1] is used.

A discrete variant of the curve is described as follows, in base b ≥ 2, at iteration level
m ≥ 1, the inverse is a map hm : {0, 1, ..., bm − 1}l → {0, 1, ..., bml − 1}. To partition [0, 1)l

into bml subcubes of the same size, the integer coordinates of a point x = (x1, ..., xl) ∈ [0, 1)l

are defined by (i1, ..., il) where ik = bbmxkc. These integer coordinates identify the subcube
that contains the point x and hm enumerates these subcubes from 0 to bml−1. If no subcube
contains more than one point, the points will be sorted separately. If some subcube contains
more than one point, we can split it again into bl smaller subcubes by dividing each of its
edges into b equal parts.

A Hilbert curve uses base b = 2. It divides the cube into 2ml subcubes of equal size and
while any subcube contains more than one point, it partitions it in 2l and it defines a way
to enumerate the subcubes so that successive subcubes are always adjacent, then, it map
the states the points as if the state has one dimension and it uses a (1 + d)-dimensionnal
RQMC point ordered by the first coordinate to match the states and the d randomized
coordinates are used to advance the chains. The Hilbert batch sort and Hilbert curve split
are an alternative of batch and split sort, one of these sorts may be applied to the states, so
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that the n states are mapped to the n subboxes that partition Rl, and then enumerate those
subboxes (and states) in the same order as the Hilbert curve.

When χ ⊆ Rl , Gerber and Chopin (2015), used this sort after mapping the state to the
unit hypercube [0,1)l via a logistic transformation defined as ψ(x) = (ψ1(x1),...,ψl(xl)) where

ψi(xi) =
[
1 + exp

(
− xi − xi
x̄i − xi

)]−1

, i = 1,...,l. (2.5.8)

The constants x̄i, xi are x̄i = µi + 2σi and xi = µi − 2σi, where µi and σi are respectively
the mean and the variance of the prior distribution.

2.5.5. Convergence results and proofs

In this section, we recall the bounds on the worst-case error and the variance already
derived by L’Ecuyer et al. (2008) for a special case where l = d = 1. For more details, see
L’Ecuyer (2018). The star discrepancy ∆j of the states at each step j is defined as

∆j = supx∈χ|F̂j(x)− Fj(x)|. (2.5.9)

where F̂j is the empirical distribution of the state Xj and if

V (gj) =
∫ 1

0

∣∣∣∣∣dgj(x)
∣∣∣∣∣ (2.5.10)

denotes the corresponding variation of gj and the standard Koksma-Hlawka inequality be-
comes :

|Ȳn,j − µj| ≤ ∆j.V (gj). (2.5.11)

The square L2 discrepancy at step j is

D2
j =

∫ 1

0
(F̂j(x)− Fj(x))2dx = 1

12n2 + 1
n

n−1∑
i=0

((i+ 0.5/n)− Fj(X(i),j))2 (2.5.12)

where the X(i),j are the order statistic of X0,j,...,Xn−1,j. Then, D2
j ≤ ∆2

j . With the corre-
sponding square variation

V 2
2 (gj) =

∫ 1

0

(
dgj(x)
dx

)2

dx (2.5.13)
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We have the variance bound

Var[Ȳn,j] = E[(Ȳn,j − E[gj(Xj)])2] ≤ E[D2
jV

2
2 (gj)] (2.5.14)

The goal is to bound the term ∆j. The following assumptions are considered :

Assumption 1. Suppose that l=d=1 and ϕj(x,u) is a non-decreasing function in u, and

by using the inversion method to simulate the next state from the cdf Fj(z|.) = P [Xj ≤

z|Xj−1 = .].

Define
Λj = sup0≤z≤1V (Fj(z|.)) (2.5.15)

which is an upper bound on the variation of the Xj cdf as a function of the previous state.

Assumption 2. Suppose that each square of the k×k (such as n = k2) grid contains exactly

one RQMC point.

Proposition 3. Under Assumptions 1 and 2,

∆j ≤ n−1/2
j∑
l=1

(Λl + 1)
j∏

i=l+1
Λi. (2.5.16)

Corollary 4. If Λj ≤ ρ < 1 for all j, then

∆j ≤
1 + ρ

1− ρn
−1/2. (2.5.17)

Using this Corollary to bound D2
j can only give a bound of O(1/n) for the variance, which

does not beat the MC rate.

2.5.5.1. Variance bound for stratified sampling

For l = 1, d = 1, and by using the stratified sample RQMC points, the unit cube is
partitionned in n = k2 small cubes, that there is exactly one RQMC point in each cube,
and that the randomized parts of these points are independent and uniformly distributed
in the cubes. The first coordinate of point i is deterministic and can be fixed to wi and
alternatively, the two coordinates of each point can be generated in its subcube, and the
points can be sorted by their first coordinate.

Assumption 5. Let Assumption 2 holds and suppose that the coordinates of the points are

independent and uniformly distributed in the cube.
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Proposition 6. Under Assumption 5, we have

E(D2
j ) ≤ n−3/2

(
1
4

j∑
l=1

(Λl + 1)
j∏

i=l+1
Λ2
i

)
(2.5.18)

Corollary 7. If Λj ≤ ρ < 1 for all j, then

E[D2
j ] ≤

1 + ρ

4(1− ρ2)n
−3/2 = 1

4(1− ρ)n
−3/2 (2.5.19)

and therefore
Var[Ȳn,j] ≤

1
4(1− ρ)V

2
2 (gj)n−3/2 (2.5.20)

Under these assumptions, it was proved that the variance converges as O(n−3/2) and the
worst-case error converges as O(n−1/2).
This gives a slightly better rate than MC for all d, and this bound increases in j as O(j2).
For l ≥ 1, the worst case error converges as O(n−1/(l+1)) for a discrete state space in χ ⊆ Zl

(El Haddad et al., 2008), and in for a continuous state space χ ⊆ Rl, under some conditions
on the function ϕj and by using a batch sort (El Haddad et al., 2010).
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Chapter 3

Article 1: Density Estimation by Randomized

Quasi-Monte Carlo

In the first article, we introduce a randomized quasi-Monte Carlo(RQMC) based method
to estimate the density f of some real valued random variable X = g(U) where U =
(U1, . . . ,Us) ∼ U [0,1]s (uniform over the unit hypercube) and g : [0,1]s → R can be eval-
uated point-wise. The basic idea of the proposed approach is to first generate a sample
(X1, · · · ,Xn) = (g(U1), · · · ,g(Un)), where {U1, . . . ,Un} is an RQMC point set, and then
estimate f using a standard density estimator, such as the kernel density estimator or the
histogram. For these two estimators a bandwidth h that allows to control the trade-off be-
tween bias (or more precisely the integrated square bias, ISB) and variance (or more precisely
the integrated variance, IV) should be specified. The asymptotic behaviour of the mean in-
tegrated square error (MISE), defined as MISE=IV+ISB, is analysed and compared with the
MISE obtained when a plain Monte Carlo (MC) scheme is used, that is when {U1, . . . ,Un}

is a set of n i.i.d. U(0,1)s random variables. For a given choice of bandwidth h, the bias term
is identical with both RQMC and MC while we show that the variance term is smaller with
RQMC than with MC. The interesting consequence of this result is that, for a given n, the
optimal bandwidth h is smaller with RQMC than with MC. We provide rigorous proofs for
the RQMC bounds in s dimensions, for both RQMC and stratification. We also have new
sets of bounds showing that the MISE rate cannot be worse than for crude Monte Carlo for
one form of RQMC and for stratification. The article ends up with a numerical study where
the good performance of the RQMC based method is illustrated on various examples.
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Abstract

We consider the problem of estimating the density of a random variable X that can be
sampled exactly by Monte Carlo (MC). We investigate the effectiveness of replacing MC
by randomized quasi Monte Carlo (RQMC) or by stratified sampling over the unit cube,
to reduce the integrated variance (IV) and the mean integrated square error (MISE) for
kernel density estimators. We show theoretically and empirically that the RQMC and strat-
ified estimators can achieve substantial reductions of the IV and the MISE, and even faster
convergence rates than MC in some situations, while leaving the bias unchanged. We also
show that the variance bounds obtained via a traditional Koksma-Hlawka-type inequality
for RQMC are much too loose to be useful when the dimension of the problem exceeds a
few units. We describe an alternative way to estimate the IV, a good bandwidth, and the
MISE, under RQMC or stratification, and we show empirically that in some situations, the
MISE can be reduced significantly even in high-dimensional settings. density estimation;

Key words: Density estimation, quasi-Monte Carlo, stratification, variance reduction,
kernel density, simulation.

3.1. Introduction

We are interested in estimating by simulation the density of a random variable X = g(U)
where U = (U1, . . . ,Us) ∼ U [0,1]s (uniform over the unit hypercube) and g : [0,1]s → R. We
assume that g(u) can be computed easily for any u ∈ [0,1]s, that X has density f (with
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respect to the Lebesgue measure) over R and we want to estimate f over some bounded
interval [a,b]. A flurry of stochastic simulation applications fit this framework; see Asmussen
and Glynn (2007); Law (2014), for example. The vector U represents the independent
uniform random numbers that drive the simulation.

We denote by f̂n a density estimator based on a sample of size n, and we measure the
quality of the estimator over [a,b] by the mean integrated square error (MISE), defined as

MISE =
∫ b

a
E[f̂n(x)− f(x)]2dx,

which we want to minimize. The MISE can be decomposed as the sum of the integrated

variance (IV) and the integrated square bias (ISB):

MISE = IV + ISB =
∫ b

a
E(f̂n(x)− E[f̂n(x)])2dx+

∫ b

a
(E[f̂n(x)]− f(x))2dx.

Minimizing the MISE generally involves a bias-variance tradeoff.
The density is often estimated by a histogram for visualization, but one can do better

with more refined techniques, such as a kernel density estimator (KDE), defined as follows.
One selects a kernel k : R→ R, and a constant h > 0 called the bandwidth, which acts as a
horizontal stretching factor for the kernel. The kernels considered here are smooth probability
densities that are symmetric about 0. In our experiments, we will use the Gaussian kernel,
which is the standard normal density. Given a sample X1, . . . ,Xn, the KDE at x ∈ R is

f̂n(x) = 1
nh

n∑
i=1

k
(
x−Xi

h

)
. (3.1.1)

Density estimation methods such as KDEs were developed for the context where an
independent sample X1, . . . ,Xn from the unknown density f is given. Here we assume that
we can generate a sample of arbitrary size by choosing where to sample. With crude Monte

Carlo (MC), we would estimate the density from a sample X1, . . . ,Xn of n independent

realizations of X, obtained by simulation. Then the analysis is the same as if the data
was collected from the real world, and the standard KDE methodology would apply (Scott,
2015). In that context, the IV is O(1/nh) and the ISB is O(h4), so the MISE is O(n−4/5) if
h is chosen optimally. This is slower than the O(n−1) canonical rate for the variance when
estimating the mean.
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Our aim in this paper is to study if, when, and how using randomized quasi-Monte Carlo

(RQMC) or stratification can provide a KDE with a smaller MISE than with crude MC. It
is well known that when we estimate the mean E[X] by the average X̄n = (X1 + · · ·+Xn)/n,
under appropriate conditions, using RQMC provides an unbiased estimator whose variance
converges at a faster rate (in n) than the MC variance (Dick and Pillichshammer, 2010;
L’Ecuyer, 2018; L’Ecuyer and Lemieux, 2002; Owen, 1997, 1998b). This variance bound
is easily proved by squaring a worst-case deterministic error bound obtained via a version
of the Koksma-Hlawka (KH) inequality, which is a Hölder-type inequality that bounds the
worst-case integration error by a product of the variation of g and the discrepancy of the set
of points U at which g is evaluated. Hundreds of papers have studied this. Of course, the
faster rate is an asymptotic property and the KH bound may hide a large constant factor,
so it could happen that this bound is larger than the MC variance for a given n. But in
applications, the true RQMC variance is often much smaller than both the bound and the
MC variance, even for moderate sample sizes. The bottom line is that RQMC is practically
useful in many applications, when estimating the mean by an average. Stratification of the
unit hypercube also provably reduces the variance of X̄n, although its applicability degrades
quickly with the dimension, and it is typically dominated by RQMC when the dimension
exceeds 1 or 2 (L’Ecuyer, 2018).

Since the KDE (4.2.1) at any given point is an average just like the estimator of an
expectation, it seems natural to use RQMC to estimate a density as well, and to derive
variance bounds via the same methods as for the mean estimator. This was the starting
point of this paper. At first, we thought that the KH inequality would provide bounds on
the IV of the KDE that converge faster for RQMC than for MC, and that a faster convergence
rate of the MISE would follow. But things are not so simple. The best upper bound on the
IV that KH gave us is O(n−2+εh−2s) for any ε > 0, while the ISB remains O(h4) as with
MC. This gives a bound of O(n−4/(2+s)+ε) on the MISE if we select h to minimize this
bound. The unwelcome h−2s factor in the IV bound comes from the increase of the Hardy-
Krause variation of each summand in (4.2.1) as a function of the underlying uniforms when
h decreases. This effect grows exponentially in s. To exploit the smaller power of n in the
IV bound to reduce the MISE bound, one must simultaneously decrease the ISB. One can
achieve this by taking a smaller h, which in turn drastically increases the IV bound. This
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limits seriously the rate at which the MISE bound can converge. The resulting rate for the
bound beats the MC rate only for s < 3. For a special type of RQMC method, namely a
digital net with a nested uniform scramble, we also prove that the IV and MISE rates are
never worse than for MC.

For the KDE combined with a stratification of the unit hypercube into subcubes, which
could be seen as a weak form of RQMC, we obtain bounds that converge as O(n−(s+1)/sh−2)
for the IV and O(n−(2/3)(s+1)/s) for the MISE. The latter beats the MC rate for all s < 5.
These bounds are proved using arguments that do not involve KH and they are tight. We
show examples where the IV and the MISE with stratification behave just like the bounds.

These results do not imply that stratification works better than RQMC, or that RQMC
does not beat MC in more than two dimensions. The KH bounds are only upper bounds and
nothing precludes that the true IV and MISE can be significantly smaller with RQMC than
with MC or stratification, even if the RQMC variance bound is larger and converges more
slowly. At a minimum, we should test empirically how the KDE really behaves in terms of
IV and MISE under RQMC and under stratification. We also need a procedure to choose a
good bandwidth h for the KDE with these sampling methods, since it will generally differ
from a good h with MC. We do that in the second half of the paper. Our aim is to assess
empirically the improvements achieved for reasonable sample sizes n in actual simulations.
We use a regression model in log scale to estimate the IV and the MISE as functions of h
and n, and the optimal h as a function of n. We find that RQMC often reduces the IV and
the MISE significantly, even in more than 3 dimensions, and that it performs better than
stratification. Sometimes, the convergence rate of the MISE is not improved but there is a
significant gain in the constant and in the actual MISE. In all our experiments, the MISE was
never larger with RQMC or stratification than with MC. We prove that this always holds for
stratification. But for RQMC, we think that proving the observed gains in theorems would
be very hard, hence the importance of testing with diverse numerical examples.

The remainder is organized as follows. In Section 3.2, we recall the definitions and basic
properties of KDEs, including a strategy to find a good h under MC. In Section 3.3, we
recall classical error and variance bounds for RQMC integration. In Section 3.4, we use
classical QMC theory to derive KH bounds on the IV and the MISE for a KDE under
RQMC, under reasonable assumptions. In Section 3.5 we derive IV and MISE bounds for
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a KDE combined with stratification. We have bounds that converge at a faster rate than
for MC when the dimension is small. We also show that stratification never increases the
IV or MISE compared with MC. In Section 3.6, we report on numerical experiments in
which we estimate and compare the true IV and MISE of the KDE with MC, RQMC, and
stratification, for various examples. We also provide a method to find a good bandwidth
h, which is necessary for their effective implementation, and we use a regression model to
capture how the IV and the MISE really behave in the examples. We give our conclusions in
Section 5.6. A supplement available online contains additional numerical results, goodness-
of-fit tests, etc. It also provides results for RQMC and stratification for histograms instead
of KDEs.

We adopt the usual Θ(·) notation for the exact order : h(n) = Θ(ϕ(n)) means that there
is some n0 and constants c2 > c1 > 0 such that for all n ≥ n0, c1 ≤ h(n)/ϕ(n) ≤ c2. This is
less restrictive than h(n) ∝ ϕ(n). Also, c(n,h) = O(ϕ(n,h)) means that there is a constant
K > 0 such that for all integers n ≥ 1 and all h ∈ (0,1], c(n,h) ≤ Kϕ(n,h).

3.2. Kernel density estimators with MC

We recall asymptotic properties of the KDE with MC when nh→∞ and h→ 0 together.
The details can be found in Jones et al. (1996); Scott (2015); Wand and Jones (1995), for
example. The asymptotic MISE, IV, and ISB in this regime are denoted AMISE, AIV,
and AISB, respectively. If IV(n,h) denotes the IV for a given (n,h), writing AIV = g̃(n,h)
for some function g̃ means that limn→∞, g̃(n,h)→0 IV(n,h)/g̃(n,h) = 1 and similarly for the
AMISE and AISB. For measurable functions ψ : R→ R, we define the roughness functional
R(ψ) =

∫ b
a (ψ(x))2dx and the “moments” µr(ψ) =

∫∞
−∞ x

rψ(x)dx, for integers r ≥ 0. We
make the following assumptions in the rest of the paper.

Assumption 3.2.1. The kernel k is a probability density function which is symmetric about

0, nondecreasing on (−∞,0] and nonincreasing on [0,∞), has a finite mode k(0) <∞ and its

second moment is strictly positive and finite. Thus, µ0(k) = 1, µ1(k) = 0, and 0 < µ2(k) <
∞.

Assumption 3.2.2. The density f is at least four times differentiable and R(f (r)) <∞ for

r ≤ 4, where f (r) is the rth derivative of f .
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With MC, we have AIV = n−1h−1µ0(k2) and AISB = (µ2(k))2R(f ′′)h4/4. The AMISE is
minimized by taking h5 = Q/n where Q := µ0(k2)/[(µ2(k))2R(f ′′)], if Q is well-defined and
finite. This gives

AMISE = (5/4)Q−1/5µ0(k2)n−4/5.

Thus, finding a good h amounts to finding a good approximation of R(f ′′). But since f is
precisely the unknown function that we want to estimate, this seems to be a circular problem.
However, perhaps surprisingly, a viable approach is to estimate R(f ′′) by estimating f ′′ also
via a KDE, integrating its square over [a,b], and plugging this estimate into the formula
for the optimal h (Berlinet and Devroye, 1994; Jones et al., 1996; Raykar and Duraiswami,
2006; Scott, 2015). To do that, one needs to select a good h to estimate f ′′ by a KDE.
The asymptotically optimal h depends in turn on R(f (4)) where f (4) is the fourth derivative
of f . Then R(f (4)) can be estimated by integrating the KDE of f (4) and this goes on ad
infinitum. In practice, one can select an integer r0 ≥ 1, get a rough estimate of R(f (r0+2)),
and start from there. One simple way of doing this is to pretend that f is a normal density
with a mean and variance equal to the sample mean µ̂ and variance σ̂2 of the data, and then
compute R(f (r0+2)) for this normal density. To estimate the rth derivative f (r), one can take
the sample derivative of the KDE with a smooth kernel k, yielding

f̂ (r)
n (x) ≈ 1

nhr+1

n−1∑
i=0

k(r)
(
x−Xi

h

)
. (3.2.1)

The asymptotically optimal h to use in this KDE is

h(r)
∗ =

(
(2r + 1)µ0((k(r))2)
µ2

2(k)2R(f (r+2))n

)1/(2r+5)

. (3.2.2)

We will use this strategy to estimate a good h in our experiments with MC and RQMC,
with a Gaussian kernel, with r0 = 2.

In this paper we always take h to be the same for all x ∈ [a,b]. It is possible to improve
the kernel density estimation by using a locally varying bandwidth h(x) > 0. For instance,
it is advantageous to have a larger h = h(x) where f(x) is smaller. The interested reader is
referred to Scott (2015); Terrell and Scott (1992).
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3.3. Error and variance bounds for RQMC integration

We recall classical error and variance bounds for RQMC integration. They can be found
in Dick and Pillichshammer (2010), L’Ecuyer (2009), Niederreiter (1992), and Owen (1997),
for example. We will use them to obtain bounds on the AIV for the KDE.

The integration error of g : [0,1]s → R with the point set Pn = {u1, . . . ,un} ⊂ [0,1]s is

En = 1
n

n∑
i=1

g(ui)−
∫

[0,1]s
g(u)du.

Let v denote a subset of coordinates, v ⊆ S := {1, . . . ,s}. For any u = (u1, . . . ,us) ∈ [0,1]s

we denote by uv the projection of u to the coordinates in v and by (uv,1) the point u in
which uj has been replaced by 1 for each j 6∈ v. Furthermore, we write gv := ∂|v|g/∂uv for
the partial derivative of g with respect to each of the coordinates in v. When gv exists and
is continuous for v = S, the Hardy-Krause variation of g is

VHK(g) =
∑
∅6=v⊆S

∫
[0,1]|v|

|gv(uv,1)| duv. (3.3.1)

The star-discrepancy of Pn is

D∗(Pn) = sup
u∈[0,1]s

∣∣∣∣∣vol[0,u)− |Pn ∩ [0,u)|
n

∣∣∣∣∣ ,
where vol[0,u) is the volume of the box [0,u). The Koksma-Hlawka inequality states that

|En| ≤ VHK(g) ·D∗(Pn). (3.3.2)

Several known construction methods give Pn with D∗(Pn) = O((log n)s−1/n) = O(n−1+ε) for
all ε > 0. They include lattice rules and digital nets. Therefore, if VHK(g) <∞, it is possible
to achieve |En| = O(n−1+ε) for the worst-case error. It is also known how to randomize the
points of these constructions so that for the randomized points, E[En] = 0 and

Var[En] = E[E2
n] = O(n−2+ε). (3.3.3)

3.4. Bounding the convergence rate of the AIV for a KDE with

RQMC

Replacing MC by RQMC does not affect the bias, because f̂n(x) has the same expectation
for both, but it can change the variance. Before trying to bound the variance under RQMC,
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it is instructive to recall how it is bounded under MC. To compute (or bound) the IV
over an interval [a,b], we compute (or bound) Var[f̂n(x)] at an arbitrary point x ∈ [a,b] and
integrate this bound over x. Since f̂n(x) is an average of n independent realizations of Y (x) =
k((x − X)/h)/h, it suffices to compute Var[Y (x)] and we have Var[f̂n(x)] = Var[Y (x)]/n.
With the change of variable w = (x− v)/h, we obtain (Scott, 2015, page 143):

Var[Y (x)] = 1
h2

∫ ∞
−∞

k2
(
x− v
h

)
f(v)dv − E2[Y (x)]

= 1
h

∫ ∞
−∞

k2(w)f(x− hw)dw − E2[Y (x)] = f(x)
h

∫ ∞
−∞

k2(w)dw − f 2(x) +O(h).

Integrating over x ∈ [a,b], gives IV = p0 µ0(k2)/(nh) − R(f)/n + O(h/n) where p0 =∫ b
a f(x)dx ≤ 1.

With RQMC, this also holds for a single RQMC point Ui and X = Xi = g(Ui), but to
obtain Var[f̂n(x)], we can no longer just divide Var[Y (x)] by n, because the n realizations of
Y (x) are not independent. RQMC is effective if and only if these realizations are negatively
correlated, in the sense that if Yi = h−1k((x−Xi)/h), then ∑i 6=j Cov(Yi, Yj) ≤ 0. This would
imply that RQMC can never be worse than MC, but this seems hard to prove.

We now take a different path, in which we examine how the KH inequality (4.3.3) can
be used to bound Var[f̂n(x)]. With X = g(U), we can write

f̂n(x) = 1
n

n∑
i=1

g̃(x,Ui) where g̃(x,Ui) := Yi = 1
h
k

(
x− g(Ui)

h

)
. (3.4.1)

Thus, f̂n(x) can be interpreted as an RQMC estimator of E[g̃(x,U)] =
∫

[0,1]s g̃(x,u)du. To
apply the bound in (4.3.4) to this estimator, we need to bound the variation of g̃(x,·), by
bounding each term of the sum in (4.3.2).

To provide insight, we first examine the special case where s = 1 and g is nondecreasing
over [0,1], under Assumption 3.2.1. Then g̃(x,u) = k((x− g(u))/h)/h is nonincreasing over
the u with g(u) ≤ x and nondecreasing over u with g(u) ≥ x. In that case VHK(g̃(x,·)) is the
ordinary one-dimensional total variation, and then

VHK(g̃(x,·)) ≤
∣∣∣∣∣1hk(0)− 1

h
k

(
x− g(0)

h

)∣∣∣∣∣+
∣∣∣∣∣1hk(0)− 1

h
k

(
x− g(1)

h

)∣∣∣∣∣ ≤ 2k(0)
h

. (3.4.2)

The same bound holds for nonincreasing functions g. More generally, if g is monotone within
each ofM intervals that partition the domain [0,1] then VHK(g̃(x,·)) ≤ 2Mk(0)/h. The factor
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of 2 is necessary because k is potentially increasing and then decreasing within each of those
intervals. Note that there are one-dimensional point sets Pn with D∗(Pn) ≤ 1/n. With
such point sets, we obtain Var[f̂n(x)] ≤ (2Mk(0))2/(nh)2, so AIV = O((nh)−2). With
h = Θ(n−1/3), this gives AMISE = O(n−4/3).

We now consider the general case s ≥ 1. To bound VHK(g̃(x,·)) we will make a similar
change of variables as for the IV under MC. We need additional assumptions on k and g.

Assumption 3.4.1. The kernel function k : R → R is s times continuously differentiable

and its derivatives up to order s are integrable and uniformly bounded over R.

Assumption 3.4.2. Let g : [0,1]s → R be piecewise monotone in each coordinate uj when

the other coordinates are fixed, with a number of monotone pieces (which is 1 plus the number

of times that the function switches from strictly decreasing to strictly increasing or vice-versa,

in uj) that is bounded uniformly in u by an integer Mj. We also assume that the first-order

partial derivatives of g are continuous and that ‖gv‖∞ <∞ for all v ⊆ S. This implies that

any product of partial derivatives of g of order at most one in each variable is integrable.

Because the Hardy-Krause variation (4.3.2) involves mixed partial derivatives of g̃(x,·)
of order up to s, things unfortunately become considerably more complicated than for MC.
Roughly speaking, every derivative causes an additional factor h−1, while we may dispose of
only one such factor through a change of variables. This is reflected in Proposition 3.4.1
below. Similar to the one-dimensional case, we need to take into account how often g

changes its monotonicity direction, and this is captured by the Mj’s. For each j ∈ S, let
Gj =

∥∥∥∏`∈S\{j} g{`}
∥∥∥
∞

and cj = Mj ·
(
‖k(s)‖1 ·Gj + I(s = 2) · ‖k(s)‖∞ · ‖g{1,2}‖1

)
<∞, where

I(·) is the indicator function, so the expression for cj contains an extra term when s = 2.
The source of this extra term is that for s = 2, the only partition of {1,2} which contains no
singletons is {1,2} itself, and it gives a term in h−2 = h−s, whereas for s > 2, all the extra
terms are O(h−s+1). Our main result of this section is:

Proposition 3.4.1. Let k and g satisfy Assumptions 3.2.1, 3.4.1 and 3.4.2, and c =
minj∈S cj. . Then the Hardy-Krause variation of the function g̃(x,u) = h−1k((x− g(u))h−1)
(as a function of u) satisfies

VHK(g̃(x,·)) ≤ ch−s +O(h−s+1). (3.4.3)
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Note that the constants cj depend on g viaMj and Gj (plus an extra term when s = 2). A
largeMj means that g changes the sign of its slope many times in the direction of coordinate
j. A large Gj means that the product of the slopes in the directions of the other coordinates
can attain large values. When we have both, then cj is large. Observe that the bound
(3.4.3) uses the smallest cj. In case g is constant with respect to one coordinate ` 6= j, then
Gj = 0, cj = 0, and c = 0. That is, the term in h−s disappears from (3.4.3) and the bound
becomes O(h−s+1). This agrees with the fact that g is then effectively a (s− 1)-dimensional
function. Likewise, if g is almost constant (has very little variation) with respect to one or
more coordinate(s) ` 6= j, then Gj and therefore cj will be small, unless the other terms in
the product are very large. Before proving this proposition, we state a corollary that bounds
the AIV and the AMISE rates under RQMC.

Corollary 3.4.1. Let k and g satisfy Assumptions 3.2.1, 3.2.2, 3.4.1 and 3.4.2. For

a KDE with kernel k, with the underlying observations obtained via sets Pn of n RQMC

points for which D∗(Pn) = O(n−1+ε) for all ε > 0 when n → ∞, by combining (3.4.3)
with (4.3.3) and squaring, we find that AIV = O(n−2+εh−2s) for all ε > 0. Then, by taking

h = Θ(n−1/(2+s)), we obtain that AMISE = O(n−4/(2+s)+ε) for all ε > 0. The exponent of n

in this AMISE bound beats the MC rate for s < 3 and is almost equal to the MC rate for

s = 3.

Let Π(v) denote the set of all partitions of a set of coordinate indices v ⊆ S, and let Π1(v)
denote the subset of all partitions that contain at least one singleton. For each partition
P ∈ Π1(v), we select a particular singleton and denote it by {j(P )}. Removing that singleton
from P yields a partition of v∗ = v \ {j(P )} which we denote by P ∗.

The proof of the proposition will use the following lemma, which describes when the
aforementioned change of variable works and how it removes a factor 1/h from the bound.

Lemma 3.4.1. Let Assumptions 3.2.1, 3.4.1 and 3.4.2 hold, let h > 0, v ⊆ S, and

P ∈ Π1(v). Then
∫

[0,1]|v|

∣∣∣∣∣k(|P |)
(
x− g(uv,1)

h

)
·
∏
w∈P

gw(uv,1)
∣∣∣∣∣ duv ≤ h ·Mj(P ) ·

∥∥∥∥∥ ∏
w∈P ∗

gw

∥∥∥∥∥
∞

· ‖k(|P |)‖1.

Proof. We assume without loss of generality that 1 ∈ v and j(P ) = 1. We make the change
of variables

u1 7→ w = (x− g(uv,1))/h. (3.4.4)
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For any uv ∈ [0,1]|v| with fixed uv∗ ∈ [0,1]|v|−1, we partition [0,1] into a part N (uv∗) where
g(uv,1) is constant in u1 and into sets Dl(uv∗), 1 ≤ l ≤ L(uv∗) ≤ M1, on which it is either
strictly decreasing or strictly increasing in u1. Since g{1} is continuous by assumption, each
of these sets is measurable. The restriction of g{1} to N (uv∗) equals 0 identically.

In all the other sets Dl(uv∗) we apply the change of variables (3.4.4). Considering this in
the left-hand side of the claim leads to∫

[0,1]|v|

∣∣∣∣∣k(|P |)
(
x− g(uv,1)

h

) ∏
w∈P

gw(uv,1)
∣∣∣∣∣ duv

=
∫

[0,1]|v|−1

L(uv∗ )∑
l=1

∫
Dl(uv∗ )

∣∣∣∣∣k(|P |)
(
x− g(uv,1)

h

) ∏
w∈P

gw(uv,1)
∣∣∣∣∣ du1duv∗

≤ h
∫

[0,1]|v|−1
L(uv∗)

∫ ∞
−∞

∣∣∣∣∣k(|P |)(w)
∏

w∈P ∗
gw(uv,1)

∣∣∣∣∣ dwduv∗

≤ h ·M1 · ‖k(|P |)‖1 ·
∥∥∥∥∥ ∏
w∈P ∗

gw

∥∥∥∥∥
∞

,

where we used Hölder’s inequality in the last step. �

Proof of Proposition 3.4.1. We rewrite each summand w.r.t. v ⊆ S in (4.3.2) with the
help of Faà di Bruno’s formula (see (Hardy, 2006, Proposition 1)) as follows
∫

[0,1]|v|
|g̃v(x,uv,1)| duv = 1

h

∫
[0,1]|v|

∣∣∣∣∣ ∑
P∈Π(v)

k(|P |)
(
x− g(uv,1)

h

) ∏
w∈P

∂|w|

∂uw

(
x− g(uv,1)

h

) ∣∣∣∣∣duv

≤
∑

P∈Π(v)

1
h|P |+1

∫
[0,1]|v|

∣∣∣∣∣k(|P |)
(
x− g(uv,1)

h

) ∏
w∈P

gw(uv,1)
∣∣∣∣∣duv. (3.4.5)

If P ∈ Π1(v), we bound the corresponding summand in (3.4.5) via Lemma 3.4.1. If P 6∈
Π1(v), we apply Hölder’s inequality to obtain the upper bound

1
h|P |+1 · ‖k

(|P |)‖∞ ·
∥∥∥∥ ∏
w∈P

gw

∥∥∥∥
1
.

Furthermore, we observe that each element of P ∈ Π(v) \Π1(v) has a cardinality of at least
2. Therefore, P can contain at most b|v|/2c elements. This gives the following bound on
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VHK(g̃(x,·)), which holds for any j ∈ S:

VHK(g̃(x,·)) ≤
∑
∅6=v⊆S

 ∑
P∈Π1(v)

Mj(P )

h|P |
‖k(|P |)‖1 ·

∥∥∥ ∏
w∈P ∗

gw
∥∥∥
∞

+
∑

P∈Π(v)\Π1(v)

1
h|P |+1 ‖k

(|P |)‖∞ ·
∥∥∥ ∏
w∈P

gw
∥∥∥

1


≤ h−sMjGj ‖k(s)‖∞ +O(h−s+1) +

∑
∅6=v⊆S

h−b|v|/2c−1 ∑
P∈Π(v)\Π1(v)

‖k(|P |)‖∞ ·
∥∥∥ ∏
w∈P

gw
∥∥∥

1
.

For s = 1 this already proves the claim.
For s = 2, the only partition of S that contains no singleton is S itself and the result

follows. For s ≥ 3 we have bs/2c+ 1 ≤ s− 1, and then

∑
∅6=v⊆S

h−b|v|/2c−1 ∑
P∈Π(v)\Π1(v)

‖k(|P |)‖∞ ·
∥∥∥∥ ∏
w∈P

gw

∥∥∥∥
1

= O(h−s+1).

�

The bound of Proposition 3.4.1 suggests that the IV could converge at a much worse rate
with RQMC than with MC when s is large. However, the next proposition, based on a result
of Owen (1998c), provides a different bound that does not grow as h−2s when h decreases,
for a particular type of RQMC point set, namely a (t,m,s)-net in base 2 randomized by a
nested uniform scramble (NUS). This type of point set contains 2m points in s dimensions,
the t parameter measures the uniformity in some sence (the smaller the better) (Dick and
Pillichshammer, 2010; Niederreiter, 1992), and the NUS shuffles the points in some particular
way (Owen, 1995, 1997). We state the following result for base b = 2, but it can be extended
to a general prime base b ≥ 2.

Proposition 3.4.2. Let Pn be a (t,m,s)-net in base 2 randomized by NUS, and let Assump-

tion 3.2.1 hold. Then the IV of f̂n satisfies

IV ≤ 2t3sµ0(k2)/(nh) +O(h/n).

Moreover for any fixed s ≥ 1, there is a fixed t ≥ 0 for which we know how to construct a

(t,m,s)-net Pn in base 2 for any integer m ≥ 1. By using such a sequence of nets with NUS,

we get IV = O(1/(nh)), and then by taking h = Θ(n−1/5), we obtain MISE = O(n−4/5).
That is, the MISE never converges at a worse rate than with plain MC.

Proof. Let VarMC and VarNUS denote the variance under MC and under NUS, respectively.
Likewise, for any given pair (n,h), let IVMC(n,h) and IVNUS(n,h) denote the IV under MC
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and under NUS, respectively, and similarly for the MISE. Under Assumption 3.2.1, g̃(x,·) is
square-integrable over [0,1]s for any x ∈ [a,b], so we can apply Theorem 1 of Owen (1998c),
which tells us that

VarNUS[g̃(x,U)] ≤ 2t3sVarMC[g̃(x,U)].

By integrating, we obtain IVNUS(n,h) ≤ 2t3sIVMC(n,h). We saw earlier that IVMC(n,h) ≤
µ0(k2)/(nh)−R(f)/n+O(h/n), and this proves the displayed inequality.

For the second part, for any s ≥ 1, there is a fixed t ≥ 0 for which we know how
to construct a (t,s)-sequence in base 2; see Sobol’ (1967) and (Niederreiter, 1992, Sec-
tion 4.5), for example. For any integer m, the first 2m points of such a sequence form a
(t,m,s)-net in base 2. Thus, t can be assumed to be bounded uniformly in m, and there-
fore IVNUS(n,h) = O(IVMC(n,h)) = O(1/(nh)). Since MC and NUS give the same ISB,
we also have MISENUS(n,h) ≤ 2t3sMISEMC(n,h) = O(1/(nh) + h4) = O(h−4/5) if we take
h = Θ(n−1/5).

�

3.5. Stratified sampling of [0,1)s

In this section, we examine how plain stratified sampling of the unit hypercube can
reduce the IV of the KDE compared with MC. We consider point sets Pn constructed as in
Assumption 3.5.1 below. This type of stratified sampling can never increase the IV compared
with MC. We prove this via a standard variance decomposition argument. Then, under the
additional condition that g(u) is monotone with respect to each coordinate of u, we prove
an IV bound that converges at a faster rate than the IV under MC when s < 5. The KH
inequality and the variation of g are not involved in the IV bound developed here; we work
directly with the variance. For this reason, the bound will not contain the annoying factor
h−2s as in Proposition 3.4.1. On the other hand, the exponent of n will not be as good. Our
main results are Propositions 3.5.1 and 3.5.2, and Corollary 3.5.1.

Assumption 3.5.1. The hypercube [0,1)s is partitioned into n = qs congruent cubic cells

Si := ∏s
j=1 [ij/q,(ij + 1)/q), i ∈ I = {i = (i1,i2, . . . ,is) : 0 ≤ ij < q for each j}, for some

integer q ≥ 2. We construct Pn = {U1, . . . ,Un} by sampling one point uniformly in each

subcube Si, independently across the subcubes, and put Xi = g(Ui) for i = 1, . . . ,n.

49



Proposition 3.5.1. Under Assumptions 3.2.1 and 3.5.1, the IV of a KDE f̂n with kernel

k never exceeds the IV of the same estimator under standard MC, which satisfies IV ≤
µ0(k2)/(nh)−R(f)/n+O(h/n).

Proof. We can decompose the variance under MC as

Var[g̃(x,U)] = E[Var[g̃(x,U) | U ∈ Si] + Var[E[g̃(x,U) | U ∈ Si]

= 1
n

∑
i∈I

Var[g̃(x,U) | U ∈ Si] + 1
n

∑
i∈I

(µi − µ)2,

where µ = E[g̃(x,U)] and µi = E[g̃(x,U) | U ∈ Si]. By sampling exactly one point in each
cell Si, the stratified sampling removes the second term, and the first term remains the same.
Therefore, stratification never increases Var[f̂n(x)]. The second term also indicates how the
amount of variance reduction depends on how the µi vary between boxes. �

Now we know that stratification can do no harm. To show that it can also improve the
convergence rate of the MISE, we need additional conditions.

Assumption 3.5.2. For each j ∈ S, the function g : [0,1)s → R is monotone in uj when the

other s− 1 coordinates are fixed, and the direction of monotonicity in uj (nondecreasing or

nonincreasing) is the same for all values of the other coordinates. Without loss of generality,

we will assume in the rest of the paper that it is nondecreasing in each coordinate. (If it is

nonincreasing in uj, one can simply replace uj by 1− uj in the definition of g and this does

not change the distribution of X = g(U).)

Proposition 3.5.2. Let Assumptions 3.2.1, 3.5.1 and 3.5.2 hold and let f̂n be a KDE with

kernel k obtained from X1,X2, . . . ,Xn. Then the IV of f̂n satisfies

IV ≤ (b− a)s · k2(0) · h−2n−(s+1)/s.

Corollary 3.5.1. Under Assumptions 3.2.1, 3.2.2, 3.5.1 and 3.5.2, the AMISE bound is min-

imized by taking h = κn−(s+1)/(6s) with κ6 = [(b− a)s·k2(0)]/[(µ2(k))2R(f ′′)/2], and this gives

AMISE = Kn−ν with ν = (2/3)(s+ 1)/s and K = (b− a)s · k2(0)κ−2 + (µ2(k))2R(f ′′)κ4/4.
The exponent of n in this bound beats the MC rate for all s < 5 and is equal to the MC rate

for s = 5.

The corollary is straightforward to prove. It suffices to minimize with respect to h the
sum of the AISB (given in Section 3.2) and the IV bound.
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Our proof of Proposition 3.5.2 is inspired by (L’Ecuyer et al., 2008, Proposition 6).
It combines three lemmas that we state and prove before proving the proposition. These
lemmas could be useful in other contexts as well. The first lemma bounds the variance of
the KDE in terms of a uniform bound Kn on the variance of the empirical cdf estimator.
The other lemmas bound Kn.

Let F be the cdf of the random variable X. For any x ∈ R, the empirical cdf of a sample
X1,X2 . . . ,Xn evaluated at x is F̂n(x) := n−1∑n

i=1 I[Xi ≤ x]. We denote the difference by
∆n(x) = F̂n(x)− F (x). Let Kn := supx∈R Var[∆n(x)] = supx∈R Var[F̂n(x)].

Lemma 3.5.1. Under Assumption 3.2.1, for all x ∈ R, we have

Var[f̂n(x)] ≤ 2h−2k(0)Kn.

Proof. We will prove the inequality

Var[f̂n(x)] ≤ Knh
−4
(∫

R
k′
(
x− z
h

)
dz
)2
. (3.5.1)

The result follows from this inequality by making the change of variable w = (x − z)/h in
the integral. To prove (3.5.1), we rewrite the variance of f̂n(x) using integration by parts as
follows:

E
[∣∣∣f̂n(x)− E[f̂n(x)]

∣∣∣2] =h−2 E
[∣∣∣∣∫

R
k
(
x− z
h

)
dF̂n(z)−

∫
R
k
(
x− z
h

)
dF (z)

∣∣∣∣2
]

=h−4 E
[∣∣∣∣∫

R

(
F̂n(z)− F (z)

)
k′
(
x− z
h

)
dz
∣∣∣∣2
]

=h−4 E
[∫

R

∫
R

∆n(y)∆n(z)k′
(
x− y
h

)
k′
(
x− z
h

)
dydz

]
. (3.5.2)

Observe that E[∆n(z)] = 0 since E[F̂n(z)] = F (z). Consequently,

E[∆n(y)∆n(z)] = Cov[∆n(y),∆n(z)] ≤ Kn.

Finally, (3.5.1) follows by interchanging the expectation and the integrals in (3.5.2). �

For all x ∈ R, define H(x) = {u ∈ [0,1)s : g(u) ≤ x} and its complement H(x) =
[0,1)s \ H(x). Under Assumption 3.5.1, let B(x) be the set of subcubes Si that have a
nonempty intersection with both H(x) and H(x). The next lemma bounds the cardinality
of B(x) when g is nondecreasing.
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Lemma 3.5.2. Under Assumptions 3.5.1 and 3.5.2, for all x ∈ R, |B(x)| ≤ sn(s−1)/s.

Proof. Let I0 = {i = (i1,i2, . . . ,is) ∈ I such that minj ij = 0}, which is the set of indices
i ∈ I for which at least one face of Si lies on a face of [0,1)s that contains the origin. Each of
the s faces of [0,1)s touches at most bs−1 elements of I0 and therefore |I0| ≤ sqs−1 = sn(s−1)/s.
Now, for any i = (i1,i2, . . . ,is) ∈ I0, consider the diagonal string of subcubes Si′(k) with
i′(k) = (i1 +k,i2 +k, . . . ,is+k) for 0 ≤ k < q−maxj ij. We argue that for any x ∈ R, at most
one subcube in this diagonal string can belong to B(x). Indeed, suppose that two distinct
subcubes in the string belong to B(x), say Si′(k1) and Si′(k2) for k1 < k2. Since both subcubes
contain points from H(x) and H(x), there must be two points u1 ∈ Si′(k1) ∩ H(x) and
u2 ∈ Si′(k2)∩H(x). This implies that g(u2) ≤ x < g(u1) while u1 < u2 coordinatewise, which
contradicts the assumption that g is nondecreasing. Since there are no more than sn(s−1)/s

diagonal strings and each contains at most one element of B(x), the result follows. �

Lemma 3.5.3. Under Assumption 3.5.1 and 3.5.2, Kn ≤ (s/4)h−2n−(s+1)/s.

Proof. For each i ∈ I, consider the random variables

δi(x) = |Pn ∩H(x) ∩ Si| − n vol(H(x) ∩ Si).

Wemake three observations. Firstly, Si contains exactly one point of Pn by Assumption 3.5.1.
Consequently, each δi(x) is a Bernoulli random variable (with parameter p = n vol(H(x)∩Si))
minus its mean p and, therefore, Var[δi(x)] = p(1− p) ≤ 1/4. Secondly, for each i for which
Si 6∈ B(x), δi(x) = 0, so Var[δi(x)] = 0. Thirdly, for any two distinct subcubes, the positions
of the points of Pn in these subcubes are independent. As a consequence of these three
observations we see that

Var[∆n(x)] =Var
 1
n

∑
i∈I
δi(x)

 = 1
n2

∑
i:Si∈B(x)

Var[δi(x)] ≤ 1
4n2 sn

−(s+1)/s.

By applying Lemmas 3.5.1 and 3.5.2 we then obtain

Var[f̂n(x)] ≤ 2h−2k(0)Kn ≤
k(0)

2(hn)2 |B(x)| ≤ sk(0)
2 h−2n−(s+1)/s.

�
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Proof of Proposition 3.5.2. Combining Lemmas 3.5.1 and 3.5.3 and integrating the
variance bound with respect to x over [a,b] yields the result. �

In the above arguments, we assumed that the strata were cubic, but this is not necessary.
We could instead partition [0,1)s into n = ∏s

j=1 qj cells congruent to ∏d
j=1[0,1/qj), subject

to the condition maxj qj ≤ λminj qj for some λ < ∞. Then one can bound the cardinality
of B(x) and Var[F̂n(x)] in a similar way. Non-cubic strata make sense if g varies more in
some directions than in others. Finally, our bounds are proved under the assumption that
g is monotone, but this assumption is not necessary for stratification to improve the MISE
and/or its convergence rate.

3.6. Empirical Study

Our analysis in the previous sections was in terms of (asymptotic) bounds. Here, we study
the IV and MISE behavior from a different viewpoint: our goal is to estimate empirically
how they really behave in a range of values of n and h that one is likely to use. For this,
we use a simple regression model to approximate the true IV and MISE in the region of
interest. For some examples, we estimate the model parameters from simulated data, test
the goodness of fit of the regression models in-sample and out-of-sample, and show how the
model permits one to estimate the optimal h as a function of n, as well as the resulting MISE
and its convergence rate, under RQMC.

3.6.1. Experimental setting and regression models for the local behavior of the

IV, ISB, and MISE

We will use the following models to approximate the true IV and ISB in a limited range
of values of n and h of interest:

IV ≈ Cn−βh−δ and ISB ≈ Bhα, (3.6.1)

for positive constants C, β, δ, and B, that can be estimated as explained below, and with
α = 4. This gives MISE ≈ Cn−βh−δ + Bhα. The bounds derived in the previous sections
have this form, and this motivates our model, but here we want to estimate the true values,
which generally differ from the bounds. Once the parameters are estimated, we can estimate
the optimal h by minimizing the MISE estimate for any given n in the selected range. In our
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setting, this estimated MISE is a convex function of h. Taking the derivative with respect to h
and setting it to zero yields hα+δ = [Cδ/(Bα)]n−β. Thus, if we take h = κn−γ, the constants
κ and γ that minimize the MISE (based on our model) are κ = κ∗ := (Cδ/Bα)1/(α+δ) and
γ = γ∗ := β/(α + δ). Plugging them into the MISE expression gives

MISE ≈ Kn−ν (3.6.2)

with K = K∗ := Cκ−δ∗ + Bκα∗ and ν = ν∗ := αβ/(α + δ). If h is taken too small (e.g., by
taking κ < κ∗ or γ > γ∗ in the formula for h), the IV will be too large and will dominate
the MISE, so we will observe a MISE that decreases just like the IV. The opposite happens
if h is too large: the ISB dominates the MISE.

To estimate the model parameters for IV, we take the log to obtain the linear model

log(IV) ≈ logC − β log n− δ log h, (3.6.3)

and we estimate the parameters C, β, and δ by linear regression. Since n is always a power of
2 for our RQMC points, we take all the logarithms in base 2. In our experiments, we selected
a set of 36 pairs (n,h) with n = 214, . . . , 219 and h = h0, . . . ,h5 where hj = h02j/2 = 2−`0+j/2

and 2`0 is an integer selected from pilot runs (see the supplement for the details). This
selection of `0 is the only step that requires human intervention.

For each n and each point set (MC, Stratification or RQMC), we generate a sample
of size n, sort the sample, and then compute the density estimator for each h, for this
sample. That is, we use the same sample for all estimation methods and all h. We make
nr = 100 independent replications of this procedure, which gives us independent replicates
of the density estimator for the selected pairs (n,h). To obtain an unbiased estimator of the
integral that defines the IV, we take a stratified sample of ne = 1024 evaluation points over
the interval [a,b], compute the empirical variance of the KDE at each point, based on the nr
replications, and take the average multiplied by (b− a). Larger values of ne gave about the
same estimates.

We approximate the ISB in (3.6.1) by the AISB, for which α = 4 andB = (µ2(k))2R(f ′′)/4.
For the Gaussian kernel, used in all our experiments, Assumptions 3.2.1 and 3.4.1 are sat-
isfied, and µ2(k) = 1. We estimate the integral R(f ′′) as explained in Section 3.2, using
RQMC instead of MC to improve the accuracy.
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Once we have the estimates κ̂∗ and γ̂∗ of κ∗ and γ∗, we test the models out-of-sample
by making an independent set of simulation experiments with pairs (n,h) that satisfy h =
ĥ∗(n) := κ̂∗n

−γ̂∗ (the estimated optimal h) for a series of values of n. At each of these
pairs (n,h), we sample nr fresh independent replicates of the RQMC density estimator and
compute the IV estimate, as well as the MISE estimate in the simple examples where the
density is known. In the latter case, we fit again the linear regression model for log(MISE)
vs log n to re-estimate the parameters K and ν in (3.6.2) and assess the goodness-of-fit. In
our results, we denote these new estimates by K̃ and ν̃. Of course, these model testing steps
are not needed if one wishes to only estimate the density f and not to study the convergence
properties.

In the end, we also compare the efficiencies of different methods for the same example
by comparing their estimated MISE for n = 219 with the h recommended by the model. We
denote by e19 the value of − log2(MISE) for n = 219; that is, we have MISE = 2−e19. The
efficiency gain of RQMC vs MC can be assessed by comparing their e19 values.

The point sets considered in our experiments were: (1) independent points (MC); (2)
stratification of the unit cube (Stratif); (3) a Sobol’ point set with a left random matrix
scrambling and random digital shift (Sobol’+LMS); and (4) a Sobol’ point set with nested
uniform scrambling (Sobol’+NUS). The last two are well-known RQMC point sets (L’E-
cuyer, 2018; Owen, 1997, 2003) and we view stratification as a weak form of RQMC. The
short names in parentheses are used in the plots and tables. These point sets and random-
izations are implemented in SSJ (L’Ecuyer, 2016), which we used for our experiments. More
details and results can be found in the supplement.

3.6.2. A normalized sum of standard normals

As in Owen (2017), we construct a set of test functions with arbitrary dimension s and
for which the density f of X is always the standard normal, f(x) = exp(−x2/2)/

√
2π for

any s. For this, let Z1, . . . ,Zs be s independent standard normal random variables generated
by inversion and put X = (a1Z1 + · · · + asZs)/σ, where σ2 = a2

1 + · · · + a2
s. For this

simple example, the density is already known, so there is no need to estimate it, but this is
convenient for testing the methodology, since it permits us to compute and compare unbiased
estimators of the IV, ISB, and MISE for both MC and RQMC. For MC, these quantities do

55



not depend on s, but for RQMC, the IV and MISE do depend on s, and we want to see in
what way.

We can also compute R(f ′′) exactly in this example, which means we can compute B
for the AISB and the asymptotically optimal h for the AMISE. However, we will first make
experiments as if we did not know this B and have to estimate it, and then compare our
estimates with the exact B. Here, g is a monotone increasing function, so Corollary 3.5.1
applies when we use stratification. Assumption 3.4.2 holds only if we truncate the normal
distributions of the Zj, but it makes no significant difference on our empirical results if the
truncated range contains the interval [−8,8], for example, so from the practical viewpoint,
we can ignore it.

MC NUS LMS NUS LMS NUS LMS NUS NUS NUS NUS
s 1 2 2 3 3 5 5 10 20 100
`0 4.5 8.5 6.0 6.0 5.0 5.0 4.5 4.5 4.0 4.0 4.0
C 0.265 0.032 0.243 0.212 0.144 0.180 0.140 0.096 0.029 0.078 0.079
β 1.038 2.791 2.112 2.101 1.786 1.798 1.301 1.270 1.011 0.996 1.010
δ 1.134 3.004 3.196 3.196 3.383 3.357 2.295 2.303 1.811 1.421 1.463
R2 0.999 0.999 1.000 1.000 0.995 0.995 0.979 0.978 0.990 0.991 0.996
κ̂∗ 1.121 0.925 1.238 1.215 1.156 1.191 1.109 1.045 0.820 0.925 0.934
γ̂∗ 0.202 0.398 0.293 0.292 0.242 0.244 0.207 0.201 0.174 0.184 0.185
`∗ 3.675 7.682 5.268 5.266 4.386 4.391 3.776 3.765 3.590 3.604 3.612
K̂∗ 0.299 0.071 0.221 0.205 0.163 0.184 0.173 0.137 0.061 0.117 0.119
ν̂∗ 0.808 1.594 1.174 1.168 0.967 0.978 0.826 0.806 0.696 0.735 0.740
ν̃ 0.781 1.595 1.176 1.169 0.976 0.975 0.832 0.806 0.744 0.764 0.774
e19 17.01 34.06 24.39 24.38 20.79 20.80 17.88 17.79 17.28 17.07 17.05
Table 3.1. Parameter estimates for the KDE, for a sum of normals, over [−2,2].

We estimate the density over [a,b] = [−b,b] = [−2,2]. In our first experiment, we take
a1 = · · · = as = 1, so all the coordinates have the same importance (which is disadvantageous
for RQMC). Later, we will consider varying coefficients aj. Table A.6 summarizes the results
when B is estimated. For MC, our estimates given in the first column are based on
experiments made with s = 1, but are valid for all s, because the IV and ISB do not depend
on s. The estimated values for MC agree with the theory: the exact asymptotic values are
γ = 0.2, ν = 0.8, and β = δ = 1. The other columns give some results for Sobol’+LMS
and Sobol’+NUS, for selected values of s. For all s > 1 that we have tried, LMS and NUS
give almost the same values. The first rows give the dimension s, the `0 found by pilot runs
and used to fit the IV model, the estimated parameters C, β, and δ of the IV model, the
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Figure 3.1. log2(IV) for the KDE with Sobol’+NUS for s = 1 (left) and s = 20 (right).
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Figure 3.2. Estimated β, δ, and e19 with MC, Stratification, Sobol’+LMS, and
Sobol’+NUS.

fraction R2 of variance explained by this model, and the estimated B. The other quantities
are defined in Section 3.6.1, except for `∗ = − log2 ĥ∗(219), which gives an idea of the optimal
h for n = 219.

Recall that the rates ν̃ and e19 are obtained from a second-stage experiment, by using
the estimated ĥ∗(n) from the model in the first stage. All the R2 coefficients are close to 1,
which means that the log-log linear model is reasonably good in the area considered. The
estimate of B is B ≈ 0.0418 (same first three digits) for all s and all RQMC methods. Thus,
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this estimator of B has very little variance. The MISE reduction of RQMC vs MC can be
assessed by comparing their values of e19 given in the last row. For example, with the KDE
for s = 1, the MISE for n = 219 is approximately 2−34 for Sobol’+NUS compared to 2−17 for
MC, i.e., about 217 ≈ 125,000 times smaller. For s = 2, for both LMS and NUS, the MISE
is about 2−24.3, which is about 150 times smaller than for MC.

Figure 3.1 gives a visual assessment of the fit of the linear model for log2(IV) in the
selected region, for two values of s. We made similar plots for several s > 1 and all point
sets, and the linear approximation looked reasonable in all cases. Figure A.1 shows the
estimated β, δ, and e19, for s = 1, . . . ,5, for various point sets. Stratification, shown here
and not in the table, is exactly equivalent to Sobol’+NUS for s = 1, and somewhat less
effective for s > 1.

One important observation from the plots and the last row of the table (e19) is that for
all s, the RQMC methods never have a larger MISE than MC. Their MISE is much smaller
for small s, and becomes almost the same as for MC when s gets large. The MISE rate ν̃
behaves similarly. Another important observation is that the coefficients β and δ in the IV
model (which are both 1 with MC) are both larger than 1 with RQMC. For small s, with
RQMC, β is significantly larger than ν̃, which means that the IV converges must faster as
a function of n when h is fixed than when h varies with n to optimize the MISE. This is
explained by the large values of δ, sometimes even larger than 3, which indicate that reducing
h to reduce the ISB increases the IV rapidly, and this limits the MISE reduction that we
can achieve.

Here f is the standard normal density and R(f ′′) = [−b (2b2 − 1) e−b2 + 3
∫ b

0 e
−x2dx]/4π.

For b = 2, this gives R(f ′′) ≈ 0.19018, so the true constant B in the AISB is B = R(f ′′)/4 ≈
0.04754, whereas our estimate was 0.0418 for all s and all point sets. The difference is not
due to noise, but is a bias coming from the fact that we estimated R(f ′′) via KDE with finite
n. We verified empirically that when we estimate these quantities with a larger n, the bias
decreases slowly and appears to converge to 0 when n→∞.

We repeated the density estimation experiment by using the exact values of B instead of
the estimated ones to choose h, and the results were very close for all s. In particular, the
MISE rates ν̃ and the values of e19 were almost the same.
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We now take different coefficients (weights) aj in the linear combination of the Zj that
defines X. Our purpose is to illustrate that there are situations where RQMC can perform
very well with the KDE even when the dimension s is large. This can occur for example if
the effective dimension is not large; i.e., when g(u) depends mostly on just a few coordinates
of u, and does not vary much with respect to the other coordinates (Caflisch et al., 1997;
L’Ecuyer, 2009). To illustrate this, we take aj = 2−j for j = 1, . . . ,s, and we repeat the same
set of experiments as we did for equal weights, to estimate the density over [−2,2].

s MC 2 4 10 20 50 100
C 0.171 0.173 0.038 6.7E-3 8.0E-3 7.3E-3 7.9E-3
β 1.000 2.100 1.650 1.420 1.427 1.425 1.429
δ 1.137 3.189 3.745 3.626 3.582 3.604 3.603
K̂∗ 0.213 0.183 0.080 0.032 0.035 0.033 0.035
ν̂∗ 0.779 1.168 0.852 0.745 0.753 0.750 0.752
ν̃ 0.774 1.176 0.892 0.750 0.730 0.758 0.752
e19 16.96 24.76 19.71 18.96 18.98 18.99 19.04

Table 3.2. Parameter estimates for the KDE under Sobol’+LMS, for a weighted sum of
normals with aj = 2−j.

Table 3.2 summarizes our findings for Sobol’+LMS, for s up to 100. The results with
Sobol’+NUS are very similar. For s = 1, the results are obviously the same as for our
previous setting, but they diverge when we increase s. For example, in the previous setting,
the MISE estimate with n = 219 for s = 2, 10, and 100, was 2−24.38, 2−17.28, and 2−17.05,
respectively, whereas with the new weights, it is 2−24.76, 2−18.96, and 2−19.04, respectively. For
s = 100, in particular, the MISE with RQMC and n = 219 was about the same as for MC in
the previous setting, and it is reduced by a factor of 4 in the present setting. We also see from
the table that in 10 or more dimensions, the convergence rate of the MISE is not improved,
but the constant is improved (empirically). As expected, when s increases beyond about
10, all the model parameters appear to stabilize as a function of s. In the previous setting,
they were stabilizing around the MC values, but now they stabilize to different values. For
example, in s = 100 dimensions, β was near the MC value of 1, and now it is about 1.4.
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3.6.3. Displacement of a cantilevel beam

Bingham (2017) gives the following simple model of the displacement D of a cantilever
beam with horizontal and vertical loads:

D = 4L3

Ewt

√
Y 2

t4
+ X2

w4 (3.6.4)

in which L is the length of the beam, fixed to 100 inches, w and t are the width and thickness
of the cross-section, taken as 4 and 2 inches, while X, Y , and E are assumed independent
and normally distributed with means and standard deviations given as follows (in inches):

Description Symbol Mean St. dev.

Young’s modulus E 2.9× 107 1.45× 106

Horizontal load X 500 100
Vertical load Y 1000 100

We want to estimate the density of the relative displacement X̃ = D/D0 − 1, where
D0 = 2.2535 inches. Here, the exact density is unknown, so unbiased estimators of the ISB
and the MISE are not available, but we can estimate the AISB as in the previous example,
and use it to estimate the optimal h and the MISE. A plot of the estimated density, obtained
with a KDE with Sobol’+NUS and n = 219 points, is given in Figure 3.3. For the experiments
reported here, we estimate the density of X̃ over the interval [0.407,1.515], which covers about
99% of the density (it excludes roughly 0.5 % on each side).
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Figure 3.3. Estimated density of X̃, the relative displacement of a cantilever beam.
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Figure 3.4. Estimated MISE (left) and IV (right) as a function of n for h = 2−6, for the
cantilever example.

MC Strat LMS NUS
C 0.109 0.022 1.8E-4 1.5E-4
β 0.991 1.380 1.943 1.932
δ 1.168 2.113 3.922 3.933
R2 0.999 0.999 0.999 0.999
B 107.4 107.2 107.1 107.1
κ̂∗ 0.208 0.225 0.186 0.182
γ̂∗ 0.192 0.226 0.245 0.244
`∗ 5.909 6.443 7.090 7.085
K̂∗ 0.885 0.800 0.256 0.237
ν̂∗ 0.767 0.903 0.981 0.974
e19 14.74 17.48 20.60 20.58

Table 3.3. Experimental results for the KDE, for the displacement of a cantilever beam,
over the interval [0.407,1.515].

Table A.9 gives the parameter estimates from our experiment. RQMC increases the rate
β from 1 to about 2. However, δ increases even more, from 1 to about 4. This means that
although the variance decreases much faster than for MC as a function of n for fixed h, we
cannot afford to decrease h very much to decrease the bias, so the MISE reduction is limited.
RQMC improves both the estimated rate ν̂∗ and the constant K in the MISE model.

Figure A.2 shows the estimated MISE as a function of n (with the estimated optimal h),
as well as the estimated IV as a function of n, all in log scale. The results for Sobol’+LMS
and Sobol’+NUS are practically indistinguishable in those plots. We see that although the
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MISE rate (slope) is not improved much by RQMC, the MISE is nevertheless reduced by a
significant factor. With n = 219, the MISE is almost 26 = 64 times smaller with Sobol’+LMS
than with MC. For fixed h, the IV converges at a faster rate with RQMC than with MC.

Here, g is strictly decreasing in E and strictly increasing in both X and Y . Therefore,
Corollary 3.5.1 applies. The asymptotic parameter values are β = 4/3, δ = 2, and ν = 0.889,
which are very close to what we found empirically for stratification (see A.9).

3.6.4. A weighted sum of lognormals

In this example, we estimate the density of a weighted sum of lognormals: X = ∑s
j=1wj exp(Yj)

where Y = (Y1, . . . ,Ys)t has a multinormal distribution with mean vector µ and covariance
matrix C. Let C = AAt be a decomposition of C. To generate Y, we generate Z a vector of
s independent standard normals by inversion, then put Y = µ+ AZ. For MC, the choice of
decomposition does not matter, but for RQMC it does, and here we take the decomposition
used in principal component analysis (PCA) (Glasserman, 2004; L’Ecuyer, 2009). We also
tried sequential sampling (SS) and Brownian bridge sampling (BBS) but with them, RQMC
did not improve the IV significantly as we will see with PCA.

This model has several applications. In one of them, for some positive constants ρ and
s0, by taking wj = s0(s− j+1)/s, e−ρ max(X−K,0) is the payoff of a financial option based
on the average value of a stock or commodity price at s observation times, under a geometric
Brownian motion process. Estimating the density of this random payoff in its positive part
is equivalent to estimating the density of X over the interval (K,∞) (for simplicity we ignore
the scaling factor e−ρ). When we compute the KDE here, the realizations of X smaller than
K are not discarded; they contribute to the KDE slightly above K. Discarding them would
introduce a significant bias in the KDE due to a boundary effect at K.

For our numerical experiment, we take this special case with the same parameters as in
L’Ecuyer (2018): s = 12, s0 = 100, and K = 101. The matrix C is defined indirectly as
follows. We have Yj = Yj−1(µ − σ2)j/s + σB(j/s) where Y0 = 0, σ = 0.12136, µ = 0.1,
and B(·) is a standard Brownian motion. We estimate the density of X̃ = X −K over the
interval [a,b] = [0, 27.13]. Approximately 0.5% of the density lies on the right of this interval
and 29.05% lies on the left (this is when the option brings no payoff). Figure 3.5 shows a
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plot of the estimated density of X̃ = X −K obtained from a KDE with Sobol’+NUS and
n = 219 points.
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Figure 3.5. Estimated density of the option payoff X −K.

MC LMS NUS
C 0.171 0.110 0.097
β 1.005 1.671 1.663
δ 1.151 4.907 4.930
R2 0.999 0.990 0.990
B 1.1E-6 1.1E-6 1.1E-6
κ̂∗ 7.953 3.717 3.657
γ̂∗ 0.195 0.188 0.186
`∗ 0.715 1.670 1.668
K̂∗ 0.020 3.9E-4 3.6E-4
ν̂∗ 0.780 0.750 0.745
e19 20.45 25.59 25.58

Table 3.4. Experimental results for the density estimation of the option payoff over the
interval [0, 27.13].

Table A.11 summarizes the results of our experiments. Again, the linear model for the
IV fits extremely well in the selected area. RQMC improves β from 1 to about 5/3, which
is significant, but at the same time δ increases from about 1.1 to nearly 5. This means we
are very limited in how much we can decrease h to reduce the bias. On the other hand,
this empirical δ is not as bad as the one in the AIV bound of Corollary 3.4.1, which gives
δ = 2s = 24. The estimate of B is again about the same for all point sets. Somewhat
surprisingly, in the region considered, the estimated MISE rate ν̂∗ is not better for RQMC
than for MC, due to the large δ, but the MISE is nevertheless about 32 times smaller for
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Figure 3.6. Estimated MISE as a function of n (left) and estimated IV as a function of n
for h = 1/2 (right).

RQMC than for MC in the range of interest, as shown in Figure A.3, for which h was taken
as the estimated optimal h from our model, as a function of n. That is, RQMC is truly
beneficial for estimating the payoff density in this 12-dimensional example. In the lower
panel, we see that the estimated IV for fixed h converges faster with RQMC than with MC.

3.7. Conclusion

We explored RQMC combined with KDEs to estimate a density by simulation. RQMC
can improve the IV and the MISE, sometimes by large factors, in situations in which the
(effective) dimension is small. The improvement is more limited when the effective dimension
is large. We also found that the IV improvement degrades quickly as a function of h when
h→ 0. In our empirical experiments, the IV was never larger with KDE+RQMC than with
KDE+MC, and was often much smaller.

In the online supplement, we report a similar analysis for histograms instead of KDEs,
and find that RQMC also brings some improvement, but more limited than with the KDE.
We also provide additional experimental results and details.
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Chapter 4

Article 2: Monte Carlo and Quasi-Monte Carlo

Density Estimation via Conditioning

In the second article, we propose a conditional Monte Carlo (CMC) method for estimat-
ing the density of a continuous random variable when its random realizations are generated
from a simulation model. The resulting estimator, called the conditional density estima-
tor (CDE), is unbiased and has the canonical O(n−1) convergence rate in its MISE, which
improves upon the popular KDE method. In addition, we show that combining CDE with
RQMC achieve a even faster O(n−2+ε) rate for the MISE. We compare the proposed CDE
(CMC+RQMC) with the KDE (KDE+RQMC) and a recently proposed gradient estima-
tion method (with RQMC), the generalized likelihood ratio (GLR) method, via plenty of
numerical examples including realistic examples. All the numerical results indicate that the
proposed CDE+RQMC method has a small MISE and outperforms others.
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Abstract

Estimating the unknown density from which a given independent sample originates is
more difficult than estimating the mean, in the sense that for the best popular density
estimators, the mean integrated square error converges slower than at the canonical rate of
O(1/n). When the sample is generated from a simulation model and we have control over
how this is done, we can do better. We examine an approach in which conditional Monte
Carlo permits one to obtain a smooth estimator of the cumulative distribution function,
whose sample derivative is an unbiased estimator of the density at any point, and therefore
converges at a faster rate than the usual density estimators. We can achieve an even faster
rate by combining this with randomized quasi-Monte Carlo to generate the samples.

Key words: density estimation; conditional Monte Carlo; quasi-Monte Carlo.

4.1. Introduction

Simulation is commonly used to generate n realizations of a random variable X that may
represent a payoff, a cost, or a performance of some kind, and then to estimate from this
sample the unknown expectation of X together with a confidence interval (Asmussen and
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Glynn, 2007; Law, 2014). Simulation books focus primarily on how to improve the quality
of the estimator of E[X] and of the confidence interval. Estimating a given quantile of the
distribution of X, or the sensitivity of E[X] with respect to some parameter in the model,
for example, are also well studied topics.

However, large simulation experiments can provide a lot more information than just point
estimates with confidence intervals. Running simulations of a complex system for hours, with
thousands on runs, only to report confidence intervals on a few single numbers is poor data
valorization. Simulation experiments can give much more useful information than that.
In particular, it can provide an estimate of the entire distribution of X, and not only its
expectation or a specific quantile. Leading simulation software routinely provide histograms
that give a rough idea of the distribution of the output random variables of interest, and users
certainly appreciate this type of visual display. When X has a continuous distribution, a
histogram is just a primitive form of density estimator. Offering a more accurate estimator of
the entire distribution is at least as important and useful asgiving a more accurate confidence
interval on the mean.

As an illustration, when simulating a large call center with several different call types,
one can compute and report a confidence interval on the expected waiting time for each
call type, or perhaps on the probability that a call waits more than 30 seconds. But from
the same simulations, one can provide an estimate of the entire waiting time distribution
for each call type. As another example, for a large project made of several activities with
random durations, with precedence relationships between certain activities, one can simulate
n realizations of the model and compute a confidence interval on the expected total duration
of the project. But from the same simulations, one can estimate the whole distribution of
the (random) project duration, and this is much more useful.

One way to visualize the entire distribution of X is to look at the empirical cumulative

distribution function (cdf) of the observations. But density estimators (including histograms)
are preferred because they give a better visual insight on the distribution than the cdf.
However, accurate density estimation is generally hard. Given n independent realizations of
X, the mean integrated square error (MISE) between the true density and a histogram with
optimally selected divisions converges only asO(n−2/3). There are more refined methods than
histograms, the leading one being the kernel density estimator (KDE) whose MISE converges
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as O(n−4/5) in the best case. These rates are slower than the canonical O(n−1) rate for the
variance of the sample average as an unbiased estimator of the mean. The slower rates stem
from the presence of bias. For a histogram, taking wider rectangles reduces the variance
but increases the bias by flattening out the short-range density variations. A compromise
must be made to minimize the MISE. The same happens with the KDE, with the rectangle
width replaced by the bandwidth of the kernel. Selecting a good bandwidth for the KDE
is particularly difficult. The bandwidth should ideally vary over the interval in which we
estimate the density; it should be smaller where the density is larger and/or smoother, and
vice-versa. This is complicated to implement. Handling discontinuities in the density is also
problematic. These difficulties have discouraged the use of KDEs in reporting simulation
results.

The KDE and other related density estimation methods where developed mainly for the
situation were n independent realizations of X are given in advance and nothing else is
known, as traditionally assumed in classical non-parametric statistics, and one wishes to
estimate the density from them (Scott, 2015). But in a Monte Carlo setting in which the n
observations are generated by simulation, there are opportunities to do better by controlling
the way we generate the realizations and by exploiting the fact that we know the underlying
stochastic model. This is the subject of the present paper.

Our approach combines two general methods. The first general idea is to build a smooth
estimator of the cdf via conditional Monte Carlo (CMC), and take the sample derivative of
this estimator to estimate the density. We call it a conditional density estimator (CDE).
Under appropriate conditions, the CDE is unbiased and its variance is bounded uniformly by
a constant divided by n, so its MISE is O(n−1). This idea of using CMC was mentioned by
Asmussen and Glynn (2007), page 146, Example 4.3, and further studied in Asmussen (2018),
both for the special case where the goal is to estimate the density of a sum of continuous
random variables having a known distribution from which we can sample exactly. Asmussen
(2018) simply “hides” the last term of the sum, meaning that this term is not generated,
and he takes the conditional distribution of the sum given the other terms, to estimate the
cdf, the density, the value at risk, and the conditional value at risk of the sum. Smoothing
by CMC before taking a stochastic derivative has been studied long ago for estimating the
derivative of an expectation (Fu and Hu, 1997; Gong and Ho, 1987; L’Ecuyer and Perron,
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1994) and the derivative of a quantile (Fu et al., 2009) with respect to a model parameter.
This is known as smoothed perturbation analysis. However, no body noticed that this could
be used for density estimation until Asmussen used it for his special case.

One of our main goals in this paper is to show that this CDE method can be used to
estimate the density in a much more general setting than Asmussen (2018), and to examine
how effective it is via experiments on several types of examples. In most of these examples,
X is not defined as a sum of random variables, and we often have to hide more than just
one random variableto do the conditioning. We give conditions under which we can prove
that the density estimator is unbiased. A key condition is that the conditional cdf must
be a continuous function of the point x at which we estimate the density. The variance
of the density estimator may depend strongly on which variables we hide, i.e., on what we
are conditioning. We illustrate this with several examples and we provide guidelines for the
choice of conditioning.

Once we have a smooth density estimator, the second (complementary) strategy to further
reduce the MISE and even improve its convergence rate is to replace the independent uni-
form random numbers that drive the simulation by randomized quasi-Monte Carlo (RQMC)
points. We show in this paper that by combining these two strategies, under appropriate
conditions, we can obtain a density estimator whose MISE converges at a faster rate than
O(n−1), for instance O(n−2+ε) for any ε > 0 in some situations. We also observe this fast
rate empirically on numerical examples. This happens essentially when the CDE is a smooth
function of the underlying uniforms. To our knowledge, this type of convergence rate has
never been proved or observed before for density estimation. The combination of RQMC
with an ordinary KDE was studied by Ben Abdellah et al. (2019a), who were able to prove
a faster rate than O(n−4/5) for the MISE when the RQMC points have a small number of
dimensions. They observed this faster rate empirically on examples. They also showed that
the MISE reduction provided by RQMC degrades rapidly when the bandwidth is reduced (to
reduce the bias) or when the dimension increases. The CDE+RQMC approach studied in
the present paper avoids this problem (there is no bias and no bandwidth) and is generally
more effective than the KDE+RQMC combination. We provide some numerical comparisons
in our examples.
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Other Monte Carlo density estimators were proposed recently, based on the idea of esti-
mating the derivative of the cdf using a likelihood ratio (LR) method. This general approach
permits one to estimate the derivative of the expectation of a random variable with respect
to some parameter of the underlying distribution when this random variable is discontinuous
(Glynn, 1987; L’Ecuyer, 1990). Laub et al. (2019) proposed an approach that combines a
clever change of variable with the LR method to estimate the density of a sum of random
variables as in Asmussen (2018), but in a setting where the random variables are dependent.
Peng et al. (2018) proposed a generalized version of the LR gradient estimator (GLR) to
estimate the derivative of an expectation with respect to a more general model parameter.
Lei et al. (2018) then sketched out how GLR could be used to estimate a density. Formulas
for these GLR density estimators are given in Theorem 1 of Peng et al. (2020). A referee
pointed out these last two papers to us. We compare our method with these GLR-based
estimators in our numerical illustrations.

Density estimation has other applications than just visualizing the distribution of an
output random variable (Scott, 2015; Van der Vaart, 2000). For instance when computing a
confidence interval for a quantile using the central-limit theorem (CLT), one needs a density
estimator at the quantile to estimate the variance (Asmussen and Glynn, 2007; Nakayama,
2014a,b; Peng et al., 2017; Serfling, 1980). Another application is for maximum likelihood
estimation when the likelihood does not have a closed-form expression, so to maximize it
with respect to some parameter θ, the likelihood function (which in the continuous case is a
density at any value of θ) must be estimated (Peng et al., 2020; Van der Vaart, 2000).

A common setting is when a set of observations is given and one wishes to estimate the
density from which they come. A different one is when we have a simulation (or generative)
model from which observations can be generated and we want to estimate the density of the
model output. This is the focus of our paper. Density estimates are also important in various
other settings. For instance when computing a confidence interval for a quantile using the
central-limit theorem (CLT), one needs a density estimator at the quantile to estimate the
variance (Asmussen and Glynn, 2007; Nakayama, 2014a,b; Peng et al., 2017; Serfling, 1980).
Another application is for maximum likelihood estimation when the likelihood does not have
a closed-form expression, so to maximize it with respect to some parameter θ, the likelihood
function (which in the continuous case is a density at any value of θ) must be estimated
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(Peng et al., 2020; Van der Vaart, 2000). A related application is the estimation of the
posterior density of θ given some data, in a Bayesian model (Efron and Hastie, 2016).

The remainder is organized as follows. In Section 4.2, we define our general setting, recall
some key facts about density estimators, introduce the general CMC method to build the
CDEs considered in this paper, prove some of their properties, and give small examples to
provide insight on the key ideas. In Section 4.3, we explain how to combine the CDE with
RQMC and discuss the convergence properties for this combination. Section 6.4 reports
experimental results with various examples. Some of the examples feature creative ways of
conditioning to boost the effectiveness of the method. A conclusion is given in Section 5.6.
The main ideas of this paper were presented at a SAMSI workshop on QMC methods in
North Carolina, and at a RICAM workshop in Linz, Austria, both in 2018.

4.2. Model and conditional density estimator

4.2.1. Density estimation

We have a real-valued random variable X that can be simulated from its exact distri-
bution, but we do not know the cdf F and density f of X. Typically, X will be an easily
computable function of several other random variables with known densities. Our goal is to
estimate f over a finite interval [a,b]. Let f̂n denote an estimator of f based on a sample of
size n. We measure the quality of f̂n by the mean integrated square error (MISE), defined
as

MISE = MISE(f̂n) =
∫ b

a
E[f̂n(x)− f(x)]2dx. (4.2.1)

The MISE is the sum of the integrated variance (IV) and the integrated square bias (ISB):

MISE = IV + ISB =
∫ b

a
E(f̂n(x)− E[f̂n(x)])2dx+

∫ b

a
(E[f̂n(x)]− f(x))2dx.

A standard way of constructing f̂n when X1, . . . ,Xn are n independent realizations of X is
via a KDE, defined as follows (Parzen, 1962; Scott, 2015):

f̂n(x) = 1
nh

n∑
i=1

k
(
x−Xi

h

)
,

where the kernel k is a probability density over R, usually symmetric about 0 and non-
increasing over [0,∞), and the constant h > 0 is the bandwidth, whose role is to stretch [or
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compress] the kernel horizontally to smooth out [or unsmooth] the estimator f̂n. The KDE
was developed initially for the setting in which X1, . . . ,Xn are given a priori, and it is still the
most popular one for this situation. It can be used in exactly the same way when X1, . . . ,Xn

are independent observations produced by simulation from a generative model, but in that
case there is an opportunity to do better, as we now explain.

4.2.2. Conditioning and the stochastic derivative as an unbiased density estima-

tor

Since the density of X is the derivative of its cdf, f(x) = F ′(x), a natural idea would
be to take the derivative of an estimator of the cdf as a density estimator. The simplest
candidate for a cdf estimator is the empirical cdf

F̂n(x) = 1
n

n∑
i=1

I[Xi ≤ x],

but dF̂n(x)/dx = 0 almost everywhere, so this one cannot be a useful density estimator. Here,
F̂n(x) is an unbiased estimator of F (x) at each x, but its derivative is a biased estimator of
F ′(x). That is, because of the discontinuity of F̂n, we cannot exchange the derivative and
expectation:

0 = E
[

dF̂n(x)
dx

]
6= dE[F̂n(x)]

dx = F ′(x).

A continuous estimator of F can be constructed by CMC, as follows. Replace the indi-
cator I[X ≤ x] by its conditional cdf given filtered (reduced) information G: F (x | G) def=
P[X ≤ x | G], where G is a sigma-field that contains not enough information to reveal X
but enough to compute F (x | G). Here, knowing the realization of G means knowing the
realizations of all G-measurable random variables. Our CDE to estimate f(x) will be the
conditional density f(x|G) def= F ′(x|G) = dF (x | G)/dx, if it exists. Under the following as-
sumption, we prove that f(x|G) is an unbiased estimator of f(x) whose variance is bounded
uniformly in x. Note that since F (· | G) cannot decrease, f(· | G) is never negative.

Assumption 4.2.1. For all realizations of G, F (x | G) is a continuous function of x over the

interval [a,b], and is differentiable except perhaps at a countable set of points D(G) ⊂ [a,b].
There is also a random variable Γ defined over the same probability space as F (x | G), such
that E[Γ2] ≤ Kγ for some constant Kγ <∞, and for which supx∈[a,b]\D(G) F

′(x | G) ≤ Γ.
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Proposition 4.2.1. Under Assumption 4.2.1, we have E[f(x | G)] = f(x) and Var[f(x |
G)] ≤ Kγ for all x ∈ [a,b].

Proof. We adapt the proof of Theorem 1 of L’Ecuyer (1990). By the mean value inequality
theorem of Dieudonné (1969), Theorem 8.5.3, which is a form of mean value theorem for
non-differentiable functions, for every x ∈ [a,b] and δ > 0, with probability 1, we have

0 ≤ ∆(x,δ,G)
δ

def= F (x+ δ | G)− F (x | G)
δ

≤ sup
y∈[x,x+δ]\D(G)

F ′(y | G) ≤ Γ.

Then, by the dominated convergence theorem,

E
[
lim
δ→0

∆(x,δ,G)
δ

]
= lim

δ→0
E
[

∆(x,δ,G)
δ

]
,

which shows the unbiasedness. Moreover, Var[F ′(x | G)] ≤ E[Γ2] ≤ Kγ. �

Suppose now that G(1), . . . ,G(n) are n independent realizations of G, so F (x | G(1)), . . . , F (x |
G(n)) are independent realizations of F (x | G), and consider the CDE

f̂cde ,n(x) = 1
n

n∑
i=1

F ′(x | G(i)). (4.2.2)

It follows from Theorem 1 that ISB(f̂cde,n) = 0 and MISE(f̂cde,n) = IV(f̂cde,n) ≤ (b−a)Kγ/n.
An unbiased estimator of this IV is given by

ÎV = ÎV(f̂cde,n) = 1
n− 1

∫ b

a

n∑
i=1

[
F ′(x | G(i))− f̂cde ,n(x)

]2
dx. (4.2.3)

In practice, this integral can be approximated by evaluating the integrand at a finite number
of points over [a,b] and taking the average, multiplied by (b− a).

It is well known that in general, when estimating E[X], a CMC estimator never has a
larger variance than X itself, and the more information we hide, the smaller the variance.
That is, if G ⊂ G̃ are two sigma-fields such that G contains only a subset of the information
of G̃, then

Var[E[X | G]] ≤ Var[E[X | G̃]] ≤ Var[X]. (4.2.4)

Noting that F (x | G) = E[I[X ≤ x] | G], we also have

Var[F (x | G)] ≤ Var[F (x | G̃)] ≤ Var[I[X ≤ x]] = F (x)(1− F (x)).

Thus, (4.2.4) applies as well to the (conditional) cdf estimator.
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However, applying it to the CDE, which is the derivative of the conditional cdf, is less
straightforward. It is obviously not true that Var[F ′(x | G)] ≤ Var[dI[X ≤ x]/dx] because
the latter is zero almost everywhere. Nevertheless, we can prove the following.

Lemma 4.2.1. If G ⊂ G̃ both satisfy Assumption 4.2.1, then for all x ∈ [a,b], we have

Var[f(x | G)] ≤ Var[f(x | G̃)].

Proof. The result does not follow directly from (4.2.4) because F ′ is not an expectation; this
is why our proof does a little detour. For an arbitrary x ∈ [a,b] and a small δ > 0, define the
random variable I = I(x,δ) = I[x < X ≤ x+ δ]. We have E[I | G] = F (x+ δ | G)−F (x | G),
as in the proof of Theorem 4.2.1, and similarly for G̃. Using (4.2.4) with I in place of X
gives

Var[E[I | G]] ≤ Var[E[I | G̃]]. (4.2.5)

We have
f(x | G) = lim

δ→0

F (x+ δ | G)− F (x | G)
δ

= lim
δ→0

E[I(x,δ)/δ | G]

and similarly for G̃. Combining this with (4.2.5), we obtain

Var[f(x | G)] = Var[lim
δ→0

E[I(x,δ)/δ | G]] = lim
δ→0

Var[E[I(x,δ)/δ | G]]

≤ lim
δ→0

Var[E[I(x,δ)/δ | G̃]] = Var[lim
δ→0

E[I(x,δ)/δ | G̃]] = Var[f(x | G̃)],

in which the exchange of “Var” with the limit (at two places) can be justified by a similar
argument as in Proposition 4.2.1. More specifically, we need to apply the dominated con-
vergence theorem to E[I(x,δ)/δ | G], which is just the same as in Proposition 4.2.1, and
also to its square, which is also valid because the square is bounded uniformly by Γ2. This
completes the proof. �

This lemma tells us that conditioning on less information (hiding more) always reduces
the variance of the CDE (or keep it the same). But if we hide more, the CDE may be harder
or more costly to compute, so a compromise must be made to minimize the work-normalized
MISE (which is the MISE multiplied by the expected time to compute the estimator), and
the best compromise is generally problem-dependent. When none of G or G̃ is a subset
of the other, the variances of the corresponding conditional density estimators may differ
significantly, and Lemma 4.2.1 does not apply, so other guidelines must be used to select G
when there are multiple possibilities.
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In our setting, the most important condition is that G must satisfy Assumption 4.2.1.
Any such G provides an unbiased density estimator with finite variance. When there are
multiple choices, in general we want to choose G so that the conditional density tends to be
spread out as opposed to being concentrated in a narrow peak. We give concrete examples
of this in Section 6.4. We recognize that this criterion is heuristic. If f is very spiky itself,
then the CDE must be spiky as well, because Var[X|G] ≤ Var[X], and yet Var[f(x|G)] can
be very small, even zero in degenerate cases. Also, a large Var[X|G] for all G is not sufficient,
because the large variance may come from two or more separate spikes, and this is why we
write "spread out" instead of "large variance". Roughly, we want the CDE f(.|G) to be spread
out relative to f , for all G.

A more elaborate selection criterion should take into account the IV of the CDE, its
computing cost, and also some measure of smoothness of the resulting CDE as a function of
the uniform random numbers, because this has an impact on RQMC effectiveness. For real-
life models, it is usually much too hard to precompute such measures, so the best practice
would be to identify a few promising candidates and either: (1) perform pilot runs to compare
their effectiveness and select one or (2) take a convex combination of the corresponding CDEs,
as explained in Section 4.2.4. We believe that finding a good G will always remain largely
problem-dependent and it sometimes requires creativity. We illustrate this with a variety of
examples in Section 6.4.

4.2.3. Small examples to provide insight

To illustrate some key ideas, this subsection provides simple examples to illustrate the
key ideas. For these examples, we take X = h(Y1, . . . ,Yd) where Y1, . . . ,Yd are independent
continuous random variables, each Yj has cdf Fj and density fj, and we condition on G = G−k
defined as the information that remains after erasing the value taken by Yk. We can write
G−k = (Y1, . . . , Yk−1,Yk+1, . . . ,Yd). The CDE f(x | G−k) will be related to the density fk

and will depend on the form of h. In Section 6.4, we consider more elaborate forms of
conditioning.

Example 4.2.1. A very simple situation is when X = h(Y1, . . . ,Yd) = Y1 + · · ·+ Yd, a sum
of d independent continuous random variables. By hiding Yk for an arbitrary k, we get

F (x | G−k) = P[X ≤ x | S−k] = P[Yk ≤ x− S−k] = Fk(x− S−k),
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where S−k def= ∑d
j=1, j 6=k Yj, and the density estimator becomes f(x | G−k) = fk(x − S−k).

This form also works if the Yj are not independent, provided that we are able to compute
the density of Yk conditional on G−k. It suffices to replace fk by this conditional density.
The model studied by Asmussen (2018) was a special case of this example, with independent
variables and k = d.

When the Yj’s have different distributions and we want to hide one, which one should we
hide? Intuition may suggest that we should always hide the one having the largest variance.
Although this simple rule may work fine in a majority of cases, it is not always optimal. In
particular, the optimal choice of k may depend on the value of x at which we estimate the
density. To illustrate this, let d = 2, f1(y) = 2y, and f2(y) = 2(1− y), for y ∈ (0,1). Then,
f(x) > 0 for 0 < x < 2. If we hide Y2, the density estimator at x is f2(x−Y1) and its second
moment is E[f 2

2 (x− Y1)] =
∫ 1

0 f
2
2 (x− y1)f1(y1)dy1 whereas if we hide Y1 instead, the density

estimator at x is f1(x−Y2) and its second moment is E[f 2
1 (x−Y2)] =

∫ 1
0 f

2
1 (x−y2)f2(y2)dy2.

One can easily verify that when x is close to 0, these integrands are positive only when both
y1 and y2 are also close to 0, and then the second integral is smallest, so it is better to hide
Y1. When x is close to 2, the opposite is true and it is better to hide Y2.

In applications, changing the conditioning as a function of x add complications and is
normally not necessary. Using the same conditioning for all x, even when not optimal, is
usually sufficient.

Example 4.2.2. The following tiny example provides further insight into the choice of G.

Suppose X is the sum of two independent uniform random variables: X = Y1 + Y2 where

Y1 ∼ U(0,1) and Y2 ∼ U(0,ε) where 0 < ε < 1. The exact density of X here is f(x) = x/ε

for 0 ≤ x ≤ ε, f(x) = 1 for ε ≤ x ≤ 1, and f(x) = (1+ ε−x)/ε for 1 ≤ x ≤ 1+ ε. Figure 4.1

illustrates this density.

With G = G−1, we have F (x | G−1) = P[X ≤ x | Y2] = P[Y1 ≤ x− Y2 | Y2] = x− Y2 and

the density estimator is f(x | G−1) = 1 for Y2 ≤ x ≤ 1 + Y2, and 0 elsewhere. If G = G−2

instead, then F (x | G−2) = P[Y2 ≤ x − Y1 | Y1] = (x − Y1)/ε and the density estimator is

f(x | G−2) = 1/ε for Y1 ≤ x ≤ ε + Y1, and 0 elsewhere. In both cases, the density estimator

with one sample is a uniform density, but the second one is over a narrow interval if ε is

small. When ε is small, G = G−2 gives a density estimator f̂cde ,n which is a sum of high

narrow peaks and has much larger variance. For this simple example, we can also derive exact
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Figure 4.1. Exact density of X for the model in Example 4.2.2 with ε = 3/4 (left) and
ε = 1/16 (right).

formulas for the IV of the CDE under MC. For G = G−1, f(x | G−1) = I[Y2 ≤ x ≤ 1 + Y2]
is a Bernoulli random variable with mean P[x − 1 ≤ Y2 ≤ x] = f(x), so its variance is

f(x)(1− f(x)). Integrating this over [0, 1 + ε] gives IV = ε/3 for one sample. For a sample

of size n, this gives IV = ε/(3n). For G = G−2, f(x | G−2) = I[Y1 ≤ x ≤ ε + Y1]/ε has also

mean f(x), but its variance is ε−1f(x)(1− εf(x)) which is larger than f(x)(1− f(x)) when

ε is small. Integrating over [0, 1 + ε] gives IV = 1/ε− 1 + ε/3 for one sample, which is much

larger than ε/3 when ε is small. The take-away here: It is usually better to condition on

lower-variance information and hide variables having a large variance contribution.

Example 4.2.3. In this example, we illustrate how Assumption 4.2.1 can be verified. Let X

be the sum of two independent normal random variables, X = Y1 + Y2, where Y1 ∼ N (0,σ2
1),

Y2 ∼ N (0,σ2
2), and σ2

1+σ2
2 = 1, so X ∼ N (0,1). With G = G−2, we have F (x | G−2) = P[Y2 ≤

x−Y1] = Φ((x−Y1)/σ2) and the CDE is f(x | G−2) = φ((x−Y1)/σ2)/σ2. Assumption 4.2.1 is

easily verified with Γ = φ(0)/σ2 and Kγ = Γ2, so this estimator is unbiased for f(x) = φ(x).
Its variance is

Var[φ((x− Y1)/σ2)/σ2] = E[exp[−(x− Y1)2/σ2
2]/(2πσ2

2)]− φ2(x)

= 1
σ2

2
√

2π
E[φ(
√

2(x− Y1)/σ2)]− φ2(x)

= 1
σ2

√
2π(1 + σ2

1)
φ
(√

2x/
√

1 + σ2
1

)
− φ2(x). (4.2.6)
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Example 4.2.4. If X is the min or max of two or more continuous random variables, then

in general F (· | G−k) is not continuous, so Assumption 4.2.1 does not hold. To illustrate

this, let X = max(Y1, Y2) where Y1 and Y2 are independent. With G = G−2 (we hide Y2), we

have

P[X ≤ x | Y1 = y] =


P[Y2 ≤ x | Y1 = y] = F2(x) if x ≥ y;

0 if x < y.

If F2(y) > 0, this function is discontinuous at x = y. The same holds for the maximum

of more than two variables. One way to handle this is to generate all the variables, then

hide the maximum and compute its conditional density given the other ones. Without loss

of generality, suppose Y1 is the maximum and Y2 = x2 the second largest. Then the CDE of

the max is f(x|G) = f1(x|Y1 > x2) Note that for independent random variables whose cdfs

and densities have an analytical form, the cdf and density of the max can often be computed

analytically. See Section 4.4.5 for more on this. A very similar story holds if we replace the

max by the min.

Example 4.2.5. Suppose X = Z.C where Z ∼ N (0,1) and C is continuous with support

over (0,∞). We can hide Z and generate X ∼ N (0,C2) conditional on C, or do the opposite.

Which one is best depends on the distribution of C. Here we have Var[X] = E[Var[X|C]] =
E[C2] while Var[E[X|C]] = 0. So the usual variance decomposition tells us nothing about

what to hide. This illustrates the fact that there is rarely a simple rule to select the optimal

G.

4.2.4. Convex combination of conditional density estimators

When there are many possible choices of G for a given problem, one may try to pick the
best one, but sometimes a better approach is to select more than one and take a convex
linear combination of the corresponding CDEs as the final density estimator. This idea is
well known for general mean estimators (Bratley et al., 1987). More specifically, suppose
f̂0,n, . . . , f̂q,n are q + 1 distinct unbiased density estimators. Typically, these estimators will
be dependent and will be based on the same simulations. They could be all CDEs based
on different choices of G (so they will not hide the same information), but there could be
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non-CDEs as well. A convex combination can take the form

f̂n(x) = β0f̂0,n(x) + · · ·+ βqf̂q,n(x) = f̂0,n(x)−
q∑
`=1

β`(f̂0,n(x)− f̂`,n(x)) (4.2.7)

for all x ∈ R, where β0 + · · · + βq = 1. This combination is equivalent to choosing f̂0,n(x)
as the main estimator, and taking the q differences f̂0,n(x) − f̂`,n(x) as control variables
(Bratley et al., 1987). With this interpretation, the optimal coefficients β` can be estimated
via standard control variate theory (Asmussen and Glynn, 2007) by trying to minimize the
IV of f̂n(x) w.r.t. the β`’s. More precisely, if we denote IV` = IV(f̂`,n(x)) and

IC`,k =
∫ b

a
Cov[f̂`,n(x),f̂k,n(x)]dx,

we obtain
IV = IV

(
f̂n(x)

)
=

q∑
`=0

β2
` IV` + 2

∑
0≤`<k≤q

β`βkIC`,k.

Given the IV`’s and IC`,k’s (or good estimates of them), this IV is a quadratic function of the
β`’s, which can be minimized exactly as in standard least-squares linear regression, to obtain
estimates of the optimal coefficients βj. Estimating the density and coefficients from the
same data yields biased but consistent density estimators, and the bias is rarely a problem.
We did this for some of the examples in Section 6.4.

A more refined approach is to allow the coefficients βj to depend on x:

f̂n(x) = β0(x)f̂0,n(x) + · · ·+ βq(x)f̂q,n(x) = f̂0,n(x)−
q∑
`=1

β`(x)(f̂0,n(x)− f̂`,n(x)), (4.2.8)

where β0(x) + · · · + βq(x) = 1 for all x ∈ R. We can estimate the optimal coefficients
by standard control variate theory at selected values of x, then for each ` ≥ 1, we can fit a
smoothing spline to these estimated values, by least squares. This provides estimated optimal
coefficients that are smooth functions of x, which can be used to obtain a final CDE. This
type of strategy was used in L’Ecuyer and Buist (2008) to estimate varying control variate
coefficients in a different setting. The additional flexibility can provide much more variance
reduction in some situations.
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4.2.5. A GLR density estimator (GLRDE)

The generalized likelihood ratio (GLR) method, originally developed by Peng et al. (2018)
to estimate the derivative of an expectation with respect to some model parameter, can be
adapted to density estimation, as shown in Peng et al. (2020). We summarize briefly here
how this methode stimates the density f(x) in our general setting, so we can apply it in our
examples and make numerical comparisons. The assumptions stated below differ slightly
from those in Peng et al. (2020). In particular, here we do not have a parameter θ, the
conditions on the estimator are required only in the area where X ≤ x, and we add a
condition to ensure finite variance. As in Section 4.2.3, we assume here that X = h(Y) =
h(Y1, . . . ,Yd) where Y1, . . . ,Yd are independent continuous random variables, and Yj has cdf
Fj and density fj. Let P (x) = {y ∈ Rd : h(y) ≤ x}. For j = 1, . . . ,d, let hj(y) := ∂h(y)/∂yj,
hjj(y) := ∂2h(y)/∂y2

j , and

Ψj(y) = ∂ log fj(yj)/∂yj − hjj(y)/hj(y)
hj(y) . (4.2.9)

Assumption 4.2.2. The Lebesgue measure of h−1((x− ε, x+ ε)) in Rd goes to 0 when ε→ 0
(this means essentially that the density is bounded around x).

Assumption 4.2.3. The set P (x) is measurable, the functions hj, hjj, and Ψj are well

defined over it, and E[I[X ≤ x] ·Ψ2
j(Y)] <∞.

Proposition 4.2.2. Under Assumptions 4.2.2 and 4.2.3, the GLRDE I[X ≤ x] · Ψj(Y) is

an unbiased and finite-variance estimator of the density f(x) at x.

Proof. For the proof of Proposition 4.2.2 and additional details, See Peng et al. (2020). �

4.3. Combining RQMC with the CMC density estimator

We now discuss how RQMC can be used with the CDE, and under what conditions it can
provide a convergence rate faster than O(n−1) for the IV of the resulting unbiased estimator.
For this, we first recall some basic facts about QMC and RQMC. More detailed coverages
can be found in Niederreiter (1992), Dick and Pillichshammer (2010), and L’Ecuyer (2009,
2018), for example.
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For a function g : [0,1)s → R, the integration error by the average over a point set
Pn = {u1, . . . ,un} ⊂ [0,1]s is defined by

En = 1
n

n∑
i=1

g(ui)−
∫

[0,1]s
g(u)du. (4.3.1)

Classical QMC theory bounds this error as follows. Let v ⊆ S := {1, . . . ,s} denote an
arbitrary subset of coordinates. For any point u = (u1, . . . ,us) ∈ [0,1]s, uv denotes the
projection of u on the coordinates in v and (uv,1) is the point u in which uj is replaced by
1 for each j 6∈ v. Let gv := ∂|v|g/∂uv denote the partial derivative of g with respect to all
the coordinates in v. When gv exists and is continuous for v = S (i.e., for all v ⊆ S), the
Hardy-Krause (HK) variation of g can be written as

VHK(g) =
∑
∅6=v⊆S

∫
[0,1]|v|

|gv(uv,1)| duv. (4.3.2)

On the other hand, the star-discrepancy of Pn is

D∗(Pn) = sup
u∈[0,1]s

∣∣∣∣∣ |Pn ∩ [0,u)|
n

− vol[0,u)
∣∣∣∣∣

where vol[0,u) is the volume of the box [0,u). The classical Koksma-Hlawka (KH) inequality

bounds the absolute error by the product of these two quantities, one that involves only the
function g and the other that involves only the point set Pn:

|En| ≤ VHK(g) ·D∗(Pn). (4.3.3)

There are explicit construction methods (e.g., digital nets, lattice rules, and polynomial
lattice rules) of deterministic point sets Pn for which D∗(Pn) = O((log n)s−1/n) = O(n−1+ε)
for all ε > 0. This means that functions g for which VHK(g) < ∞ can be integrated by
QMC with a worst-case error that satisfies |En| = O(n−1+ε). There are also known methods
to randomize these point sets Pn in a way that each randomized point ui has the uniform
distribution over [0,1)s, so E[En] = 0, and the O(n−1+ε) discrepancy bound is preserved,
which gives

Var[En] = E[E2
n] = O(n−2+ε). (4.3.4)

The classical definitions of variation and discrepancy given above are in fact only one
pair among an infinite collection of possibilities. There are other versions of (4.3.3), with
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different definitions of the discrepancy and the variation, such that there are known point set
constructions for which the discrepancy converges as O(n−α+ε) for α > 1, but the conditions
on g to have finite variation are more restrictive (more smoothness is required) (Dick and
Pillichshammer, 2010).

From a practical viewpoint, getting a good estimate or an upper bound on the variation
of g that can be useful to bound the RQMC variance is a notoriously difficult problem.
Even just showing that the variation is finite is not always easy. However, finite variation
is not a necessary condition. In many realistic applications in which variation is known to
be infinite, RQMC can nevertheless reduce the variance by a large factor (He and Wang,
2015; L’Ecuyer, 2009; L’Ecuyer and Munger, 2012). The appropriate explanation for this
depends on the application. In many cases, part of the explanation is that the integrand g
can be written as a sum of orthogonal functions (as in an ANOVA decomposition) and a
set of terms in that sum have a large variance contribution and are smooth low-dimensional
functions for which RQMC is very effective (L’Ecuyer, 2009; L’Ecuyer and Lemieux, 2000;
Lemieux, 2009). Making such a decomposition and finding the important terms is usually
difficult for realistic problems, but to apply RQMC in practice, this is not needed. The usual
approach in applications is to try it and compare the RQMC variance with the MC variance
empirically. We will do that in Section 6.4. To estimate the RQMC variance, we usually
replicate the RQMC scheme nr times independently, using the same point set but with nr
independent randomizations, then we compute the empirical mean and variance of the nr
independent realizations of the RQMC density estimator (1/n)∑n

i=1 g(Ui).
To combine the CDE with RQMC, we must be able to write F (x | G) = g̃(x,u) and

f(x | G) = g̃′(x,u) = dg̃(x,u)/dx for some function g̃ : [a,b]× [0,1)s. The function g̃′(x,·) will
act as g in (4.3.1). The combined CDE+RQMC estimator f̂cde-rqmc ,n(x) will be defined by

f̂cde-rqmc ,n(x) = 1
n

n∑
i=1

g̃′(x,Ui), (4.3.5)

which is the RQMC version of (4.2.2). To estimate the RQMC variance, we can perform nr

independent randomizations to obtain nr independent realizations of f̂cde ,n in (4.2.2) with
MC and nr independent realizations of f̂cde-rqmc ,n in (4.3.5) with RQMC, and compute the
empirical IV. By putting together the previous results, we obtain:
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Proposition 4.3.1. If supx∈[a,b] VHK(g̃′(x,.)) < ∞, then with RQMC points sets Pn with

D∗(Pn) = O((log n)s−1/n), for any ε > 0, we have supx∈[a,b] Var[f̃cde−rqmc,n(x)] = O(n−2+ε),
so the MISE of the CDE+RQMC estimator converges as O(n−2+ε).

This is rarely done in practic but it is instructive to illustrate how the HK variation
of g̃′(x,·) can be bounded in our CDE setting, so that Proposition 4.3.1 applies. For this,
we need to show that the integral of the partial derivative of g̃′(x,u) with respect to each
subset of coordinates of u is finite. This will prove that the variance bound (4.3.4) holds
for the CDE for these examples. To prove the bounded HK variation, we need to take the
partial derivative of g̃′(x,u) with respect to each subset of coordinates of u and show that
the integral of each such partial derivative is finite. We show how this can be done for some
of our earlier examples.

Example 4.3.1. Consider a sum of random variables as in Example 4.2.1, with G = G−k
summarized by the single real number S−k. We have F (x | G) = Fk(x − S−k) and f(x |
G) = fk(x − S−k). Without loss of generality, let k = d. Suppose that each Yj is generated
by inversion from Uj ∼ U(0,1), so Yj = F−1

j (Uj) and S−d = F−1
1 (U1) + · · · + F−1

s (Us) with
s = d − 1. This gives g̃(x,U) = Fd(x − S−d) = Fd(x − F−1

1 (U1) − · · · − F−1
s (Us)) and

g̃′(x,U) = fd(x − S−d) = fd(x − F−1
1 (U1) − · · · − F−1

s (Us)). The partial derivatives of this
last function are

g̃′v(x,Uv,1) = f
(|v|)
d (x− S−d)

∏
j∈v

∂(F−1
j (Uj))
∂Uj

.

So the functions F−1
j must be differentiable over (0,1) for j = 1, . . . ,d−1, the density fd must

be s times differentiable, and the integral of |g̃′v(x,uv,1)| with respect to uv must be bounded
uniformly in x ∈ [a,b]. Under these conditions, the HK variation is bounded uniformly in x
over [a,b].

For Example 4.2.2, with G = G−2 and Y1 = U1, we have g̃′(x,u) = g̃′(x,U1) = I[U1 ≤

x ≤ ε + U1]/ε = I[x− ε ≤ U1 ≤ x]/ε. This function is not continuous, but its HK variation
(not given by (4.3.2) in this case) is 2/ε < ∞, because it is piecewise constant with only
two jumps, each one of size 1/ε. Thus, the HK variation is unbounded when ε → 0, but it
is finite for any fixed ε. The behavior with G = G−1 is similar and the HK variation is 2 in
that case, which is much better.

For Example 4.2.3, if G = G−2, we have Y1 = σ1Φ−1(U1) where U1 ∼ U(0,1). Then, F (x |
G−2) = F2(x− Y1) = Φ((x− Y1)/σ2) and f(x | G−2) = φ((x− σ1Φ−1(U1))/σ2)/σ2 = g̃′(x,U1).
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Taking the derivative with respect to u and noting that dΦ−1(u)/du = 1/(φ(Φ−1(u))) yields

g̃′v(x,u) = φ′((x− σ1Φ−1(u))/σ2)σ1

σ2
2φ(Φ−1(u))

for v = {1} = S (the only subset in this case). Integrating this with respect to u by making
the change of variable z = Φ−1(u) gives∫ 1

0
g̃′v(x,u)du = σ1

σ2
2

∫ ∞
−∞
|φ′((x− σ1z)/σ2)| dz <∞,

because |φ′(·)| is bounded by φ(·) multiplied by the absolute value of a polynomial of degree
1. So the HK variation is bounded uniformly in x.

For all these examples in which the HK is unbounded, RQMC may still reduce the IV, but
there is no guarantee. The GLRDE in Proposition 4.2.2 is typically discontinuous because
of the indicator function, and therefore its HK variation is usually infinite.

4.4. Examples and numerical experiments

We now examine larger examples, summarize the results of our numerical experiments
with the CDE and CDE+RQMC, and make comparisons with KDE and GLR, with MC and
RQMC.

4.4.1. Experimental setting

Since the CDE is unbiased, we measure its performance by the IV, which equals the
MISE in this case. To approximate the IV estimator (4.2.3) for a given n, we first take a
stratified sample e1, . . . , ene of ne evaluation points at which the empirical variance will be
computed. We sample ej uniformly in [a+(j−1)(b−a)/ne, a+j(b−a)/ne) for j = 1, . . . ,ne.
Then we use the unbiased IV estimator

ÎV = (b− a)
ne

ne∑
j=1

V̂ar[f̂n(ej)],

where V̂ar[f̂n(ej)] is the empirical variance of the CDE at ej, obtained as follows. We repeat
the following nr times, independently: Generate n observations of X from the density f

with the given method (MC or RQMC), and compute the CDE at each evaluation point ej.
We then compute V̂ar[f̂n(ej)] as the empirical variance of the nr density estimates at ej, for
each j. In all our examples, we used nr = 100 and ne = 128.
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To estimate the convergence rate of the IV as a function of n with the different methods,
we fit a model of the form IV ≈ Kn−ν . For the CDE with independent points (no RQMC),
this model holds exactly with ν = 1. We hope to observe ν > 1 with RQMC. The parameters
K and ν are estimated by linear regression in log-log scale, i.e., by fitting the model log IV ≈
logK − ν log n to data. Since n is always taken as a power of 2, we report the logarithms in
base 2. We estimated the IV for n = 214, . . . , 219 (6 values) to fit the regression model. We
also report the observed − log2 IV for n = 219 and use e19 as a shorthand for this value in
the tables. We use exactly the same procedure for the GLRDE. For the KDE, these values
are for the MISE instead of the IV. In all cases, we used a normal kernel and a bandwidth h
selected by the methodology described in Ben Abdellah et al. (2019a). For some examples,
we tried CDEs based on different choices of G and a convex combination as in Section 4.2.4.
We report results with the following types of point sets:

(1) independent points (MC);
(2) a randomly-shifted lattice rule (Lat+s);
(3) a randomly-shifted lattice rule with a baker’s transformation (Lat+s+b);
(4) Sobol’ points with a left random matrix scramble and random digital shift

(Sobol’+LMS).

The short names in parentheses are used in the plots and tables. For the definitions and
properties of these RQMC point sets, see L’Ecuyer (2009, 2018); L’Ecuyer and Lemieux
(2000); Owen (2003). They are implemented in SSJ (L’Ecuyer, 2016), which we used for
our experiments. The parameters of the lattice rules were found with the Lattice Builder
software of L’Ecuyer and Munger (2016), using a fast-CBC construction method with the P2

criterion and order dependent weights γv = ρ|v|, with ρ ranging from 0.05 to 0.8, depending
on the example (a larger ρ was used when the dimension s was smaller). The baker’s
transformation sometimes improves the convergence rate by making the integrand periodic
(Hickernell, 2002), but it usually also increase the variation of the integrand, so its impact
on the variance can go either way.

4.4.2. A sum of normals

We start with a very simple example in which the density f is known beforehand, so
there is no real need to estimate it, but this type of example is very convenient for testing
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the performance of our density estimators. Let Z1, . . . ,Zd be independent standard normal
random variables, i.e., with mean 0 and variance 1, and define

X = (a1Z1 + · · ·+ adZd)/σ, where σ2 = a2
1 + · · ·+ a2

d.

Then X is also standard normal, with density f(x) = φ(x) def= exp(−x2/2)/
√

2π and cdf
P[X ≤ x] = Φ(x) for x ∈ R. The term ajZj in the sum has variance a2

j . We pretend we do
not know this and we estimate f(x) over the interval [−2,2], which contains slightly more
than 95% of the density. We also tried larger intervals, such as [−5,5], and IVs for the CDE
were almost the same.

To construct the CDE, we define G−k as in Example 4.2.1, for any k = 1, . . . ,d. That is,
we hide Zk and estimate the cdf by

F (x | G−k) = P

akZk ≤ xσ −
d∑

j=1, j 6=k
ajZj

∣∣∣∣∣∣G−k
 = Φ

xσ
ak
− 1
ak

d∑
j=1, j 6=k

ajZj

 .
The CDE becomes

f(x | G−k) = φ

xσ
ak
− 1
ak

d∑
j=1, j 6=k

ajZj

 σ

ak
= φ

xσ
ak
− 1
ak

d∑
j=1, j 6=k

ajΦ−1(Uj)
 σ

ak

def= g̃′(x,U)

for x ∈ R, where U = (U1, . . . ,Uk−1,Uk+1, . . . , Ud), Zj = Φ−1(Uj), and the Uj are independent
U(0,1) random variables. Assumption 4.2.1 is easily verified, so this CDE is unbiased.

For CMC+MC (independent sampling), we get an exact formula for the variance of the
CDE directly from Example 4.2.3, by taking in that example Y2 = akZk/σ and Y1 = X−Y2,
whose variances are σ2

2 = (ak/σ)2 and σ2
1 = 1 − σ2

2, and plugging these values into (4.2.6).
To prove that RQMC gives a better convergence rate for the variance than MC, it suffices
to show that VHK(g̃′(x,·)) <∞ for any x. This can be done by the same argument as in the
second part of Example 4.3.1. Then we expect to observe a convergence rate near O(n−2),
at least when d is small.

For the GLRDE method, with Yj = Zjaj/σ ∼ N (0,a2
j/σ

2), we obtain ∂(log fj(yj))/∂yj =
−yjσ2/a2

j , hj(yj) = 1, hjj(yj) = 0, and then Ψj = −Yjσ2/a2
j = −Zjσ/aj. Note that we

could also replace Yj by Zj and fj by φj (the standard normal density), which would give
∂(log φj(zj))/∂zj = −zj, hj(zj) = aj/σ, hjj(yj) = 0, and again Ψj = −Zjσ/aj.

In our first experiment, we take aj = 1 for all j, and k = d. By symmetry, the true IV
is the same for any other k. Table 4.1 reports the estimated rate ν̂ and the estimated value
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ν̂ e19
d = 2 d = 3 d = 5 d = 10 d = 20 d = 2 d = 3 d = 5 d = 10 d = 20

CDE-1

MC 0.99 0.98 1.02 1.00 1.02 22.1 21.4 20.8 19.8 19.2
Lat+s 2.83 2.00 1.85 1.40 1.04 52.3 39.8 32.1 23.6 19.7
Lat+s+b 2.69 2.11 1.69 1.14 1.05 50.5 41.5 31.1 21.8 20.0
Sob+LMS 2.62 2.10 1.81 1.04 1.04 49.3 40.7 31.1 21.3 19.7

CDE-avg

MC 1.06 0.92 1.03 1.01 1.01 23.4 22.1 21.6 20.6 19.8
Lat+s 2.79 1.84 1.33 1.19 1.05 53.3 39.8 32.2 23.0 20.6
Lat+s+b 2.65 1.90 1.71 1.05 1.08 51.6 41.4 32.3 23.4 21.3
Sob+LMS 2.60 2.10 1.92 1.02 1.03 49.8 42.0 33.0 22.7 20.5

GLRDE

MC 0.98 0.95 1.03 1.05 1.00 17.0 16.1 15.9 14.9 14.1
Lat+s 1.51 1.56 1.45 0.94 1.06 28.2 24.9 22.1 17.8 17.2
Lat+s+b 1.49 1.41 1.05 1.06 1.04 27.3 23.9 20.4 18.8 17.6
Sob+LMS 1.49 1.33 1.15 0.99 1.16 27.5 24.0 21.0 18.3 17.4

KDE

MC 0.79 0.80 0.76 0.75 0.77 17.0 17.0 16.9 16.9 17.0
Lat+s 1.08 1.39 0.92 0.97 0.76 25.1 22.4 19.4 18.2 17.4
Lat+s+b 1.23 0.94 0.72 0.73 0.74 24.1 20.1 18.1 17.3 17.2
Sob+LMS 1.18 0.98 0.83 0.74 0.77 24.4 20.8 17.9 17.2 17.1

Table 4.1. Values of ν̂ and e19 for a CDE, and a convex combination of CDEs, a GLRDE,
and a KDE, for a sum of d = k normals with aj = 1, over [−2,2].

of e19 = − log2(IV) for n = 219, for various values of d and sampling methods. The rows
marked CDE-1 give the results for k = d, while those labeled CDE-Avg are for a convex
combination (4.2.7) with equal weights β` = 1/d for all ` = k− 1, after computing the CDE
for each k from the same simulations.

For MC, the rates ν̂ agree with the (known) exact asymptotic rates of ν = 1 for the CDE
and GLR, and ν = 0.8 for the KDE. By looking at e19, we see that the MISE with MC is
much smaller for the CDE than for the GLRDE and KDE, for example for d = 2 by a factor
of about 32 for CDE-1 and about 70 for CDE-avg. For d = 20, the gains are more modest.
RQMC methods provide huge improvements for small d with the CDE. We observe rates ν̂
larger than 2 for d = 2 and 3, and by looking at the exponents e19, we see that for d = 3, for
example, the MISE goes from 2−17 for the GLRDE and KDE to about 2−42 for CDE-1 with
Sobol’ points with LMS. This is a reduction factor of about 225 ≈ 33 millions for n = 219.
The large values of ν̂ imply of course that this factor is smaller for smaller n. When d is
large, such as d = 20, RQMC brings only a small gain. The values of ν̂ are sometimes noisy.
For GLRDE with Lat+s and d = 5, for example, the large ν̂ = 1.45 comes from the fact
that the IV for n = 214 (not shown) is unusually large (an outlier). Looking at e19 gives a
more robust assessment of the performance. GLRDE performs better than the KDE under
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RQMC for small d, but not comparable to the CDE. Under MC, GLRDE is slightly worse
than the KDE.

ν̂ e19
k = 1 k = 2 k = 5 k = 11 k = 1 k = 2 k = 5 k = 11

MC 1.00 1.02 1.01 1.00 22.2 21.0 18.8 15.5
Lat+s 1.43 1.48 1.34 1.04 30.3 28.5 22.8 15.6
Lat+s+b 1.57 1.65 1.28 1.02 33.5 30.8 22.1 15.6
Sob+LMS 1.78 1.56 1.21 1.02 34.1 30.4 21.7 15.7

Table 4.2. Values of ν̂ and e19 with a CDE for selected choices of G−k, for a linear combi-
nation of d = 11 normals with a2

j = 21−j.

In our second experiment, we take a2
j = 21−j for j = 1, . . . ,d. Now, the choice of k for the

CDE makes a difference, and the best choice will obviously be k = 1, i.e., hide the term that
has the largest variance. Note that with MC, Var[X] = 2−2−d, and when we apply CMC by
hiding akZk from the sum, we hide a term of variance a2

k = 21−k and generate a partial sum
S−k of variance 2 − 21−k − 2−d. Both terms have a normal distribution with mean 0. The
results of Example 4.2.3 hold with these variances. Table 4.2 reports the numerical results
for d = 11 and k = 1, 2, 5, 11.

The MC rates ν̂ agree again with the theory, but here the IV depends very much on the
choice of k, and this effect is more significant when k is smaller. For example, for Sobol’
points, the IV with k = 1 is about 300,000 times smaller than with k = 11. The reason is
that with k = 11, we hide only a variable having a very small variance, so the CDE for one
sample is a high narrow peak, and the HK variation of g̃′(x,u) is very large. For k = 1 or 2,
we have the opposite and the integrand is much more RQMC-friendly.

4.4.3. Displacement of a cantilever beam

We consider the following model for the displacement X of a cantilever beam with hori-
zontal and vertical loads, taken from Bingham (2017):

X = h(Y1,Y2,Y3) = 4`3

Y1wt

√
Y 2

2
w4 + Y 2

3
t4

(4.4.1)

in which ` = 100, w = 4 and t = 2 are constants (in inches), while Y1 (Young’s modulus), Y2

(the horizontal load), and Y3 (the vertical load), are independent normal random variables,
Yj ∼ N (µj,σ2

j ), i.e., normal with mean µj and variance σ2
j . The parameter values are
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µ1 = 2.9 × 107, σ1 = 1.45 × 106, µ2 = 500, σ2 = 100, µ3 = 1000, σ3 = 100. We will
denote κ = 4`3/(wt) = 5 × 105. The goal is to estimate the density of X over the interval
[3.1707, 5.6675], which covers about 99% of the density (it clips 0.5% on each side). It is
possible to haveX < 0 in this model, but the probability is P[Y1 < 0] = Φ(−20) = 2.8×10−89,
which is negligible. This example fits the framework of Section 4.2.3, with d = 3. We can
hide any of the three random variables for the conditioning, and we will examine each case.

Conditioning on G−1 means hiding Y1. We have

X = κ

Y1

√
Y 2

2
w4 + Y 2

3
t4
≤ x if and only if Y1 ≥

κ

x

√
Y 2

2
w4 + Y 2

3
t4

def= W1(x).

Note that W1(x) > 0 if and only if x > 0. For x > 0,

F (x | G−1) = P[Y1 ≥ W1(x) | W1(x)] = 1− Φ((W1(x)− µ1)/σ1)

which is continuous and differentiable in x, and

f(x | G−1) = −φ((W1(x)− µ1)/σ1)W ′
1(x)/σ1 = φ((W1(x)− µ1)/σ1)W1(x)/(xσ1).

If we condition on G−2 instead, i.e., we hide Y2, we have X ≤ x if and only if

Y 2
2 ≤ w4

(
(xY1/κ)2 − Y 2

3 /t
4
) def= W2(x).

If W2(x) ≤ 0, then F ′(x | G−2) = F (x | G−2) = P[X ≤ x | W2(x)] = 0. For W2(x) > 0, we
have

F (x | G−2) = P[X ≤ x | W2(x)] = P
[
−
√
W2(x) ≤ Y2 ≤

√
W2(x) | W2(x)

]
= Φ((

√
W2(x)− µ2)/σ2)− Φ(−(

√
W2(x) + µ2)/σ2),

which is again continuous and differentiable in x, and

f(x | G−2) =
φ((

√
W2(x)− µ2)/σ2) + φ(−(

√
W2(x) + µ2)/σ2)

(σ2

√
W2(x))/(w4x(Y1/κ)2)

> 0.

If we condition on G−3, the analysis is the same as for G−2, by symmetry, and we get

f(x | G−3) =
φ((

√
W3(x)− µ3)/σ3) + φ(−(

√
W3(x) + µ3)/σ3)

(σ3

√
W3(x))/(t4x(Y1/κ)2)

> 0
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forW3(x) > 0, whereW3(x) is defined in a similar way asW2(x). In addition to testing these
three ways of conditioning, we also tested a convex combination of the three, as explained
in Section 4.2.4, with coefficients β` that do not depend on x.

For GLRDE using Y1, let C = C(Y2, Y3) = (4`3/wt)
√
Y 2

2 /w
4 + Y 2

3 /t
4. Then, we have

X = h(Y) = C/Y1, h1(Y) = −CY −2
1 , h11(Y) = 2CY −3

1 , ∂ log f1(Y1)/∂Y1 = (Y1 − µ1)/σ2
1,

and
Ψ1 = Y1

C

(
Y1(Y1 − µ1)/σ2

1 − 2
)
.

ν̂ e19
G−1 G−2 G−3 comb. GLRDE KDE G−1 G−2 G−3 comb. GLRDE KDE

MC 0.97 0.98 0.99 0.98 1.02 0.76 19.3 14.5 22.8 22.5 14.1 15.8
Lat+s 1.99 1.95 2.06 2.04 1.38 1.03 39.8 25.2 41.6 41.9 23.4 21.9
Lat+s+b 2.24 2.08 2.27 2.25 1.37 0.93 44.5 23.7 46.8 47.0 23.3 21.0
Sob+LMS 2.21 2.03 2.21 2.21 1.32 0.97 44.0 23.6 45.7 46.1 23.4 21.5
Table 4.3. Values of ν̂ and e19 with a CDE for each choice of G−k, for the best convex
combination, for the GLRDE, and for the KDE, for the cantilever beam model.

Table 4.3 summarizes the results. The MISE is about 2−47 for the best CDE+RQMC
compared with 2−15.8 for usual KDE+MC, a gain by a factor of over 231 ≈ 2 billions. With
RQMC, the convergence rate ν̂ is around 2 in all cases with the CDE methods, and much
less for GLRDE and KDE. GLRDE benefits significantly from RQMC, more than the KDE,
but cannot compete with the CDE. For the lattice rules, the baker’s transformation helps
significantly for the CDE.

We also see that conditioning on G−2 does not give as much reduction than for the
other choices. The reason is that the conditional density in this case is a high narrow peak,
similar to what we saw for k = 11 at the end of Example 4.4.2. To provide visual insight,
Figure 4.2 shows plots of five realizations of the conditional density for G−1, G−2, and G−3.
The realizations of f(· | G−2) have high narrow peaks. The average of the five realizations
is shown in red and the true density in black. In Figure 4.3, we zoom in on part of the
estimated densities to show the difference between MC and RQMC. In each panel one can
see the CDE using MC (in red), using RQMC (in green), and the “true density” (black,
dashed) estimated with RQMC using a very large number of samples. We have G−1 with
n = 210 on the left and G−2 with n = 216 on the right. In both cases, the RQMC estimate
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is closer to the true density, and on the right it oscillates less. If we repeat this experiment
several times, the red curve would vary much more than the green one across the realizations.
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Figure 4.2. Five realizations of the density conditional on G−k (blue), their average (red),
and the true density (thick black) for k = 1 (left), k = 2 (middle), and k = 3 (right), for the
cantilever example.
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Figure 4.3. The CDE under MC (red), under RQMC (green) and the true density (black,
dashed) for G−1 with n = 210 (left) and for G−2 with n = 216 (right), for the cantilever
example.

4.4.4. Buckling strength of a steel plate

This is a six-dimensional example, taken from Schields and Zhang (2016). It models the
buckling strength of a steel plate by

X =
(2.1

Λ −
0.9
Λ2

)(
1− 0.75Y5

Λ

)(
1− 2Y6Y2

Y1

)
, (4.4.2)

where Λ = (Y1/Y2)
√
Y3/Y4, and Y1, . . . ,Y6 are independent random variables whose distribu-

tions are given in Table 4.4. Each distribution is either normal or lognormal, and the table
gives the mean and the coefficient of variation (cv), which is the standard deviation divided
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parameter distribution mean cv
Y1 normal 23.808 0.028
Y2 lognormal 0.525 0.044
Y3 lognormal 44.2 0.1235
Y4 normal 28623 0.076
Y5 normal 0.35 0.05
Y6 normal 5.25 0.07

Table 4.4. Distribution of each parameter for the buckling strength model.

by the mean. We estimate the density of X over [a,b] = [0.5169,0.6511], which contains
about 99% of the density (leaving out 0.5% on each side). There is a nonzero probability of
having Y4 ≤ 0, in which case X is undefined, but this probability is extremely small and this
has a negligible impact on the density estimator over [a,b], so we just ignore it (alternatively
we could truncate the density of Y4). There are also negligible probabilities that the density
estimates below are negative and we ignore this.

For this example, computing the density of X conditional on G−5 or G−6 (i.e., when hiding
Y5 or Y6) is relatively easy, so we will try and compare these two choices. If we hide one of
the variables that appear in Λ, the CDE would be harder to compute (it would require to
solve a polynomial equation of degree 4 for each sample), and we do not do it. Let us define

V1 = 2.1
Λ −

0.9
Λ2 , V2 = 1− 2Y6Y2

Y1
, and V3 = 1− 3Y5

4Λ .

Then we have
X ≤ x ⇔ Y5 ≥

(
1− x

V1V2

) 4Λ
3

and

f(x | G−5) = f5

((
1− x

V1V2

) 4Λ
3

)
4Λ

3V1V2
= φ

(
(1− x/(V1V2)) 4Λ/3− 0.35

0.0175

)
4Λ

0.0525 · V1V2
.

Similarly,

f(x | G−6) = f6

((
1− x

V1V3

)
Y1

2Y2

)
Y1

2Y2V1V3
= φ

(
(1− x/(V1V3))Y1/(2Y2)− 5.25

0.3675

)
Y1

0.735 · Y2V1V3
.

For GLRDE using Y6, let C = (2.1/Λ− 0.9/Λ2) (1− 0.75Y5/Λ). We have X = h(Y) =
C(1 − 2Y6Y2/Y1), h6(Y) = 2CY2/Y1, h66(Y) = 0, ∂ log f6(Y6)/∂Y6 = −(Y6 − µ6)/σ2

6, and
Ψ6 = Y1(Y6 − µ6)/(2CY2σ

2
6).
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ν̂ e19
G−5 G−6 comb. GLRDE KDE G−5 G−6 comb. GLRDE KDE

MC 1.00 1.00 1.00 0.98 0.76 13.5 15.4 15.4 10.2 11.7
Lat+s 1.89 1.56 1.56 1.29 0.81 20.0 24.9 24.9 16.6 13.7
Lat+s+b 1.46 1.65 1.60 1.19 0.85 17.5 25.1 25.1 15.9 12.7
Sob+LMS 1.40 1.75 1.75 1.16 0.81 17.7 25.5 25.5 15.9 12.4

Table 4.5. Values of ν̂ and e19 with a CDE for G−5, G−6, their combination, GLRDE, and
the KDE, for the buckling strength model.
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Figure 4.4. MISE vs n in log-log scale for the G = G−5 (left) and G = G−6 (right) for the
buckling strength model.

Table 4.5 summarizes the results. We see again that the CDE with RQMC performs very
well and much better than the GLRDE and KDE, that it is much better to condition on G−6

than on G−5, and that combining the two provides no significant improvement. The GLRDE
is also better than the KDE under RQMC, but not under MC. Figure 4.4 displays the IV as
a function of n in a log-log-scale for the CDE with G−5 and G−6. It unveils a slightly more
erratic behavior of the MISE for the shifted lattice rule (Lat+s) than for the other methods;
the performance depends on the choice of parameters of the lattice rule and their interaction
with the particular integrand.

4.4.5. A stochastic activity network

In this example, the conditioning must hide more than one random variable. We consider
an acyclic directed graph G = (N ,A) where N is a finite set of nodes and A = {aj =
(αj,βj), j = 1, . . . ,d} a finite set of arcs (directed links) where aj goes from αj to βj. There
is a source node having only outcoming arcs and a sink node having only incoming links, and
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each arc belongs to at least one path going from the source to the sink. There can be at most
one arc for each pair (αj, βj) (no parallel arcs). Each arc j has random length Yj. These
Yj are assumed independent with continuous cdf’s Fj, density fj, and can be generated by
inversion: Yj = F−1

j (Uj) where Uj ∼ U(0,1). The length of the longest path from the source
to the sink is a random variable X and the goal is to estimate the density of X.

This general model has several applications. The arcs aj may represent activities having
random durations and the graph represents precedence relationships between all activities
of a project. Activity aj cannot start before all activities j′ with βj′ = αj are completed.
Then X represents the duration of the project if all activities are started as soon as allowed.
This type of stochastic activity network (SAN) is widely used in project management for all
types of projects (e.g., construction, software, etc.), communication, transportation, etc. For
example, the graph may represent a large railway network in which each activity corresponds
to a train stopping at a station, or a train covering a given segment of its route, or a minimal
spacing between trains, etc. Precedence relationships are needed because railways are shared,
there are ordering and distancing rules between trains, passengers have connections between
trains, trains are merged or split at certain points, etc. The travel time of one passenger in
this network turns out to be the length X of the longest path in a subnetwork whose source
and sink are the origin and destination of this passenger.

For our numerical experiments, we use a small example from Avramidis and Wilson
(1996, 1998), who showed how to use CMC to estimate E[X] and some quantiles of the
distribution of X. L’Ecuyer and Lemieux (2000) and L’Ecuyer and Munger (2012) used this
same example to test the combination of CMC with RQMC to estimate E[X]. The network
is depicted in Figure 4.5 and the cdf’s Fj are given in Avramidis and Wilson (1996) and
L’Ecuyer and Munger (2012). We will estimate the density of X over [a,b] = [22,106.24],
which covers about 95% of the density.

Here, X is defined as the maximum length over several paths, and if we hide only a single
random variable Yj to implement the CDE, we run into the same problem as in Example 4.2.4:
Assumption 4.2.1 does not hold, because F (.|G) has a jump. This means that we must hide
more information (condition on less). Following Avramidis and Wilson (1996, 1998), we
select a uniformly directed cut L, which is a set of activities such that each path from the
source to the sink contains exactly one activity from L, and let G represent {Yj, j /∈ L}. In
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Figure 4.5, {1,2}, {11,13}, {5,6,7,9,10}, and {2,3,5,8,9,13}, are all valid choices of L. The
corresponding conditional cdf is
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Figure 4.5. A stochastic activity network

F (x | G) = P [X < x | {Yj : j 6∈ L}] =
∏
j∈L

P[Yj ≤ x− Pj] =
∏
j∈L

Fj(x− Pj) (4.4.3)

where Pj is the length of the longest path that goes through arc j when we exclude Yj from
that length. The conditional density is

f(x | G) = d
dxF (x | G) =

∑
j∈L

fj(x− Pj)
∏

l∈L, l 6=j
Fl(x− Pj).

Under this conditioning, since the Yj’s are continuous variables with bounded variance,
Assumption 4.2.1 holds, so f(x | G) is an unbiased density estimator with uniformly bounded
variance.

For our numerical experiments, we use the same cut L = {5,6,7,9,10} as Avramidis and
Wilson (1996), indicated in light blue in Figure 4.5, even though there are other cuts with
six links, which could possibly perform better because they hide more links. We could also
compute the CDE with several choices of L and then take a convex combination.

The GLRDE method described in Section 4.2.5 does not work for this example. Indeed,
with X = h(Y) defined as the length of the longest path, for any j, the derivative hj(Y) is
zero whenever arc j is not on the longest path, so we would need to select an arc j that is
guaranteed to be always on the longest path. But there is no such arc. We could apply a
modified GLRDE that selects a cut instead of a single coordinate Yj, but this is beyond the
scope of this paper.
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ν̂ e19

CDE

MC 0.96 25.6
Lat+s 1.31 30.9
Lat+s+b 1.17 29.6
Sob+LMS 1.27 29.9

KDE
MC 0.78 20.9
Lat+s 0.95 22.7
Lat+s+b 0.93 22.0
Sob+LMS 0.74 21.9

Table 4.6. Values of ν̂ and e19 with the CDE and KDE, for the SAN example.

Table 4.6 and Figure 4.6 summarize our results. We see that for n = 219, the CDE
outperforms the KDE by a factor of about 20 with MC, and by a factor of about 28 ≈ 250 with
RQMC. Interestingly, here the lattice rules work better without the baker’s transformation.
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Figure 4.6. MISE vs n in log-log scale, for the SAN example.

4.4.6. Density of the failure time of a system

We consider a d-component system in which each component starts in the operating
mode (state 1) and fails (jumps to state 0) at a certain random time, to stay there forever.
Let Yj be the failure time of component j for j = 1, . . . ,d. For t ≥ 0, let Wj(t) = I[Yj > t] be
the state of component j and W(t) = (W1(t), . . . ,Wd(t))t the system state, at time t. The
system is in the failed mode at time t if and only if Φ(W(t)) = 0, where Φ : {0,1}d → {0,1} is
called the structure function. Let X = inf{t ≥ 0 : Φ(W(t)) = 0} be the random time when
the system fails. We want to estimate the density of X. A straightforward way of simulating
a realization of X is to generate the component lifetimes Yj = inf{t ≥ 0 : Wj(t) = 0} for
j = 1, . . . ,d, and then compute X from that.
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As in Section 4.4.5, the GLRDE method of Section 4.2.5 does not work for this example,
because hj(Y) 6= 0 only when X = Yj, and there is no j for which this is sure to happen.

If the Yj are independent and exponential, one can construct a CMC estimator of the
cdf F (x) = P[X ≤ x] as follows (Botev et al., 2013, 2016; Gertsbakh and Shpungin, 2010).
Generate all the Yj’s and sort them in increasing order. Then, erase their values and retain
only their order, which is a permutation π of {1, . . . ,d}. Compute the critical number
C = C(π), defined as the number of component failures required for the system to fail (that
is, the system fails at the Cth component failure, for the given π). Note that C can also
be computed by starting with all components failed and resurrecting them one by one in
reverse order of their failure, until the system becomes operational. Computing C using
this reverse order is often more efficient (Botev et al., 2016). Then compute the conditional
cdf P[X ≤ x | π], where X is the time of the Cth component failure. This is an unbiased
estimator of F (x) with smaller variance than the indicator I[X ≤ x]. It can also be shown
that in an asymptotic regime in which the component failure rates converge to 0 so that
1 − F (x) → 0, the relative variance of this CMC estimator of 1 − F (x) remains bounded
whereas it goes to infinity with the conventional estimator I[X > x]; i.e., the CMC estimator
has bounded relative error (Botev et al., 2013, 2016).

When the lifetimes are independent and exponential, X is a sum of C independent
exponentials, so it has a hypoexponential distribution, whose cdf has an explicit formula
that can be written in terms of a matrix exponential, and developed explicitly as a sum of
products in terms of the rates of the exponential lifetimes, as explained in Botev et al. (2016).
By taking the derivative of the conditional cdf formula with respect to x, one obtains the
conditional density.

More specifically, let component j have an exponential lifetime with rate λj > 0, for
j = 1, . . . ,d. For a given realization, let π(j) be the jth component that fails and let C(π) = c

for the given π, let A1 be the time until the first failure, and let Aj be the time between the
(j− 1)th and jth failures, for j > 1. Conditional on π, we have X = A1 + · · ·+Ac where the
Aj’s are independent and Aj is exponential with rate Λj for all j ≥ 1, with Λ1 = λ1 + · · ·+λd,
and Λj = Λj−1−λπ(j) for all j ≥ 2. The conditional distribution ofX is then hypoexponential
with cdf

P[X ≤ x | π] = P[A1 + · · ·+ Ac ≤ x | π] = 1−
c∑
j=1

pje
−Λjx,
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where
pj =

c∏
k=1,k 6=j

Λk

Λk − Λj

.

See Gertsbakh and Shpungin (2010), Appendix A, and Botev et al. (2016), for example.
Taking the derivative with respect to x gives the CDE

f(x | π) =
c∑
j=1

Λjpje
−Λjx,

in which c, the Λj and the pj depend on π. This conditional density is well defined and
computable everywhere in [0,∞). There are instability issues for computing pj when Λk−Λj

is close to 0 for some k 6= j, but this can be addressed by a stable numerical algorithm of
Higham (2009). All of this can be generalized easily to a model in which the lifetimes are
dependent, with the dependence modeled by a Marshall-Olkin copula (Botev et al., 2016).
In that model, the Yj represent the occurrence times of shocks that can take down one or
more components simultaneously.

It is interesting to note that although f(x | π) is an unbiased estimator of the density
f(x) at any x, this estimator is a function of the permutation π only, so it takes its values in
a finite set, which means that the corresponding g̃(u) is a piecewise constant function, which
is not RQMC-friendly. Therefore, we do not expect RQMC to bring a very large gain.

ν̂ e19
MC 1.00 19.9
Lat+s 1.22 23.9
Lat+s+b 1.19 23.8
Sob+LMS 1.33 23.9

Table 4.7. Values of ν̂ and e19 with the CDE, for the network reliability example.

For a numerical illustration, we take the same graph as in Section 4.4.5. For j = 1, . . . ,13,
Yj is exponential with rate λj and the Yj are independent. The system fails as soon as there
is no path going from 0 to 8. For simplicity, here we take λj = 1 for all j, although taking
different λj’s brings no significant additional difficulty. We estimate the density over the
interval (a,b] = (0, 1.829], which cuts off roughly 1% of the probability on the right side.
Table 4.7 and Figure 4.7 give the results. The density of X estimated with n = 220 random
samples is shown on the left and the IV plots are on the right. Despite the discontinuity
of g̃, RQMC outperforms MC in terms of the IV by a factor of about 24 = 16 for n = 219,
and also by improving the empirical rate ν̂ to about −1.2 for lattices and even better with
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Figure 4.7. Density (left) and log IV as a function of log n (right) for the network failure
time.

Sobol’ points. The Sobol’ points used here were constructed using LatNet Builder (Marion
et al., 2020) with a CBC search based on the t-value of all projections up to order 6, with
order-dependent weights γk = 0.8k for projections of order k.

4.4.7. Density of waiting times in a single queue

4.4.7.1. Model with independent days.

We consider a single-server FIFO queue in which customers arrive from an arbitrary
arrival process (not necessarily stationary Poisson) and the service times are independent,
with continuous cdf G and density g. IfW denotes the waiting time of a “random” customer,
we want to estimate p0 = P[W = 0] and the density f of W over (0,∞).

We first consider a system that starts empty and evolves over a fixed time horizon τ ,
which we call a day. Let Tj be the arrival time of the jth customer, T0 = 0, Aj = Tj − Tj−1

the jth interarrival time, Sj the service time of customer j, and Wj the waiting time of
customer j. Since the system starts empty, we have W1 = 0, and the Lindley recurrence
gives us that Wj = max(0,Wj−1 + Sj−1 − Aj) for j ≥ 2. At time τ , the arrival process
stops, but service continues until all customers already arrived are served. The number of
customers handled in a day is the random variable N = max{j ≥ 1 : Tj < τ}. The cdf of W
can be written as F (0) = p0 and for x > 0, F (x) = P[W ≤ x] = E[I(W ≤ x)]. Note that the
sequence of waiting times of all customers over an infinite number of independent successive
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days is a regenerative process that regenerates at the beginning of each day. We can then
apply the renewal reward theorem, which gives

F (x) = E[I(W ≤ x)] = E [I[W1 ≤ x] + · · ·+ I[WN ≤ x]]
E[N ] . (4.4.4)

Since E[N ] does not depend on x, we see that for x > 0, the density f(x) is the derivative
of the numerator with respect to x, divided by E[N ].

To obtain a differentiable cdf estimator, we want to replace each indicator in the numer-
ator by a conditional expectation. One simple way of doing this is to hide the service time
Sj−1 of the previous customer; that is, replace I[Wj ≤ x] by

Pj(x) = P[Wj ≤ x | Wj−1−Aj] = P[Sj−1 ≤ x+Aj−Wj−1] = G(x+Aj−Wj−1) for x ≥ 0.

This gives Pj(0) = G(Aj −Wj−1) (there is a probability mass at 0), whereas for x > 0, we
have P ′j(x) = dPj(x)/dx = g(x + Aj −Wj−1) and then, since N does not change when we
change x,

f(x) = E[D(x)]
E[N ] where D(x) =

N∑
j=1

g(x+ Aj −Wj−1). (4.4.5)

Note that we are not conditioning on the same information for all terms of the sum, so
what we do is not exactly CMC, but extended CMC. It nevertheless provides the required
smoothing and an unbiased density estimator for the numerator of (4.4.4).

Often, for example if the arrival process is Poisson, E[N ] can be computed exactly, in
which case we only need to estimate E[D(x)] and we get an unbiased density estimator.
Otherwise, the denominator E[N ] can be estimated in the usual way. We are then in the
standard setting of estimating a ratio of expectations (Asmussen and Glynn, 2007), for which
we have unbiased estimators for the numerator and the denominator. We simulate n days,
independently (with MC) or with n RQMC points, to obtain n realizations of (N,D(x)), say
(N1, D1(x)), . . . , (Nn, Dn(x)). The ratio estimator (CDE) of f(x) is

f̂(x) =
∑n
i=1Di(x)∑n
i=1Ni

. (4.4.6)

It can be computed at any x ∈ [0,∞). For independent realizations (with MC), the variance
of f̂(x) can be estimated using the delta method for ratio estimators (Asmussen and Glynn,
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2007):

nVar[f̂(x)]→ Var[Di(x)] + Var[Ni]f 2(x)− 2Cov[Di(x), Ni]f(x)
E2[Ni]

asymptotically, when n → ∞. This variance can be estimated by replacing the unknown
quantities in this expression by their empirical values. This is consistent because the n pairs
(Di(x), Ni), i = 1, . . . ,n, are independent. Alternatively, a confidence interval on f(x) can
also be computed with a bootstrap approach (Choquet et al., 1999).

In the RQMC case, the pairs (Di(x), Ni) are no longer independent. Then, to obtain an
estimator of f(x) for which we can estimate the variance, we make nr independent repli-
cates of the RQMC estimator of the pair (E[D(x)],E[N ]), say (D̄1(x), N̄1), . . . , (D̄nr(x), N̄nr),
where each (D̄j(x), N̄j) is the average of n pairs (Di(x), Ni) sampled by RQMC. We estimate
the density f(x) by the ratio of the two grand sums

f̂rqmc,nr(x) =
∑nr
j=1 D̄j(x)∑nr
j=1 N̄j

.

To estimate the variance, we use that

Var[f̂rqmc,nr(x)] ≈ Var[D̄j(x)] + Var[N̄j]f 2(x)− 2Cov[D̄j(x), N̄j]f(x)
nr(E[N ])2

and we replace all the unknown quantities in this expression by their empirical values.
Here, the required dimension of the RQMC points is the (random) total number of

inter-arrival times Aj and service times Sj that we need to generate during the day. It
is approximately twice the number of customers that arrive during the day. This number
is unbounded, so the RQMC points must have unbounded (or infinite) dimension, and one
must be able to generate the points with-out first selecting a maximal dimension. Recurrence-
based RQMC point sets have this property; they can be provided for instance by ordinary
or polynomial Korobov lattice rules (L’Ecuyer and Lemieux, 1999, 2000, 2002; Lemieux and
L’Ecuyer, 2003), which are available in the hups package of SSJ (L’Ecuyer, 2016).

4.4.7.2. Steady-state model.

In a slightly different setting, we can assume that the single queue evolves in steady-state
over an infinite time horizon, under the additional assumptions that the Aj’s are i.i.d. and
the Sj’s are also i.i.d. Again, we want to estimate the density of the waiting time W of
a random customer. In this case, the system regenerates whenever a new customer arrives
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in an empty system. The regenerative cycles can be much shorter on average than for the
previous case, unless the day is very short or the utilization factor of the system is close to 1.
The CDE has exactly the same form, apart from the different definition of regenerative cycle.
In this case n represents the number of regenerative cycles, Ni is the number of customers
in the ith cycle and Di(x) is the realization of D(x) over the ith cycle.

In both settings, one could also hide Aj instead of Sj−1. The density estimator is similar
and easy to derive. Intuition says that this should be a better choice if Aj has more variance
than Sj−1.

4.4.7.3. The GLRDE estimator

Peng et al. (2020), Section 4.2.2., show how to construct a GLRDE estimator for the
density of the sojourn time of customer j in this single-queue model. If the service times Sj
are lognormal with parameters (µ, σ2), we can write

X = Wj = max(0,Wj−1 + Sj−1 − Aj) = max(0,Wj−1 + exp[σZj−1 + µ]− Aj) =: h(Y)

where Zj−1 has the standard normal density φ, and Y = (Y1,Y2,Y3) = (Zj−1, Aj,Wj−1).
When Wj > 0, taking the derivative of h with respect to Y1 = Zj−1 gives h1(Y) =
exp[σZj−1 + µ]σ = Sj−1σ, h11(Y) = Sj−1σ

2, and these derivatives are 0 when Wj = 0.
We also have ∂ log φ(x)/∂x = −x, and therefore for x > 0, f(x) = E[L(x)]/E[N ] where
L(x) = ∑N

j=1 I[Wj ≤ x] · Ψj and Ψj = −(Zj−1 + σ)/(Sj−1σ). We can do n runs to estimate
each of the two expectations in the ratio. This provides a very similar density estimator
as with the CDE in (4.4.5), but here L(x) is discontinuous in x, whereas D(x) in (4.4.5) is
continuous.

4.4.7.4. Numerical results.

For a numerical illustration, let the arrival process be Poisson with constant rate λ =
1, and the service times Sj lognormal with parameters (µ, σ2) = (−0.7, 0.4). This gives
E[Sj] = e−0.5 ≈ 0.6065 and Var[Sj] = e−1(e0.4 − 1) ≈ 0.18093. For RQMC, we use infinite-
dimensional RQMC points defined by Korobov lattice rules (L’Ecuyer and Lemieux, 2000)
selected with Lattice Builder (L’Ecuyer and Munger, 2016) using order-dependent weights
γk = 0.005k for projections of order k. We do not use Sobol’ points because although they
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can be constructed in an unlimited number of dimensions, with the available software the
dimension must be fixed before generating the points and running the simulations.

Finite-horizon case. For the finite-horizon case, take τ = 60, so E[N ] = 60, we only
need toestimate the numerator, and we have an unbiased density estimator all over [0,∞).
The results for (a,b] = (0,2.2] are in Table 4.8 and Figure 4.8. An important observation is
that CDE+MC provides an unbiased density estimator all over [0,∞). Due to the large and
random dimensionality of the required RQMC points, and more importantly the discontinuity
of the derivative of the estimator with respect to the underlying uniforms (because of the
max, the HK variation is infinite), it was unclear if RQMC could bring any significant gain
for this example. We see that although RQMC does not improve ν̃ significantly, it improves
the IV itself by a factor of about 28.5 ≈ 180 for n = 219, which is quite significant. We also
see that CDE beats GLRDE by a factor of about 500 with MC and about 200 with RQMC.

Steady-state case. We performed a similar experiment using regenerative simulation for
the steady-state model. The density is similar but not exactly the same as in the finite-
horizon case. The results are in Table 4.9 and Figure 4.9. They are very similar to those
of the finite-horizon case, with similar empirical convergence rates, and the IV for n = 219

is again about 180 times smaller with CDE+RQMC compared to CDE+MC. The IV for
GLRDE with n = 219 is roughly 1000 times larger than with CDE with MC and 250 times
larger than with CDE with RQMC. The only important difference is that here, the IV is
about 30 times larger than in the finite-horizon case, for all the methods. The explanation
is that in the finite-horizon case, we simulate n runs with about 60 customers per run,
whereas in the steady-state case, we have about 2.5 customers per regenerative cycle on
average, so we simulate about 25 times fewer customers. Interestingly, the fact that we use
much more coordinates of the RQMC points in the finite-horizon case (on average) makes
no significant difference. A similar observation was made by L’Ecuyer and Lemieux (2000),
Section 10.3, who compared finite-horizon runs of 5000 customers each on average, with
regenerative simulation, in the context of estimating the probability of a large waiting time
using RQMC. The reason why RQMC performs well even for a very large time horizon is
that the integrand has low effective dimension in the successive-dimensions sense (L’Ecuyer
and Lemieux, 2000).

105



ν̂ e19

CDE
MC 1.00 24.8
Lat+s 0.99 32.3
Lat+s+b 1.02 32.3

GLRDE
MC 1.00 15.8
Lat+s 1.01 24.6
Lat+s+b 1.03 24.7

Table 4.8. Values of ν̂ and e19 for the single queue example, finite-horizon case.
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Figure 4.8. Estimated density (left) and log IV as a function of log n (right) for the single
queue over a finite-horizon.

ν̂ e19

CDE
MC 0.99 19.9
Lat+s 1.04 27.6
Lat+s+b 1.08 27.8

GLR
MC 0.99 11.5
Lat+s 1.20 20.1
Lat+s+b 1.21 20.4

Table 4.9. Values of ν̂ and e19 for the single queue example, steady-state case.

4.4.8. A change of variable

In many situations, X = h(Y) for a random vector Y and hiding a single coordinate
of Y does not provide a very effective CDE. But sometimes, after an appropriate change
of variable Y = g(Z), hiding one coordinate of the random vector Z can provide a much
more effective CDE. Specifically, let Z−j denote the vector Z with Zj (the jth coordinate)
removed, and let γ(z) = γ(z; Z−j) = h(g(z; Z−j)) denote the value of h(Y) as a function
of Zj = z when Z−j is fixed. We assume in the following that for almost any realization
of Z−j, γ(z; Z−j) is a monotone non-decreasing and differentiable function of z, so that

106



0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

x

density

14 16 18

−25

−20

−15

−10

−5

log n
lo

gI
V

MC-CDE
MC-GLR

Lat+s-CDE
Lat+s-GLR

Figure 4.9. Estimated density (left) and log IV as a function of log n (right) for the single
queue in steady-state.

γ−1(x) = inf{z ∈ R : γ(z) ≥ x} is well defined for any x. We also assume that Zj has
density φ and is independent of Z−j (to simplify). Conditional on Z−j, we have

P[x < h(Y) ≤ x+ δ | Z−j] = P[x < γ(Zj) ≤ x+ δ | Z−j] = P[z < Zj ≤ z+ ∆ | Z−j] ≈ φ(z)∆

where z = γ−1(x), z + ∆ = γ−1(x+ δ). Taking the limit gives

f(x | Z−j) = lim
δ→0

P[z < Zj ≤ z + ∆ | Z−j]
δ

= lim
δ→0

φ(z)∆
δ

= φ(z)
γ′(z) = φ(γ−1(x))

γ′(γ−1(x)) .

assuming that the latter is well defined. In case there are closed-form formulas for γ−1

and γ′, this CDE can be evaluated directly. Otherwise, z = γ−1(x) can often be computed
by a few iterations of a root-finding algorithm. Since γ and its inverse γ−1 depend on Z−j,
this could mean inverting a different function for each sample realization. Our next example
will show that the approach could nevertheless bring a huge benefit.

4.4.9. A function of a multivariate normal vector

We consider a multivariate normal vector Y = (Y1, · · · ,Ys)t defined via Yj = Yj−1 +
µj + σjZj with Y0 = 0, the µj and σj > 0 are constants, and the Zj are independent
N (0,1) random variables, with cdf Φ and density φ. Let X = S̄ = (S1 + · · · + Ss)/s where
Sj = S0e

Yj for some constant S0 > 0. We want to estimate the density of X over some
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interval (a,b) = (K,K + c) where K ≥ 0 and c > 0. This is the same as estimating the
density of max(0, S̄ − K), which may represent the payoff of some financial contract, for
example (Glasserman, 2004). A simple way to define the CDE here is to hide Zs. The
conditional cdf is P[X ≤ x|Zs] = P[Zs ≤ W (x)] = Ψ(W (x)) where

W (x) = (ln[sx− (S1 + · · ·+ Ss−1)]− lnS0 − Ys−1 − µj)/σj.

Taking the derivative with respect to x gives the unbiased CDE

f(x | Z−j) = ∂

∂x
P[S̄ ≤ x | Z−s] = φ(W (x))W ′(x) = φ(W (x))s

[sx− (S1 + · · ·+ Ss−1)/S0]σj
.(4.4.7)

Unfortunately, this sequential CDE is ineffective, because hiding only this Zs does not remove
much information, and then the conditional density has a large variance.

We now describe a less obvious but more effective conditioning approach. The goal is to
hide a variable that contains more information. For this, we generate the vector Y using
a Brownian bridge construction in which the Zj’s are used in a different way, as follows
(Glasserman, 2004). Let µ̄ = µ1 + · · · + µj and σ̄ = σ1 + · · · + σj, for j = 1, . . . ,s. With
this construction, we first sample Ys = µ̄s + σ̄sZs. Then, given Ys = ys, we put j2 = bs/2c
and we sample Yj2 from its normal distribution conditional on Ys = ys, which is normal
with mean ysµ̄j2/µ̄s and variance (σ̄s − σ̄j2)σ̄j2/σ̄s. This uses the fact that if X1 and X2

are independent and normal, then conditional on X1 + X2 = x̄, X1 is normal with mean
x̄E[X1]/E[X1 + X2] and variance Var[X1]Var[X2]/Var[X1 + X2]. Then we put j3 = bj2/2c
and we sample Yj3 conditionally on Yj2 , then we put j4 = b(j2 + s)/2c and we sample Yj4
conditionally on (Yj2 , Ys), and so on, until all the Yj’s are known.

For the CDE, we can hide again Zs, but now Zs has much more impact on the payoff, be-
cause all the Yj’s depend on Zs. This makes the conditional density muchless straightforward
to compute, but we can proceed as follows. To avoid sampling Zs, we sample Y1, . . . ,Ys−1

conditional on Zs = zs = 0, which will give say Y 0
1 , . . . ,Y

0
s−1, and then write X as a function

of z = zs conditional on these values, that is, conditional on Z−s = (Z1, . . . ,Zs−1). We have
Ys = Y 0

s + σ̄sZs and Yj = Y 0
j + (µ̄j/µ̄s)σ̄sZs. Then,

X = S̄ = S0

s

s∑
j=1

eYj = S0

s

s∑
j=1

exp[Y 0
j + Zs(µ̄j/µ̄s)σ̄s].
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This fits the framework of Section 4.4.8, with j = s,

γ(z) = S0

s

s∑
j=1

exp[Y 0
j + z(µ̄j/µ̄s)σ̄s].

and
γ′(z) = S0

s

s∑
j=1

exp[Y 0
j + z(µ̄j/µ̄s)σ̄s](µ̄j/µ̄s)σ̄s.

The CDE at x = γ(z) is then f(x | Z−j) = φ(z)/γ′(z). We call it the bridge CDE.
To compute this density at a specified x, we need to compute z = γ−1(x). We have no

explicit formula for γ−1 in this case, but we can compute a root of γ(z)− x = 0 numerically.
To evaluate the density at the ne evaluation points e1, . . . , ene in (a,b), we can proceed
as follows. We first compute x∗ = γ(0) and let j∗ be the smallest j for which ej ≥ x∗.
We compute z = wj∗ such that γ(wj∗) = ej∗ . This can be done via Newton iteration,
zk = zk−1 − (γ(zk−1) − ej∗)/γ′(zk−1), starting with z0 = 0. Then, for j = j∗ + 1, . . . , ne, we
use again Newton iteration to find z = wj such that γ(wj) = ej, starting at z0 = wj−1. We
do the same to find z = wj such that γ(wj) = ej for j = j∗ − 1, . . . , 1, starting at z0 = wj+1.
This provides the point wj required to evaluate the conditional density at ej, for each j. We
have to repeat this procedure for each realization of Z−j, because the function γ depends
on Z−j. This implies additional computations. However, the gain in accuracy can be quite
significant.

ν̂ e19

sequential KDE MC -0.78 -20.4
Sob+LMS -0.76 -20.6

sequential CDE

MC -1.00 -19.9
Lat+s -1.07 -20.3
Lat+s+b -1.01 -20.1
Sob+LMS -1.00 -20.0

bridge CDE

MC -1.04 -27.9
Lat+s -1.60 -40.0
Lat+s+b -1.74 -45.0
Sob+LMS -2.01 -46.9

Table 4.10. Values of ν̂ and e19 for the Asian option, with sequential and bridge CDE
constructions.

For a numerical illustration, we take S0 = 100, s = 12, r = 0.1, µj = 0.00771966,
σj = 0.035033, K = 101. We estimate the density over [a,b] = [101, 128.13]. To approximate
the root of γ(z) − x = 0 for the bridge CDE, we use five Newton iterations; doing more
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Figure 4.10. Estimated density (left) and log IV as a function of log n (left) for the Asian
option.

iterations made no significant difference. The results are in Table 4.10 and Figure 4.10. We
find that RQMC with the bridge CDE performs extremely well. For example, for Sob+LMS,
the MISE with n = 219 is approximately 2−46.9, which is about 219 (half a million) times
smaller than for the same CDE with MC, and it decreases as n−2. With a KDE, the MISE
with n = 219 is about 221 ≈ 2 million times larger with the same Sobol’ points and 226 ≈ 67
million times larger with MC. With the sequential CDE, RQMC is ineffective and the IV of
the MC estimator is also quite large, as expected.

To illustrate the behavior of the sequential and bridge CDEs, Figure 4.11 plots 5 single
realizations of each, the same horizontal scale. The sequential CDE has much more spiky
realizations than the bridge CDE, and this explains why the latter performs much better.

4.4.10. Estimating a quantile with a confidence interval

For 0 < q < 1, the q-quantile of the distribution of X is defined as ξq = F−1(q) = inf{x :
F (x) ≥ q}. Given n i.i.d. observations of X, a standard (consistent) estimator of ξq is the
q-quantile of the empirical distribution, defined as ξ̂q,n = X(dnqe), where X(1), . . . ,X(n) are the
n observations sorted in increasing order (the order statistics). We assume that the density
f(x) is positive and continuously differentiable in a neighborhood of ξq. Then we have the
central limit theorem (CLT):

√
n(ξ̂q,n − ξq)/σξ ⇒ N (0,1) for n→∞,
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Figure 4.11. Five realizations of the density estimator (blue), their average (red), and the
true density (thick black) for the sequential CDE (left) and the bridge CDE (right), for the
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where σ2
ξ = q(1 − q)/f 2(ξq) (Serfling, 1980). This provides a way to compute a confi-

dence interval on ξq, but requires the estimation of f(ξq), which is generally difficult. Some
approaches for doing this include finite differences with the empirical cdf, batching, and
sectioning (Asmussen and Glynn, 2007; Nakayama, 2014a,b).

In our setting, one can do better by taking the q-quantile ξ̂cmc ,q,n of the conditional cdf

F̂cmc ,n(x) = 1
n

n∑
i=1

F (x | G(i)).

That is, ξ̂cmc ,q,n = inf{x : F̂cmc ,n(x) ≥ q}. This idea was already suggested by Nakayama
(2014b), who pointed out that this estimator obeys a CLT just like ξ̂q,n, but with the variance
constant σ2

ξ replaced by σ2
cmc ,ξ = Var[F (ξq | G)]/f 2(ξq) ≤ σ2

ξ . This is an improvement on
the quantile estimator itself. Our CDE approach also provides an improved estimator of the
density f(ξq) which appears in the variance expression. We estimate f(ξq) by f̂cde ,n(ξ̂cmc ,q,n).
This provides a more accurate confidence interval of ξq.

Further improvements on the variances of both the quantile and density estimators can
be obtained by using RQMC to generate the realizations G(i). In particular, if g̃(ξq,u) =
F (ξq | G) is a sufficiently smooth function of u, Var[ξ̂cmc ,q,n] can converge at a faster rate than
O(n−1). When using RQMC with nr randomizations to estimate a quantile, the quantile
estimator will be the empirical quantile of all the nr × n observations.
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A related quantity is the expected shortfall, defined as cq = E[X | X > ξq] = ξq −E[(ξq −
X)+]/q which is often estimated by its empirical version (Hong et al., 2014)

ĉq,n = ξ̂q,n −
1
nq

n∑
i=1

(ξ̂q,n −Xi)+.

This estimator obeys the CLT
√
n(ĉq,n− cq)/σc ⇒ N (0,1) for n→∞, where σ2

c = Var[(ξq −
X)+]/q2, if this variance is finite (Hong et al., 2014). By improving the quantile estimator,
CDE+RQMC can also improve the expected shortfall estimator a well as the estimator of
the variance constant σ2

c and the quality of confidence intervals on cq. We leave this as a
topic for future work.

4.5. Conclusion

We have examined a simple and very effective approach for estimating the density of
a random variable generated by simulation from a stochastic model, by conditioning. The
resulting CDE is unbiased and its MISE converges at a faster rate than for other popular
density estimators such as the KDE. We have also shown how to further reduce the IV, and
even improve its convergence rate, by combining the CDE with RQMC sampling. Our nu-
merical examples show that this combination can be very efficient. It sometimes reduces the
MISE by factors over a million. Our CDE approach also outperforms the recently proposed
GLRDE method, and CDE+RQMC outperforms both GLRDE+RQMC and KDE+RQMC,
in all our examples.

Suggested future work includes experimenting this methodology on larger and more com-
plicated stochastic models, designing and exploring different types of conditioning, and per-
haps adapting the Monte Carlo sampling strategies to make the method more effective (e.g.,
by changing the way X is defined in terms the basic input random variates). Its application
to quantile and expected shortfall estimation also deserves further study.
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Chapter 5

Article 3: Array-RQMC for option pricing under

stochastic volatility models

In the third article, we show that Array-RQMC can be applied for option pricing under
a stochastic volatility process such as the variance gamma, Heston, and Ornstein-Uhlenbeck
models. We describe and compare different implementation alternatives, and report empir-
ical experiments to determine the benefit of using this method compared to MC, even if it
requires RQMC points in larger dimension.
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Array-RQMC for option pricing under stochastic
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Pavillon Aisenstadt, Université de Montréal, C.P. 6128, Succ. Centre-Ville,
Montréal, Québec, Canada H3C 3J7.

Abstract

Array-RQMC has been proposed as a way to effectively apply randomized quasi-Monte
Carlo (RQMC) when simulating a Markov chain over a large number of steps to estimate an
expected cost or reward. The method can be very effective when the state of the chain has
low dimension. For pricing an Asian option under an ordinary geometric Brownian motion
model, for example, Array-RQMC can reduce the variance by factors in the millions. In this
paper, we show how to apply this method and we study its effectiveness in case the underlying
process has stochastic volatility. We show that Array-RQMC can also work very well for
these models, even if it requires RQMC points in larger dimension. We examine in particular
the variance-gamma, Heston, and Ornstein-Uhlenbeck stochastic volatility models, and we
provide numerical results.

5.1. Introduction

Quasi-Monte Carlo (QMC) and randomized QMC (RQMC) methods can improve effi-
ciency significantly when estimating an integral in a moderate number of dimensions, but
their use for simulating Markov chains over a large number of steps has been limited so far.
The array-RQMC method, developed for that purpose, has been shown to work well for some
chains having a low-dimensional state. It simulates an array of n copies of the Markov chain
so that each chain follows its exact distribution, but the copies are not independent, and
the empirical distribution of the states at any given step of the chain is a “low-discrepancy”
approximation of the exact distribution. At each step, the n chains (or states) are matched
one-to-one to a set of n RQMC points whose dimension is the dimension of the state plus
the number of uniform random numbers required to advance the chain by one more step.
The first coordinates of the points are used to match the states to the points and the other
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coordinates provide the random numbers needed to determine the next state. When the
chains have a large-dimensional state, the dimension used for the match can be reduced via
a mapping to a lower-dimensional space. Then the matching is performed by sorting both
the points and the chains. When the dimension of the state exceeds 1, this matching is done
via a multivariate sort. The main idea is to evolve the array of chains in a way that from
step to step, the empirical distribution of the states keeps its low discrepancy. For further
details on the methodology, sorting strategies, convergence analysis, applications, and em-
pirical results, we refer the reader to Demers et al. (2005); Dion and L’Ecuyer (2010); El
Haddad et al. (2008, 2010); Gerber and Chopin (2015); Lécot and Tuffin (2004); L’Ecuyer
(2018); L’Ecuyer and Sanvido (2010); L’Ecuyer et al. (2006, 2007, 2008, 2009), and the other
references given there.

The aim of this paper is to examine how Array-RQMC can be applied for option pricing
under a stochastic volatility process such as the variance gamma, Heston, and Ornstein-
Uhlenbeck models. We explain and compare various implementation alternatives, and report
empirical experiments to assess the (possible) gain in efficiency and convergence rate. A
second objective is for the WSC community to become better aware of this method, which
can have numerous other applications.

Array-RQMC has already been applied for pricing Asian options when the underlying
process evolves as a geometric Brownian motion (GBM) with fixed volatility L’Ecuyer (2018);
L’Ecuyer et al. (2009). In that case, the state is two-dimensional (it contains the current
value of the GBM and its running average) and a single random number is needed at each
step, so the required RQMC points are three-dimensional. In their experiments, L’Ecuyer
(2018) observed an empirical variance of the average payoff that decreased approximately
as O(n−2) for Array-RQMC, in a range of reasonable values of n, compared with O(n−1)
for independent random points (Monte Carlo). For n = 220 (about one million chains), the
variance ratio between Monte Carlo and Array-RQMC was around 2 to 4 millions.

In view of this spectacular success, one wonders how well the method would perform
when the underlying process is more involved, e.g., when it has stochastic volatility. This is
relevant because stochastic volatility models are more realistic than the plain GBM model
Madan and Seneta (1990); Madan et al. (1998). Success is not guaranteed because the
dimension of the required RQMC points is larger. For the Heston model, for example, the
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RQMC points must be five-dimensional instead of three-dimensional, because the state has
three dimensions and we need two uniform random numbers at each step. It is unclear a
priori if there will be any significant variance reduction for reasonable values of n.

The remainder is organized as follows. In Section 5.2, we state our general Markov
chain model and provide background on the Array-RQMC algorithm, including matching
and sorting strategies. In Section 5.3, we describe our experimental setting, and the types
of RQMC point sets that we consider. Then we study the application of Array-RQMC
under the variance-gamma model in Section 5.4, the Heston model in Section 5.5, and the
Ornstein-Uhlenbeck model in Section 5.6. We end with a conclusion.

5.2. Background: Markov Chain Model, RQMC, and Array-RQMC

The option pricing models considered in this paper fit the following framework, which
we use to summarize the Array-RQMC algorithm. We have a discrete-time Markov chain

{Xj, j ≥ 0} defined by a stochastic recurrence over a measurable state space X :

X0 = x0, and Xj = ϕj(Xj−1,Uj), j = 1, . . . ,τ. (5.2.1)

where x0 ∈ X is a deterministic initial state, U1,U2,... are independent random vectors
uniformly distributed over the d-dimensional unit cube (0,1)d, the functions ϕj : X×(0,1)d →
X are measurable, and τ is a fixed positive integer (the time horizon). The goal is:

Estimate µy = E[Y ], where Y = g(Xτ )

and g : X → R is a cost (or reward) function. Here we have a cost only at the last step but
in general there can be a cost function for each step and Y would be the sum of these costs
L’Ecuyer et al. (2008).

Crude Monte Carlo estimates µ by the average Ȳn = 1
n

∑n−1
i=0 Yi, where Y0, . . . ,Yn−1 are

n independent realizations of Y . One has E[Ȳn] = µy and Var[Ȳn] = Var[Y ]/n, assuming
that E[Y 2] = σ2

y < ∞. Note that the simulation of each realization of Y requires a vector
V = (U1, . . . ,Uτ ) of dτ independent uniform random variables over (0,1), and crude Monte
Carlo produces n independent replicates of this random vector.

Randomized quasi-Monte Carlo (RQMC) replaces the n independent realizations of V by
n dependent realizations, which form an RQMC point set in dτ dimensions. That is, each
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Vi has the uniform distribution over [0,1)dτ , and the point set Pn = {V0,...,Vn−1} covers
[0,1)dτ more evenly than typical independent random points. With RQMC, Ȳn remains an
unbiased estimator of µ, but its variance can be much smaller, and can converge faster than
O(1/n) under certain conditions. For more details, see Dick and Pillichshammer (2010);
L’Ecuyer (2009, 2018); L’Ecuyer and Lemieux (2000), for example. However, when dτ is
large, standard RQMC typically becomes ineffective, in the sense that it does not bring
much variance reduction unless the problem has special structure.

Array-RQMC is an alternative approach developed specifically for Markov chains L’E-
cuyer et al. (2006, 2008, 2018). To explain how it works, let us first suppose for simplicity
(we will relax it later) that there is a mapping h : X → R, that assigns to each state a value

(or score) which summarizes in a single real number the most important information that we
should retain from that state (like the value function in stochastic dynamic programming).
This h is called the sorting function. The algorithm simulates n (dependent) realizations of
the chain “in parallel”. Let Xi,j denote the state of chain i at step j, for i = 0, . . . ,n − 1
and j = 0, . . . ,τ . At step j, the n chains are sorted by increasing order of their values of
h(Xi,j−1), the n points of an RQMC point set in d + 1 dimensions are sorted by their first
coordinate, and each point is matched to the chain having the same position in this ordering.
Each chain i is then moved forward by one step, from state Xi,j−1 to state Xi,j, using the
d other coordinates of its assigned RQMC point. Then we move on to the next step, the
chains are sorted again, and so on.

The sorting function can in fact be more general and have the form h : X → Rc for some
small integer c ≥ 1. Then the mapping between the chains and the points must be realized
in a c-dimensional space, i.e., via some kind of c-dimensional multivariate sort. The RQMC
points then have c+ d coordinates, and are sorted with the same c-dimensional multivariate
sort based on their first c coordinates, and mapped to the corresponding chains. The other d
coordinates are used to move the chains ahead by one step. In practice, the first c coordinates
of the RQMC points do not have to be randomized at each step; they are usually fixed and
the points are already sorted in the correct order based on these coordinates.

Some multivariate sorts are described and compared by El Haddad et al. (2008); L’Ecuyer
(2018); L’Ecuyer et al. (2009). For example, in a multivariate batch sort, we select positive
integers n1, . . . , nc such that n = n1 . . . nc. The states are first sorted by their first coordinate
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in n1 packets of size n/n1, then each packet is sorted by the second coordinate into n2 packets
of size n/n1n2, and so on. The RQMC points are sorted in exactly the same way, based on
their first c coordinates. In the multivariate split sort, we assume that n = 2e and we take
n1 = n2 = · · · = ne = 2. That is, we first split the points in 2 packets based on the first
coordinate, then split each packet in two by the second coordinate, and so on. If e > c, after
c splits we get back to the first coordinate and continue.

Examples of heuristic sorting functions h : X → R are given in L’Ecuyer et al. (2008,
2018). Wächter and Keller (2008) and Gerber and Chopin (2015) suggested to first map
the c-dimensional states to [0,1]c and then use a space filling curve in [0,1]c to map them
to [0,1], which provides a total order. Gerber and Chopin (2015) proposed to map the
states to [0,1]c via a component-wise rescaled logistic transformation, then order them with
a Hilbert space-filling curve. See L’Ecuyer (2018) for a more detailed discussion. Under
smoothness conditions, they proved that the resulting unbiased Array-RQMC estimator has
o(1/n) variance, which beats the O(1/n) Monte Carlo rate.

Algorithm 2 states the Array-RQMC procedure in our setting. Indentation delimits the
scope of the "for" loops. For any choice of sorting function h, the average µ̂arqmc,n = Ȳn

returned by this algorithm is always an unbiased estimator of µ. An unbiased estimator of
Var[Ȳn] can be obtained by making m independent realizations of µ̂arqmc,n and computing
their empirical variance.

Algorithm 2 : Array-RQMC Algorithm for Our Setting
for i = 0, . . . ,n− 1 do Xi,0 ← x0;
for j = 1, 2, . . . , τ do

Sorting: Compute an appropriate permutation πj of the n chains, based on
the h(Xi,j−1), to match the n states with the RQMC points;

Randomize afresh the RQMC points {U0,j, . . . ,Un−1,j};
for i = 0, . . . ,n− 1 do Xi,j = ϕj(Xπj(i),j−1,Ui,j);

end forreturn the average µ̂arqmc,n = Ȳn = (1/n)∑n−1
i=0 g(Xi,τ ) as an estimate of µy.

5.3. Experimental Setting

For all the option pricing examples in this paper, we have an asset price that evolves as
a stochastic process {S(t), t ≥ 0} and a payoff that depends on the values of this process at
fixed observation times 0 = t0 < t1 < t2 < ... < tc = T . More specifically, for given constants
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r (the interest rate) and K (the strike price), we consider an European option whose payoff
is

Y = Ye = g(S(T )) = e−rT max(S(T )−K, 0)

and a discretely-observed Asian option whose payoff is

Y = Ya = g(S̄) = e−rT max(S̄ −K, 0)

where S̄ = (1/c)∑c
j=1 S(tj). In this second case, the running average S̄j = (1/j)∑j

`=1 S(t`)
must be kept in the state of the Markov chain. The information required for the evolution
of S(t) depends on the model and is given for each model in forthcoming sections. It must
be maintained in the state. For the case where S is a plain GBM, the state of the Markov
chain at step j can be taken as Xj = (S(tj), S̄j), a two-dimensional state, as was done in
L’Ecuyer et al. (2009) and L’Ecuyer et al. (2008).

In our examples, the states are always multidimensional. To match them with the
RQMC points, we will use a split sort, a batch sort, and a Hilbert-curve sort, and com-
pare these alternatives. The Hilbert sort requires a transformation of the `-dimensional
states to the unit hypercube [0,1]`. For this, we use a logistic transformation defined by
ψ(x) = (ψ1(x1),...,ψ`(x`)) ∈ [0,1]` for all x = (x1, . . . ,x`) ∈ X , where

ψj(xj) =
[
1 + exp

(
−
xj − xj
x̄j − xj

)]−1

, j = 1,...,`, (5.3.1)

with constants x̄j = µj + 2σj and xj = µj − 2σj in which µj and σj are estimates of the
mean and the variance of the distribution of the jth coordinate of the state. In Section 5.4,
we will also consider just taking a linear combination of the two coordinates, to map a
two-dimensional state to one dimension.

For RQMC, we consider

(1) Independent points, which corresponds to crude Monte Carlo (MC);
(2) Stratified sampling over the unit hypercube (Stratif);
(3) Sobol’ points with a random linear matrix scrambling and a digital random

shift (Sobol’+LMS);
(4) Sobol’ points with nested uniform scrambling (Sobol’+NUS);
(5) A rank-1 lattice rule with a random shift modulo 1 followed by a baker’s

transformation (Lattice+baker).
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The first two are not really RQMC points, but we use them for comparison. For stratified
sampling, we divide the unit hypercube into n = k`+d congruent subcubes for some integer
k > 1, and we draw one point randomly in each subcube. For a given target n, we take k
as the integer for which k`+d is closest to this target n. For the Sobol’ points, we took the
default direction numbers in SSJ, which are from Lemieux et al. (2004). The LMS and NUS
randomizations are explained in Owen (2003) and L’Ecuyer (2009). For the rank-1 lattice
rules, we used generating vectors found by Lattice Builder (L’Ecuyer and Munger, 2016),
using the P2 criterion with order-dependent weights (0.8)k for projections of order k.

For each example, each sorting method, each type of point set, and each selected value of
n, we ran simulations to estimate Var[Ȳn]. For the stratified and RQMC points, this variance
was estimated by replicating the RQMC scheme m = 100 times independently. For a fair
comparison with the MC variance σ2

y = Var[Y ], for these point sets we used the variance per

run, defined as nVar[Ȳn]. We define the variance reduction factor (VRF) for a given method
compared with MC by σ2

y/(nVar[Ȳn]). In each case, we fitted a linear regression model for
the variance per run as a function of n, in log-log scale. We denote by β̂ the regression slope
estimated by this linear model.

In the remaining sections, we explain how the process {S(t), t ≥ 0} is defined in each
case, how it is simulated. We show how we can apply Array-RQMC and we provide numer-
ical results. All the experiments were done in Java using the SSJ library (L’Ecuyer, 2016;
L’Ecuyer and Buist, 2005).

5.4. Option Pricing Under A Varaince-Gamma Process

The variance-gamma (VG) model was proposed for option pricing by Madan and Seneta
(1990) and Madan et al. (1998), and further studied by Avramidis and L’Ecuyer (2006);
Avramidis et al. (2003); Fu et al. (1998), for example. A VG process is essentially a Brownian
process for which the time clock runs at random and time-varying speed driven by a gamma
process. The VG process with parameters (θ,σ2,ν) is defined as Y = {Y (t) = X(G(t)), t ≥ 0}
where X = {X(t), t ≥ 0} is a Brownian motion with drift and variance parameters θ and
σ2, and G = {G(t), t ≥ 0} is a gamma process with drift and volatility parameters 1 and ν,
independent of X. This means that X(0) = 0, G(0) = 0, both B and G have independent
increments, and for all t ≥ 0 and δ > 0, we have X(t+δ)−X(t) ∼ Normal(δθ,δσ2), a normal
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random variable with mean δθ and variance δσ2, and G(t + δ) − G(t) ∼ Gamma(δ/ν, ν),
a gamma random variable with mean δ and variance δν. The gamma process is always
non-decreasing, which ensures that the time clock never goes backward. In the VG model
for option pricing, the asset value follows the geometric variance-gamma (GVG) process
S = {S(t), t ≥ 0} defined by

S(t) = S(0) exp [(r + ω)t+X(G(t))] ,

where ω = ln(1− θν − σ2ν/2)/ν.
To generate realizations of S̄ for this process, we must generate S(t1), . . . ,S(tτ ), and

there are many ways of doing this. With Array-RQMC, we want to do it via a Markov chain
with a low-dimensional state. The running average S̄j must be part of the state, as well as
sufficient information to generate the future of the path. A simple procedure for generating
the path is to sample sequentially G(t1), then Y (t1) = X(G(t1)) conditional on G(t1), then
G(t2) conditional on G(t1), then Y (t2) = X(G(t2)) conditional on (G(t1), G(t2), Y (t1)), and
so on. We can then compute any S(tj) directly from Y (tj).

It is convenient to view the sampling of (G(tj), Y (tj)) conditional on (G(tj−1), Y (tj−1))
as one step (step j) of the Markov chain. The state of the chain at step j − 1 can be taken
as Xj−1 = (G(tj−1), Y (tj−1), S̄j−1), so we have a three-dimensional state, and we need two
independent uniform random numbers at each step, one to generate G(tj) and the other
to generate Y (tj) = X(G(tj)) given (G(tj−1), G(tj), Y (tj−1)), both by inversion. Applying
Array-RQMC with this setting would require a five-dimensional RQMC point set at each
step, unless we can map the state to a lower-dimensional representation.

However, a key observation here is that the distribution of the increment ∆Yj = Y (tj)−
Y (tj−1) depends only on the increment ∆j = G(tj)−G(tj−1) and not on G(tj−1). This means
that there is no need to memorize the latter in the state! Thus, we can define the state at step
j as the two-dimensional vector Xj = (Y (tj), S̄j), or equivalently Xj = (S(tj), S̄j), and apply
Array-RQMC with a four-dimensional RQMC point set if we use a two-dimensional sort for
the states, and a three-dimensional RQMC point set if we map the states to a one-dimensional
representation (using a Hilbert curve or a linear combination of the coordinates, for example).
At step j, we generate ∆j ∼ Gamma((tj − tj−1)/ν, ν) by inversion using a uniform random
variate Uj,1, i.e., via ∆j = F−1

j (Uj,1) where Fj is the cdf of the Gamma((tj − tj−1)/ν, ν)
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distribution, then ∆Yj by inversion from the normal distribution with mean θ∆j and variance
σ2∆j, using a uniform random variate Uj,2. Algorithm 3 summarizes this procedure. The
symbol Φ denotes the standard normal cdf. We have

Xj = (Y (tj),S̄j) = ϕj(Y (tj−1), S̄j−1, Uj,1, Uj,2)

where ϕj is defined by the algorithm. The payoff function is g(Xc) = S̄c = S̄.

Algorithm 3 Computing Xj = (Y (tj),S̄j) given (Y (tj−1), S̄j−1), for 1 ≤ j ≤ τ .
Generate Uj,1, Uj,2 ∼ Uniform(0,1), independent;
∆j = F−1

j (Uj,1) ∼ Gamma((tj − tj−1)/ν, ν);
Zj = Φ−1(Uj,2) ∼ Normal(0,1);
Y (tj)← Y (tj−1) + θ∆j + σ

√
∆jZj;

S(tj)← S(0) exp[(r + ω)tj + Y (tj)];
S̄j = [(j − 1)S̄j−1 + S(tj)]/j;

With this two-dimensional state representation, if we use a split sort or batch, we need
four-dimensional RQMC points. With the Hilbert-curve sort, we only need three-dimensional
RQMC points. We also tried a simple linear mapping hj : R2 → R defined by hj(S(tj), S̄j) =
bjS̄j + (1 − bj)S(tj) where bj = (j − 1)/(τ − 1). At each step j, this hj maps the state Xj

to a real number hj(Xj), and we sort the states by increasing order of their value of hj(Xj).
It uses a convex linear combination of S(tj) and S̄j whose coefficients depend on j. The
rationale for the (heuristic) choice of bj is that in the late steps (when j is near τ), the
current average S̄j is more important (has more predictive power for the final payoff) than
the current S(tj), whereas in the early steps, the opposite is true.

We made an experiment with the following model parameters, taken from Avramidis
and L’Ecuyer (2006): θ = −0.1436, σ = 0.12136, ν = 0.3, r = 0.1, T = 240/365, τ = 10,
tj = 24j/365 for j = 1, . . . ,τ , K = 100, and S(0) = 100. The time unit is one year,
the horizon is 240 days, and there is an observation time every 24 days. The exact value
of the expected payoff for the Asian option is µ ≈ 8.36, and the MC variance per run is
σ2

y = Var[Ya] ≈ 59.40.
Table 5.1 summarizes the results. For each selected sorting method and point set, we

report the estimated slope β̂ for the linear regression model of log2 Var[µ̂arqmc
n ] as a function

of log2(n) obtained from m = 100 independent replications with n = 2e for e = 16,...,20,
as well as the variance reduction factors (VRF) observed for n = 220 (about one million
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Sort Point sets β̂ VRF20

Split sort
MC -1 1
Stratif -1.17 42
Sobol’+LMS -1.77 91550
Sobol’+NUS -1.80 106965
Lattice+baker -1.83 32812

Batch sort
(n1 = n2)

MC -1 1
Stratif -1 42
Sobol’+LMS -1.71 100104
Sobol’+NUS -1.54 90168
Lattice+baker -1.95 58737

Hilbert
sort (with
logistic
map)

MC -1 1
Stratif -1.43 204
Sobol’+LMS -1.59 68297
Sobol’+NUS -1.67 79869
Lattice+baker -1.55 45854

Linear
map sort

MC -1 1
Stratif -1.35 192
Sobol’+LMS -1.64 115216
Sobol’+NUS -1.75 166541
Lattice+baker -1.72 68739

Table 5.1. Regression slopes β̂ for log2 Var[µ̂arqmc
n ] vs log2(n), and VRF compared with MC

for n = 220, denoted VRF20, for the Asian option under the VG model

samples), denoted VRF20. For MC, the exact slope (or convergence rate) β is known to be
β = −1. We see from the table that Array-RQMC provides much better convergence rates (at
least empirically), and reduces the variance by very large factors for n = 220. Interestingly,
the largest factors are obtained with the Sobol’ points combined with our heuristic linear
map sort, although the other sorts are also doing quite well. Figure 5.1 shows plots of
log2 Var[µ̂arqmc

n ] vs log2(n) for selected sorts. It gives an idea of how well the linear model
fits in each case.

There are other ways of defining the steps of the Markov chain for this example. For
example, one can have one step for each Uniform(0,1) random number that is generated.
This would double the number of steps, from c to 2c. We generate ∆1 in the first step, Y (t1)
in the second step, ∆2 in the third step, Y (t2) in the fourth step, and so on. Generating a
single uniform per step instead of two reduces by 1 the dimension of the required RQMC
point set. At odd step numbers, when we generate a ∆j, the state can still be taken as
(Y (tj−1), S̄j−1) and we only need three-dimensional RQMC points, so we save one dimension.
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Figure 5.1. Plots of empirical log2 Var[µ̂arqmc
n ] vs log2(n) for various sorts and point sets,

based on m = 100 independent replications. Above: with split sort (Left) and batch sort
(right) and Below: with Hilbert sort (Left) and linear map sort (right).

But at even step numbers, we need ∆j to generate Y (tj), so we need a three-dimensional
state (Y (tj−1),∆j, S̄j−1) and four-dimensional RQMC points. We tried this approach and it
did not perform better than the one described earlier, with two uniforms per step. It is also
more complicated to implement.

Avramidis and L’Ecuyer (2006); Avramidis et al. (2003) describe other ways of simulating
the VG process, for instance Brownian and gamma bridge sampling (BGBS) and difference
of gammas bridge sampling (DGBS). BGBS generates first G(tc) then Y (tc), then conditional
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on this it generates G(tc/2) then Y (tc/2) (assuming that c is even), and so on. DGBS writes
the VG process Y as a difference of two independent gamma processes and simulate both
using the bridge idea just described: first generate the values of the two gamma processes
at tc, then at tc/2, etc. When using classical RQMC, these sampling methods brings an
important variance reduction compared with the sequential one we use here for our Markov
chain. Combining them with Array-RQMC is impractical, however, because the dimension of
the state (the number of values that we need to remember and use for the sorting) grows up
to about c, which is much to high, and the implementation is much more complicated. Also,
these methods are effective when c is a power or 2 and tj = jT/c, because then the conditional
sampling for the gamma process is always from a symmetrical beta distribution and there
is an efficient inversion method for that but they are less effective otherwise (L’Ecuyer and
Simard, 2006). For comparison, we made an experiment using classical RQMC with these
methods for the same numerical example as given here, but with c = 8 and c = 16 instead of
c = 10, to have powers of 2, and tj = jT/c. For Sobol’+LMS with n = 220, for d = 16, the
values of VRF20 for BGSS, BGBS, and DGBS were 85, 895, 550, respectively. For d = 8,
these values were 183, 1258, and 3405. The VRF20 values for Sobol’+LMS in Table 5.1 and
are much larger that these, showing that Array-RQMC can provide much larger variance
reductions.

For this VG model, we do not report results on the European option with Array-RQMC,
because the Markov chain would have only one step: We can generate directly G(tc) and
then Y (tc). For this, ordinary RQMC works well enough (L’Ecuyer, 2018).

5.5. Option Pricing Under The Heston Volatility Model

The Heston volatility model is defined by the following two-dimensional stochastic dif-
ferential equation:

dS(t) = rS(t)dt+ V (t)1/2S(t)dB1(t),

dV (t) = λ(σ2 − V (t))dt+ ξV (t)1/2dB2(t),

for t ≥ 0, where (B1,B2) is a pair of standard Brownian motions with correlation ρ between
them, r is the risk-free rate, σ2 is the long-term average variance parameter, λ is the rate
of return to the mean for the variance, and ξ is a volatility parameter for the variance.
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The processes S = {S(t), t ≥ 0} and V = {V (t), t ≥ 0} represent the asset price and the
volatility, respectively, as a function of time. We will examine how to estimate the price of
European and Asian options with Array-RQMC under this model. Since we do not know how
to generate (S(t+ δ), V (t+ δ)) exactly from its conditional distribution given (S(t), V (t)) in
this case, we have to discretize the time. For this, we use the Euler method with τ time steps
of length δ = T/τ to generate a skeleton of the process at times wj = jδ for j = 1, . . . ,τ , over
[0,T ]. For the Asian option, we assume for simplicity that the observation times t1, . . . ,tc
used for the payoff are all multiples of δ, so each of them is equal to some wj.

European Asian
Sort Point sets β̂ VRF20 β̂ VRF20

Split sort

MC -1 1 -1 1
Stratif -1.26 103 -1.29 38
Sobol’+LMS -1.59 44188 -1.48 6684
Sobol’+NUS -1.46 30616 -1.46 5755
Lattice+baker -1.50 26772 -1.55 5140

Batch sort

MC -1 1 -1 1
Stratif -1.24 91 -1.25 33
Sobol’+LMS -1.66 22873 -1.23 815
Sobol’+NUS -1.72 30832 -1.38 1022
Lattice+baker -1.75 12562 -1.22 762

Hilbert sort
(with logistic
map)

MC -1 1 -1 1
Stratif -1.26 43 -1.05 29
Sobol’+LMS -1.14 368 -0.87 39
Sobol’+NUS -1.06 277 -1.11 49
Lattice+baker -1.12 250 -0.89 42

Table 5.2. Regression slopes β̂ for log2 Var[µ̂arqmc
n ] vs log2(n), and VRF compared with MC

for n = 220, denoted VRF20, for the Asian option under the Heston model.

Following Giles (2008), to reduce the bias due to the discretization, we make the change
of variable W (t) = eλt(V (t) − σ2), with dW (t) = eλtξV (t)1/2dB2(t), and apply the Euler
method to (S,W ) instead of (S,V ). The Euler approximation scheme with step size δ applied
to W gives

W̃ (jδ) = W̃ ((j − 1)δ) + eλ(j−1)δξ(Ṽ ((j − 1)δ)δ)1/2Zj,2.

Rewriting it in terms of V by using the reverse identity V (t) = σ2 + e−λtW (t), and after
some manipulations, we obtain the following discrete-time stochastic recurrence, which we
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Figure 5.2. Plots of empirical log2 Var[µ̂arqmc
n ] vs log2(n) for various sorts and point sets,

based on m = 100 independent replications, for the Heston model. Asian option (above) and
European option (below), with split sort (left), batch sort (middle), and Hilbert sort (right).

will simulate by Array-RQMC:

Ṽ (jδ) = max
[
0, σ2 + e−λδ

(
Ṽ ((j − 1)δ)− σ2 + ξ(Ṽ ((j − 1)δ)δ)1/2Zj,2

)]
,

S̃(jδ) = (1 + rδ)S̃((j − 1)δ) + (Ṽ ((j − 1)δ)δ)1/2S̃((j − 1)δ)Zj,1,

where (Zj,1,Zj,2) is a pair of standard normals with correlation ρ. We generate this pair
from a pair (Uj,1, Uj,2) of independent Uniform(0,1) variables via Zj,1 = Φ−1(Uj,1) and Zj,2 =
ρZj,1 +

√
1− ρ2 Φ−1(Uj,2). We then approximate each S(jδ) by S̃(jδ). The running average

S̄j at step j must be the average of the S(tk) at the observation times tk ≤ wj = jδ. If
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we denote Nj = ∑c
k=1 I[tk ≤ jδ], we have S̄j = (1/Nj)

∑Nj

k=1 S(tk), which we approximate
by S̄j = (1/Nj)

∑Nj

k=1 S̃(tk). Here, the state of the chain is Xj = (S̃(jδ), Ṽ (jδ)) when
pricing the European option and Xj = (S̃(jδ), Ṽ (jδ), S̄j) when pricing the Asian option.
And two uniform random numbers, (Uj,1, Uj,2), are required at each step of the chain. We
thus need four-dimensional RQMC point sets for the European option and five-dimensional
RQMC point sets for the Asian option, if we do not map the state to a lower-dimensional
representation. If we map the state to one dimension, as in the Hilbert curve sort, then we
only need three-dimensional RQMC points for both option types.

We tried an alternative Markov chain definition in which the chain advances by one step
each time a uniform random number is used, as in the VG example, to reduce the dimension
of the RQMC points, but this gave no improvement.

We ran experiments with T = 1 (one year), K = 100, S(0) = 100, V (0) = 0.04, r = 0.05,
σ = 0.2, λ = 5, ξ = 0.25, ρ = −0.5, and c = τ = 16. This gives δ = 1/16, so the
time discretization for Euler is very coarse, but a smaller δ gives similar results in terms
of variance reduction by Array-RQMC. For example, we ran experiments with τ = 256
instead of τ = 16 and the VRF20’s had approximately the same sizes. Table 5.2 reports the
estimated slopes β̂ and VRF20, as in Table 5.1. Again, we observe large variance reductions
and improved convergence rates from Array-RQMC. The best results are obtained with the
split sort. Figure 5.2 shows plots of log2 Var[µ̂arqmc

n ] vs log2(n) for selected sorts.

5.6. Option Pricing Under The Ornstein-Uhlenbeck Volatility Model

The Ornstein-Uhlenbeck volatility model is defined by the following stochastic differential
equations:

dS(t) = rS(t)dt+ eV (t)S(t)dB1(t),

dV (t) = α(b− V (t))dt+ σdB2(t),

for t ≥ 0, where (B1,B2) is a pair of standard Brownian motions with correlation ρ between
them, r is the risk-free rate, b is the long-term average volatility, α is the rate of return to
the average volatility, and is σ a variance parameter for the volatility process. The processes
S = {S(t), t ≥ 0} and V = {V (t), t ≥ 0} represent the asset price and the volatility process.
We simulate these processes using Euler’s method with τ time steps of length δ, as we did
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for the Heston model, but without a change of variable. The discrete-time approximation of
the stochastic recurrence is

S̃(jδ) = S̃((j − 1)δ) + rδS̃((j − 1)δ) + exp
[
Ṽ ((j − 1)δ)

]√
δZj,1,

Ṽ (jδ) = αδb+ (1− αδ)Ṽ ((j − 1)δ) + σ
√
δZj,2,

where (Zj,1,Zj,2) is a pair of standard normals with correlation ρ. To generate this pair,
we generate independent Uniform(0,1) variables (Uj,1, Uj,2), and put Zj,1 = Φ−1(Uj,1) and
Zj,2 = ρZj,1 +

√
1− ρ2 Φ−1(Uj,2). For either the European or Asian option, the state of the

Markov chain and the dimension of the RQMC points are the same as for the Heston model.
We ran a numerical experiment with T = 1, K = 100, S(0) = 100, V (0) = 0.04, r = 0.05,

b = 0.4, α = 5, σ = 0.2, ρ = −0.5, and c = τ = 16 (so δ = 1/16). Table 5.3 reports the
estimated regression slopes β̂ and VRF2. With τ = 256 instead of τ = 16, the VRF20’s have
about the same sizes.

European Asian
Sort Point sets β̂ VRF20 β̂ VRF20

Batch sort

MC -1 1 -1 1
Stratif -1.28 111 -1.23 29
Sobol’+LMS -1.35 61516 -1.22 4558
Sobol’+NUS -1.31 56235 -1.22 5789
Lattice+baker -1.37 61318 -1.20 5511

Hilbert sort
(with logistic
map)

MC -1 1 -1 1
Stratif -1.40 440 -1.37 250
Sobol’+LMS -1.52 194895 -1.40 41100
Sobol’+NUS -1.68 191516 -1.37 39861
Lattice+baker -1.59 165351 -1.47 37185

Table 5.3. Regression slopes β̂ for log2 Var[µ̂arqmc
n ] vs log2(n), and VRF compared with

MC for n = 220, denoted VRF20, for the European and Asian options under the Ornstein-
Uhlenbeck model.

Conclusion

We have shown how Array-RQMC can be applied for pricing options under stochastic
volatility models, and gave detailed examples with the VG, Heston, and Ornstein-Uhlenbeck
models. With the models, the method requires higher-dimensional RQMC points than with
the simpler GBM model studied previously, and when time has to be discretized to apply
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Euler’s method, the number of steps of the Markov chain is much larger. For these reasons,
it was not clear a priori if Array-RQMC would be effective. Our empirical results show that
it brings very significant variance reductions compared with crude Monte Carlo.
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Chapter 6

Article 4: Variance Reduction with Array-RQMC for

Tau-Leaping Simulation of Stochastic Biological and

Chemical Reaction Networks

In the fourth article, we consider systems of chemical species whose molecule numbers
dynamically change over time as the molecules react via a set of predefined chemical equa-
tions. The evolution of such systems is typically modeled by a continuous-time Markov
chain (CTMC) whose state is a vector that gives the number of copies of each species. The
τ -leaping method is designed to model these systems by approximating the CTMC by a
discrete-time Markov chain (DTMC), which can be simulated by generating a vector of in-
dependent Poisson random variables at each step, and updating the state to reflect all the
reactions that occurred during a fixed time interval. We investigate the use of Array-RQMC,
to reduce the variance when simulating such systems with τ -leaping. When applying the
method properly and introducing new sorting methods, we find that variance reductions can
be achieved by factors in the thousands. These factors are far greater than those previously
found by other authors who have tried RQMC methods on the same examples.

This article has been submitted for publication in The Bulletin of Mathematical Biology.
Preliminary work was presented at the following conferences:

— The Optimization Days, Montreal, May 2019;

— 12-th International Conference on Monte Carlo Methods and Applications, Sydney,
Australia, July 2019.

The main author contributions are:

— The general research ideas were proposed by Pierre L’Ecuyer;



— The research (including implementation, experiments, etc.) was carried out jointly
by Amal Ben Abdellah and Florian Puchhammer;

— The article was written jointly by all three authors.
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Abstract

We explore the use of Array-RQMC, a randomized quasi-Monte Carlo method designed
for the simulation of Markov chains, to reduce the variance when simulating stochastic
biological or chemical reaction networks with τ -leaping. We find that when the method is
properly applied, variance reductions by factors in the thousands can be obtained. These
factors are much larger than those observed previously by other authors who tried RQMC
methods for the same examples. Array-RQMC simulates an array of realizations of the
Markov chain and requires a sorting function to reorder these chains according to their
states, after each step. The choice of a good sorting function is a key ingredient for the
efficiency of the method. We illustrate this by comparing various choices. The expected
number of reactions of each type per step also has an impact on the efficiency gain.

Key words: Chemical reaction networks, stochastic biological systems, variance re-
duction, Quasi-Monte Carlo, Array-RQMC, Tau-leaping, continuous-time Markov chains,
Gillespie.

6.1. Introduction

We consider systems of chemical species whose molecule numbers dynamically change
over time as the molecules react via a set of predefined chemical equations. The evolution of
such systems is typically modeled by a continuous-time Markov chain (CTMC) (Anderson
and Kurtz, 2011; Anderson, 1991; Gillespie, 1977) whose state is a vector that gives the
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number of copies of each species. Each transition (or jump) of the CTMC corresponds to
the occurrence of one reaction, and the occurrence rate of each potential reaction (also called
the reaction propensity) is a function of the state of the chain. The probability that any given
reaction is the next in order is proportional to its propensity and the time until the next
reaction has an exponential distribution whose rate is the sum of these propensities. The
stochastic simulation algorithm (SSA) of Gillespie (1977) simulates the successive transitions
of this CTMC one by one, by generating the exponential time until the next reaction and
determining independently which reaction it is. This method is exact (there is no bias). But
when the number of molecules is large, simulating all the reactions one by one is often too
slow, because their frequency is too high. One popular alternative is to approximate the
CTMC by a discrete-time Markov chain (DTMC), as follows. Fix a time interval τ > 0.
Under the simplifying assumption that the rates of the different reactions do not change
during the next τ units of time, the numbers of occurrences for each type of reaction are
independent Poisson random variables with means that are τ times the occurrence rates
(or propensities) of these reactions. Each step (or transition) of the DTMC corresponds
to τ units of time for the CTMC. This DTMC can be simulated by generating a vector of
independent Poisson random variables at each step, and updating the state to reflect all
the reactions that occurred during this time interval. In the setting of chemical reaction
networks, this approach is the τ -leaping method of Gillespie (2001), and it is widely used in
practice. This is the method we consider in this paper.

There are several other approximation methods, some of them leading to simpler and
faster simulations, but the error and/or bias can also be more significant (Gillespie, 2000;
Higham, 2008). One simple approach uses a fluid approximation in which the copy numbers
are assumed to take real values that vary in time according to a system of deterministic
differential equations called the reaction rate equations which can be simulated numerically
(Gillespie, 2000; Higham, 2008). This type of deterministic model is the primary tool in the
field of system dynamics, and it is widely used in many areas. It corresponds to chemical
kinetics equations found in textbooks. But this model ignores randomness, so it cannot cap-
ture the stochastic variations observed in experiments with real systems (Beentjes and Baker,
2019). Noise can be introduced via a stochastic differential equations model, which amounts
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essentially to approximate the Poisson distribution by a normal one, and the denumerable-
state CTMC by a continuous-state process. This leads to the chemical Langevin equation

(Beentjes and Baker, 2019; Gillespie, 2000), which can be simulated efficiently by standard
methods for stochastic differential equations (Kloeden and Platen, 1992) and may provide a
reasonable approximation when the number of molecules of each type is very large, but can
otherwise suffer from bias.

The purpose of the stochastic simulations with τ -leaping could be for example changing
to estimate the probability distribution of the state at a given time t, or the probability that
the state is in a given subset at time t, or perhaps the expectation of some function of the
state. The simulations are usually done via Monte Carlo (MC) sampling, using a random
number generator that provides a good imitation of independent uniform random variables
over the interval (0,1) (L’Ecuyer, 2012). For MC estimators based on the average over n
independent samples, the variance and standard deviation converge as O(n−1) and O(n−1/2),
respectively, which is rather slow.

Randomized quasi-Monte Carlo (RQMC) provides an alternative sampling approach
which under favorable conditions can improve this convergence rate of the variance to
O(n−2+ε) for any ε > 0, and even better in special situations (L’Ecuyer, 2009, 2018; L’E-
cuyer and Lemieux, 2002; Owen, 1997, 2003). Quasi-Monte Carlo (QMC) replaces the n
independent vectors of uniform random numbers that drive the simulations by n determin-

istic vectors with a sufficient number of coordinates to simulate the system and which cover
the space (the unit hypercube) more evenly than typical independent random points (Dick
and Pillichshammer, 2010; Niederreiter, 1992). RQMC randomizes these points in a way
that each individual point becomes a vector of independent uniform random numbers, while
at the same time the set of points as a whole retains its structure and high uniformity. As
a result, RQMC can provide an unbiased estimator with lower variance.

On the other hand, there are two important limitations. Firstly, the O(n−2+ε) conver-
gence rates for RQMC are proved only under conditions that the integrand is a smooth
function of the uniforms, whereas when simulating the CTMC considered here, the sequence
of states that are visited is discontinuous in the underlying uniform random variates. Sec-
ondly, when the points are high-dimensional and some high-order interaction between the
coordinates are important, the variance reduction is usually limited, and this often happens
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when simulating the CTMCs that model reaction networks via either direct SSA or τ -leaping.
Indeed, those simulations require at least one or two random numbers per step of the chain,
the number of steps can be very large in real applications, so the dimension of the points,
which is the total number of random numbers that are required to simulate one realization of
the process, can be very large. Beentjes and Baker (2019) investigated the performance of
τ -leaping combined with traditional RQMC and found that the gain from RQMC compared
to MC was small. They mentioned the two limitations above as possible explanations for
this behavior.

The Array-RQMC algorithm (L’Ecuyer et al., 2006, 2008, 2009) has been developed pre-
cisely to recapture the power of RQMC when simulating Markov chains over a large number
of steps, as in the problem considered here. The empirical variance under array-RQMC has
been observed to converge faster than under MC in several examples from various areas,
sometimes at the n−2+ε rate, even for some examples where the cost function was discontin-
uous (Ben Abdellah et al., 2019b; Demers et al., 2005; Dion and L’Ecuyer, 2010; L’Ecuyer
et al., 2007, 2008, 2009, 2018). The faster convergence has also been proven theoretically
under certain conditions (L’Ecuyer et al., 2008).

Our present work was motivated by Beentjes and Baker (2019) and our aim was to see how
Array-RQMC can improve upon MC and classical RQMC, first by using the same examples
as in their paper. Hellander (2008) also experimented with Array-RQMC, in combination
with uniformization of the CTMC and conditional Monte Carlo (CMC) based on the discrete-
time conversion method of Fox and Glynn (1990). Their goal was to estimate the probability
distribution of the state at a fixed time t > 0. In this setting, CMC alone provably reduces
the variance. Empirically, with CMC, they obtained variance reductions by factors of about
20 in one example and 45 in another example. With the combination of CMC with Array-
RQMC, they observed variance reductions by a factor of about 100 with n = 105 for both
examples. Thus, Array-RQMC provides an additional gain on top of CMC, by a factor of
about 2.5 to 5.

In this paper, we show how to obtain much larger variance-reduction factors with Array-
RQMC. We do this in the same setting as Beentjes and Baker (2019), where the τ -leaping
method is used to estimate an expectation at a given time t. We find empirically that the
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combination of τ -leaping with the Array-RQMC algorithm can bring not only a significant
variance reduction, but also an improved convergence rate, compared with plain MC.

The main idea of the Array-RQMC algorithm is to simulate n copies of the Markov chain
in parallel, in a way that the empirical distribution of the chain’s states at any given step is
closer to the exact theoretical distribution at that step than with ordinary MC. To achieve
this, at each step, the first few coordinates of the RQMC point set are designated to match
the points to the states, and the remaining coordinates are used to advance the chains by
one step. This matching can be interpreted as sorting the chains in some particular order,
to match the ordering of the RQMC points. In the simple case where the state is one-
dimensional, it suffices to enumerate the points by increasing order of their first coordinate
and sort the chains by increasing order of their state. For higher-dimensional states, one
possibility is to use some kind of multivariate sort to order both the points and the states;
we will describe several of these sorts in Section 6.3.2. Another approach is to define an
importance function, which maps the state to a one-dimensional representative value, and
sort the chains by that value. The choice of mapping can have a significant impact on the
performance. If the mapping is fast to evaluate, this approach can reduce the computing
time significantly, because a one-dimensional sort is usually much faster to execute than a
multivariate one. To preserve the power of Array-RQMC, on the other hand, the importance
function must provide a good estimate (or forecast) of the expected future value or cost,
given the state at which it is evaluated. For this, it must be tailored to the problem at hand.
A good tradeoff between simplicity and prediction accuracy is not always easy to achieve,
but it is a key ingredient for the performance of Array-RQMC. As a proof of concept that
this approachcan work for reaction networks, we experiment with a very simple one-step
look-ahead importance function, and we find that it works very well in all our examples.
Empirically, in our experiments, this approach is often competitive with the best multivariate
sorts interms of variance reduction, and the sorting times are shorter, so it often provides
the best efficiency improvement. We also discuss how more elaborate importance functions
could be defined.

The remainder is structured as follows. In Section 6.2 we recall the fixed step τ -leaping
method for the simulation of well-mixed reaction networks in its simplest form. In Section 6.3,
we define the Array-RQMC method and discuss some of the most prominent multivariate
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sorting algorithms. In Section 6.4, we describe the methodology used for our experiments
and provide numerical results, with a discussion. A conclusion follows.

6.2. The CTMC Model and the τ-Leaping Algorithm for Reaction

Networks

We consider a system comprised of ` ≥ 1 types of chemical species S1, . . . , S` that can
react via d ≥ 1 reaction types (or channels) R1, . . . , Rd. We assume that the species are
well-mixed within a volume that does not change over time and whose temperature remains
constant. Each reaction Rk, k = 1, . . . ,d, can be written as

α1,kS1 + · · ·+ α`,kS`
ck−→ β1,kS1 + · · ·+ β`,kS`, αi,k, βi,k ∈ N0,

where ck > 0 is the reaction rate constant for Rk. Let X(t) = (X1(t),..., X`(t)) ∈ N`
0, where

Xi(t) is the copy number (i.e., the number of molecules) of type Si at time t, for i = 1, . . . ,`
and 0 ≤ t ≤ T . The process {X(t), t ≥ 0} is modeled as a CTMC with fixed initial state
X(0) = x0 and for which each jump corresponds to the occurrence of one reaction. The
jump rate (or propensity function) for reaction Rk is a function ak of the current state; it
is ak(x) when X(t) = x. This means that for a small δ > 0, reaction Rk occurs exactly
once during the time interval (t, t+ δ] with probability ak(x)δ + o(δ) and occurs more than
once with probability o(δ). When Rk occurs, the state changes from x to x + ζk, where
ζk = (β1,k − α1,k, . . . , β`,k − α`,k) is the stoichiometric vector for Rk. The standard for
ak(x), which we assume in our examples, is ak(x) = ckHk(x) where Hk(x) = ∏`

i=1

(
xi

αi,k

)
represents the number of ways of selecting the molecules for reaction Rk when in state
x = (x1, . . . ,x`) (Higham, 2008). When in state x, the time until the next reaction has an
exponential distribution with rate λ(x) = ∑d

k=1 ak(x), the probability that this reaction is
Rk is ak(x)/λ(x), and these random variables are independent. The SSA of Gillespie (1977)
simulates this CTMC directly. However, when a very large number of reactions occur in the
time interval of interest, the direct simulation approach may be too slow.

Gillespie (2001) proposed the τ -leaping algorithm as a way to speed up the simulation.
This approach discretizes the time into intervals of length τ > 0, and it generates directy
the number of occurrences of each type of reaction in each such interval. If X(t) = x at the
beginning of an interval, it is assumed (as an approximation) that the rate of each reaction Rk
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remains equal to ak(x) during the entire interval [t, t+τ ]. Under this simplifying assumption,
the number Dk of occurrences of Rk during this time interval has a Poisson distribution
with mean ak(x)τ , and D1, . . . ,Dd are independent. These Dk can be simulated easily via
the inversion method, by generating independent uniform random numbers over (0,1) and
applying the inverse of the cumulative distribution function (cdf) of the appropriate Poisson
distribution (Giles, 2016). The simulated state at time t+τ is then x+∑d

k=1Dkζk. Repeating
this at each step gives an approximating discrete-time Markov chain (DTMC) {Xj, j ≥ 0}
defined by X0 = x0 and

Xj = Xj−1 +
d∑

k=1
Dj,kζk, = Xj−1 +

d∑
k=1

F−1
j,k (Uj,k)ζk

def= ϕ(Xj−1,Uj), (6.2.1)

where Dj,k = F−1
j,k (Uj,k), Fj,k is the cdf of the Poisson distribution with mean ak(Xj−1)τ ,

Uj = (Uj,1, . . . ,Uj,d), and the Uj,k are independent uniform random numbers over (0,1), for
k = 1, . . . ,d and j ≥ 1. If τ is small enough, Xj has approximately the same distribution as
X(jτ), so this DTMC provides an approximate skeleton of a CTMC sample path.

This τ -leaping approximation has some potential problems, because it introduces bias
which can propagate across successive steps, and this bias can be important if τ is not small
enough. It is also possible to obtain negative copy numbers, i.e., some coordinates of some
Xj taking negative values. Adaptive strategies and modifications of the algorithm have been
designed to prevent or handle this; see, e.g., (Anderson and Higham, 2012; Anderson, 2008;
Beentjes and Baker, 2019), and the references given there. We do not discuss these techniques
in this paper. Our main goal is to explore how Array-RQMC can be effectively combined
with τ -leaping, and we keep the setting simple to avoid distractions. In our experiments, we
took τ small enough so we did not observe negative copy numbers.

Following Beentjes and Baker (2019), we suppose that the objective is to estimate µ =
E[g(X(T ))] for a given time T > 0 and some function g : N`

0 → R. These authors only
took a coordinate projection for g (i.e., they only estimated expected copy numbers) in their
examples, and we do the same, but what we do applies easily to other choices of g.

For example, g(x) could be the indicator that x belongs to a given set A, in which case
µ = P[X(T ) ∈ A]. We take τ = T/s where s is a positive integer that represents the number
of steps of the DTMC that will be simulated. To estimate µ with τ -leaping and MC, we
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simulate n independent realizations of the DTMC via

Xi,0 = x0, Xi,j = ϕj(Xi,j−1,Ui,j) for j = 1, . . . ,s and i = 0, . . . ,n− 1, (6.2.2)

where the Ui,j’s are independent uniform random points over (0,1)d. The estimator is

µ̂n = 1
n

n−1∑
i=0

g(Xi,s). (6.2.3)

We know that E[µ̂n] = E[g(Xs)] ≈ E[g(X(T ))] = µ (we do not look at the bias E[g(Xs)] −
E[g(X(T ))] in this paper) and Var[µ̂n] = Var[g(Xs)]/n.

To use classical RQMC instead of MC, we simply replace the independent random points
by a set of n vectors Vi = (Ui,1,Ui,2, . . . ,Ui,s), i = 1, . . . ,n, which form an RQMC point set
in sd dimensions, as did Beentjes and Baker (2019).

6.3. Array-RQMC to Simulate the DTMC

6.3.1. The Array-RQMC Algorithm

We now explain how to apply Array-RQMC to simulate the DTMC via (6.2.2) and
estimate E[g(Xs)] ≈ µ again with (6.2.3), but with a different sampling strategy for the
random numbers. The algorithm simulates the n sample paths of the DTMC in parallel,
using an (l + d)-dimensional

RQMC point set to advance all the chains by one step at a time, for some l ∈ {1, . . . , `}.
The first l coordinates of the points are used to make a one-to-one pairing between the chains
and the points, and the other d coordinates are used to advance the chains. When l < `, one
must first define a dimension-reduction mapping h : N`

0 → Rl whose aim is to extract the
most important features from the state and summarize them in a lower-dimensional vector
which is used for the sort. For l = 1, the mapping h has been called an importance function

or sorting function (L’Ecuyer et al., 2006, 2007, Section 3). At each step, both the RQMC
points and the chains are ordered using the same l-dimensional sort. Different types of sorts
are discussed in Section 6.3.2.

Specifically, we select a deterministic low-discrepancy (QMC) point set of the form Q̃n =
{(wi,ui), i = 0, . . . ,n− 1}, with wi ∈ [0,1)l and ui ∈ [0,1)d, whose points are already sorted
with respect to their first l coordinates with the multivariate sort that we have selected. At
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each step j, we randomize the last d coordinates of the points of Q̃n to obtain the RQMC
point set

Qn,j = {(wi,Ui,j) : i = 0, . . . ,n− 1}, (6.3.1)

in which each Ui,j is uniformly distributed in [0,1)d. We also sort the n states X0,j−1, . . . ,

Xn−1,j−1 based on their values of h(X0,j−1), . . . ,h(Xn−1,j−1), using the same sorting algorithm
as for the QMC points, and let πj denote the permutation of the indices {0,1, . . . ,n − 1}
implicitly defined by this reordering. Then the n chains advance to step j via

Xi,j = ϕ(Xπj(i),j−1,Ui,j), i = 0, . . . ,n− 1.

It is also possible to use a different sorting method at each step j, in which case the QMC
points must be sorted differently as well, so this is usually not convenient.

At the end, one computes µ̂n in (6.2.3), which is an unbiased estimator of E[g(Xs)]. The
main goal of this procedure is for the empirical distribution of the states X0,j, . . . ,Xn−1,j

to better approximate the theoretical distribution of Xj at each step j, than if the chains
were simulated independently with standard MC, and as a result reduce the variance of
µ̂n. For further theoretical analysis and empirical evidence, see for example L’Ecuyer et al.
(2008, 2009, 2018). To estimate the variance of this Array-RQMC estimator, one can repeat
the entire procedure m times, with independent randomizations of the points, and take the
empirical variance of the m realizations of µ̂n as an unbiased estimator for Var[µ̂n]. This
Array-RQMC procedure is stated in Algorithm 4.

Algorithm 4 Array-RQMC Algorithm
1: Xi,0 ← x0 for i = 0,...,n− 1;
2: for j = 1,2,...,s do
3: Sort the states X0,j−1, . . . ,Xn−1,j−1 by their values of h(Xi,j−1),
4: using the selected sort, and let πj be the corresponding permutation;
5: Randomize afresh the last d coordinates of the RQMC points, U0,j,...,Un−1,j;
6: for i = 0,1, . . . ,n− 1 do
7: Xi,j = ϕ(Xπj(i),j−1,Ui,j) ;
8: end for
9: end for

10: Return the estimator µ̂n = (1/n)∑n−1
i=0 g(Xi,s).

143



6.3.2. Sorting Strategies

In the special case where l = 1, the RQMC points are sorted by their first coordinate and
the states Xi,j−1 are simply sorted by their value of h(Xi,j−1), in increasing order. In this
case, one would typically have wi = i/n and the points are already sorted by construction
(this is true for all the point sets used in this paper).

When ` > 1, sorting for good pairing is less obvious. Two related multivariate sorts that
gave good results for other applications are the batch sort and the split sort (El Haddad
et al., 2008; Lécot and Coulibaly, 1998; L’Ecuyer et al., 2009, 2018). For the batch sort we
factor n = n1n2 · · ·nL with L ≥ 1. Each time we sort, we split the set of states into n1

batches of size n/n1 such that the first coordinate of every state in one batch is smaller or
equal to the first coordinate of every state in the next batch; then we further subdivide each
batch into n2 batches of size n/(n1n2) in the same way but now according to the second
coordinate of the states. This procedure is repeated L times in total. If L > `, after ` steps
we begin subdividing the batches with respect to their first coordinate again. The split sort

is simply a variant of the batch sort in which n = 2L and n1 = n2 = . . . = nL = 2.
Another way of sorting is to map the states to the `-dimensional unit hypercube [0,1)`,

so we can assume that the state space is now [0,1)` instead of N`
0, and then use a discretized

version of a space filling curve for this hypercube. The hypercube is partitioned into a
grid of small subcubes so that the event that two states fall in the same small subcube has
a very small probability, then the states are sorted in the order that their subcubes are
visited by the curve (those in the same subcube can be ordered arbitrarily). With this, we
use (d + 1)-dimensional RQMC points sorted by their first coordinate. This approach is in
fact an implicit way to map the states to the one-dimensional real line, and then use a one-
dimensional sort (with l = 1). This has been suggested in particular with a Z-curve (Wächter
and Keller, 2008) and with a Hilbert curve (Gerber and Chopin, 2015). We call the latter a
Hilbert curve sort. To map `-dimensional states to [0,1)`, Gerber and Chopin (2015) suggest
applying a rescaled logistic transformation Ψ(xj) = 1/1/(1+exp[−(xj−µj+2σj)/(4σj)]), 1 ≤
j ≤ `, to each coordinate. We estimated the means µj and the variances σj of the copy
numbers of each species at every step, from data obtained from preliminary experiments.

A variant that avoids the need for such a transformation is the Hilbert batch sort (L’E-
cuyer et al., 2018): One first applies a batch sort to partition R` into n boxes, each of which
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containing exactly one of the states, then these boxes are associated with n subcubes in
[0,1)` and the states are enumerated in the order that the corresponding boxes are visited
by the Hilbert curve.

All these multivariate sorts can be computationally expensive when n is large. For this
reason, we made significant efforts in this work to explore ways of defining importance
functions h : N`

0 → R that can be computed quickly during the simulations and provide
at the same time good representations for the value of a state. An appropriate choice of h
is certainly problem-dependent and good ones have been constructed for some examples in
other settings such as computational finance, queueing, and reliability (Ben Abdellah et al.,
2019b; L’Ecuyer et al., 2007, 2008, 2018).

We adopt the (partly heuristic) idea that at each step j, an ideal importance function
hj should have the property that hj(x) is a good approximation of E[g(Xs) | Xj = x] for all
x ∈ N`

0 and j = 1, . . . ,s (L’Ecuyer et al., 2007, 2009). To really do this, we need to construct
a different approximation hj for each j. We will call it a step-dependent importance function

(SDIF). To see how well this general type of approach could perform, we made the following
experiment with each of the examples considered in Section 6.4. First, we generated data
by simulating the DTMC for n = 219 independent “pilot” samples paths, and we collected
the n pairs (Xi,j, g(Xi,s)), i = 0, . . . ,n− 1, for each j. Then, our aim was to find a function
hj : N`

0 → R for which hj(Xi,j) was a good predictor of g(Xi,s). For this, we selected a
parameterized form of function hj, say hj(θ,·), which depends on a parameter vector θ, and
we estimated the best value of θ by least-squares regression from the data. The general form
that we explored for hj(θ,x) was a linear combination of polynomials in the coordinates of
x, where θ was the vector of coefficients in the linear combination. The motivation for this
choice is that the expected number of molecules of a given type at the next step, given the
current state, is an affine function of the expected number of reactions of each type that will
occur at that step, and this expected number for reaction type Rk is in turn linear in ak(x),
which is a known polynomial in the coordinates of x.

A cruder but less expensive strategy uses the same function hj = h for all j. One special
case of this is to use hs−1 at all steps. We had some success with this simple version, which
we call the one-step look-ahead importance function (OSLAIF). In the special case where
g(x) is linear in x, say g(x) = btx, then hs−1(x) def= E[g(Xs) | Xs−1 = x] = E[btX1 | X0 = x]
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is given by a polynomial in x, and one can calculate this polynomial exactly, since

E[X1 | X0 = x] = x +
d∑

k=1
ζkE[D1,k | X0 = x] = x + τ

d∑
k=1

ζkak(x), (6.3.2)

which is a vector of polynomials in x that are easy to calculate. This includes the case of
g(x) = xi, the number of molecules of species i, which occurs in all our examples.

Extending this to more than one step can be more difficult when the ak are nonlinear.
One can write

E[X2 | X0 = x] = x + τ
d∑

k=1
ζk [ak(x) + E[ak(X1 | X0 = x)]] ,

but when ak is nonlinear, the quantity in the last expectation is a nonlinear function of a
random vector. Extending to more steps leads to even more complicated embedded condi-
tional expectations. This motivated us to try just the OSLAIF rule as a heuristic, and we
got some good results with that. Specific illustrations of this are given in Section 6.4.

Let h̃j denote the functions hj estimated from data as just described. These h̃j are noisy
estimates, and since they are estimated separately across values of j, we can observe some
random variation when looking at their sequence as a function of j. To smooth out this
variation, we tried fitting a (least-squares) smoothing spline (de Boor, 2001; Pollock, 1993)
to this sequence of functions h̃j to obtain a sequence of functions hj, j = 1,...s, that varies
more smoothly across the step number j. This yields a smoothed SDIF. In our experiments,
we never observed a large improvement by doing this, because with n = 219 pilot simulations,
the h̃j did not vary much already as a function of j. But the smoothing might be worthwhile
when the number n of pilot simulations is smaller.

6.3.3. RQMC Point Sets

The RQMC point sets considered in this paper are the following (the short names in
parentheses are used to identify them in the next section): (1) a randomly-shifted rank-
1 lattice rule (Lat+s); (2) a Lat+s with the baker’s transformation applied to the points
after the shift (Lat+s+b); (3) a Sobol’ net with a left random matrix scramble followed by
a random digital shift (Sob+LMS); (4) a Sobol’ net with the nested uniform scramble of
Owen (1997) (Sob+NUS). These point sets and randomizations are defined and explained in
L’Ecuyer (2009, 2018); L’Ecuyer and Lemieux (2000); Owen (2003). They are implemented
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in SSJ (L’Ecuyer, 2016; L’Ecuyer and Buist, 2005), which we used for all our experiments.
For the lattice rules, the parameters were found with the Lattice Builder tool (L’Ecuyer and
Munger, 2016), using the weighted P2 criterion with order dependent weights of the form
ρk, ρ > 0 for each projection of order k, for each k, with ρ = 0.6 for Example 6.4.1 and
for the PKAr case in Example 6.4.3 (the small-dimensional cases), and ρ = 0.05 in all the
other cases. The baker’s transformation stretches each coordinate of each point by a factor
or 2, then folds back the values by replacing u with 2 − u when u > 1. This is equivalent
to transforming the integrand to make it periodic, which may improve the convergence rate
(Hickernell, 2002) and may provide huge improvements in some cases, but it also increases
the variation of the integrand, so it may also increase the variance (moderately) in other
cases. For the Sobol’ points, we used the parameters (direction numbers) from Joe and Kuo
(2008), except for Example 6.4.1 and the PKAr case in Example 6.4.3, for which we used
the parameters from Lemieux et al. (2004).

6.4. Numerical illustrations

We tested the performance of array-RQMC in combination with τ -leaping, first on some
examples from Beentjes and Baker (2019), then on a higher-dimensional example from Pad-
gett and Ilie (2016). All experiments were run using SSJ (L’Ecuyer, 2016; L’Ecuyer and
Buist, 2005), which provides the required RQMC tools and also implements the sorting
methods discussed in Section 6.3.2. The MRG32k3a random number generator was used for
MC and all the randomizations.

We repeated each Array-RQMC procedure m = 100 times independently to estimate the
RQMC variance Var[µ̂n] for n = 213, . . . ,219. We then fitted a model of the form Var[µ̂n] ≈
κn−β to these observations by least-squares linear regression in log-log scale. This gave an
estimated convergence rate of O(n−β̂) for the variance, where β̂ is the least-square estimate
of β. We report this β̂ in our results. Ordinary MC gives β = 1, so we can compare. We also
provide a few plots of Var[µ̂n] as a function of n, in log-log scale, to illustrate the typical
behavior. Our logs are always in base 2, because we always use powers of 2 for n.

We computed the estimated variance reduction factor (VRF) of Array-RQMC compared
with MC, which is defined as Var[g(Xs)]/(nVar[µ̂n]) where Var[g(Xs)] is the MC variance
for a single run, which was estimated separately by making n = 219 independent runs. This
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is the variance per run for MC divided by the variance per run for Array-RQMC. We call
VRF19 this value for n = 219 and we report it in our results. We also computed an efficiency
ratio which measures the change in the work-normalized variance (the product of the esti-
mator’s variance by its computing cost). It is the VRF multiplied by the CPU time required
to compute n realizations with MC and divided by the CPU time to compute the RQMC or
Array-RQMC estimator with the samen. We call EIF19 its value for n = 219 and we report
it as well. This measure takes into account both the gain in variance and the extra cost in
CPU time which is required to sort the chains at each step of the Array-RQMC algorithm.
Note that using RQMC only is generally not slower than MC, but usually a bit faster.

6.4.1. Reversible isomerization system

We start with the same simple model of a reversible isomerization system, taken from
Beentjes and Baker (2019). There are two species, S1 and S2, and d = 2 reaction channels
with reaction rates c1 = 1 and c2 = 10−4:

S1

c1−→←−
c2
S2.

We start with X1(0) = 102 molecules of type S1 and X2(0) = 106 molecules of type S2.
Since the total number of molecules is constant over time, it suffices to know the number of
molecules of the first type, X1(t), at any time t, so we can define the state of the CTMC
as X(t) = X1(t) only. This gives us ` = 1. Then, we only need a one-dimensional sort for
Array-RQMC. We also take g(X(t)) = X1(t). Note that with our choice of initial state,
E[X1(t)] = 102 for all t > 0, so we already know the answer for this simple example. There
are two possible reactions, so d = 2, and we therefore need RQMC points in 2s dimensions
with classical RQMC and in `+ d = 3 dimensions with Array-RQMC.

Table 6.1 summarizes our experimental results. Seven cases are reported in the table.
The first case (in the upper left) has the same parameters as Beentjes and Baker (2019):
T = 1.6, and s = 8, so τ = T/s = 0.2. Figure 6.1 displays how the variance decreases as
a function of n for this case. Notice the steeper slope for the four Array-RQMC variants.
Array-RQMC clearly outperforms both MC and classical RQMC in this example.

We also observe with these three cases that when we increase s with T fixed, the factors
VRF19 and EIF19 diminish, and the diminution is much more important with RQMC. The
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latter might be no surprise, because increasing s increases the dimension of the RQMC
points. But it was unclear a priori if it would also occur with Array-RQMC, and how much.
However, by doing further experimentation, we found that the decrease of VRF19 is not due
really to the increase in the number of steps, but rather to the decrease in τ . To see that,
look at the fourth case, with (T,s,τ) = (25.6,128,0.2). Here we have the same τ as in the first
case, but s is multiplied by 16. For the Array-RQMC methods, the variance reductions and
convergence rates are similar to the first case. For RQMC, they are a bit lower, which is not
surprising because the dimension has increased. For cases five and six, we have increased τ
to 0.8 and we compare two large values of s. The VRF19’s are roughly comparable, which
means that they really depend on τ and not much ons. Why is that?

Recall that in this example, at each step we generate a pair of Poisson random variables,
which are discrete and therefore discontinuous with respect to the underlying uniforms. The
mean of each Poisson random variable is proportional to τ , and the larger the mean, the closer
it is to a continuous distribution. In fact, as τ increases, the Poisson converges to anormal
distribution, whose inverse cdf is smooth, so the generated values are smooth functions of
the underlying uniforms in the limit. That is, we obtain a better VRF19 when τ is larger
because the integrand is closer to a continuous (and smooth) function. When the Poisson
distributions have small means, in contrast, the response has larger discontinuities. And it
is well known that RQMC is much more effective for smooth functions that discontinuous
functions. This kind of behavior was already pointed out for RQMC in Section 5.2 of
Beentjes and Baker (2019). Interestingly, we see that the same effect applies to Array-
RQMC as well. To illustrate this effect "in the limit", we made an experiment in which all
the Poisson random variables at each step are replaced by normals with the same mean and
variance, and the state vector has real-valued components rather than integer components,
using the same parameters as in the first case in the table. The results are in the last
(bottom) entry of the table and they are stunning. Firstly, for RQMC and all Array-RQMC
methods, the rate β̂ is close to 2, which does not occur for the other cases. Secondly, the
VRF19 factor is also very large for RQMC and is huge in particular for Array-RQMC with
Lat+s+b. This surprising result for RQMC can be explained as follows. Here the integrand
has 16 dimensions, but on a closer look one can see that it is a sum of 16 normal random
variables that are almost independent; i.e., almost a sum of one-dimensional functions. This
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means that the effective dimension is close to 1, and this explains the success of RQMC.
Regarding the huge gain with Lat+s+b, it can be explained by the fact that for a smooth
one-dimensional function, RQMC with Lat+s+b can provide an O(n−4) convergence rate
for the variance (Hickernell, 2002; L’Ecuyer, 2009). Essentially, for one-dimensional smooth
functions, the baker’s transformation produces a locally antithetic effect which integrates
exactly the piecewise linear approximation, and only higher-order error terms remain. The
huge VRF19 indicates that part of this effect carries over to Array-RQMC.

We just saw that as a rough rule of thumb, the RQMC methods bring more gain when
the Poisson random variables have larger means. We know (from Section 6.2) that the mean
of the Poisson random variable Dj,k is ak(Xj−1)τ . This mean can be increased by increasing
either τ or the components of the state vector. For the present example, if we denote
Xj−1 = (X(1)

j−1,X
(2)
j−1)t, the number of molecules of each of the two types at step j − 1, we

have ak(Xj−1) = ckX
(k)
j−1 for k = 1,2, so the Poisson means are increased by a factor γ > 1 by

either multiplying τ by γ or multiplying the vector Xj−1 by γ. We made experiments whose
results agreed with that when all the components of the state were large enough. But if one
component of Xj−1 is small, and we increase τ and simulate the system over a few steps, this
component has a good chance of getting close to zero at some step, and this increases the
discontinuity. In that situation, a larger τ can worsen the VRF. To further test the above
reasoning, we made another set of experiments in which the initial state X0 had two equal
components, exactly X(1)

0 = X
(2)
0 = (102 + 106)/2 molecules of each type, and we adapted

the reaction rates to c1 = c2 = 100/X(1)
0 , to keep E[X1(t)] = X

(1)
0 for all t. In this case, the

problem of one component getting close to 0 does not occur so things remain smoother. We
found that the VRFs were larger than in Table 6.1 for both RQMC and Array-RQMC (we
exclude the normal distribution). The VRF for RQMC was also smaller when both T and s
were large, but not when s was increased and T remained small. One possible explanation
for this is that when T and s are large, the overall change in the state can be large, and then
the set of successive changes in the state are less independent, which increases the effective
dimension.
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(T,s,τ) −→ (1.6,8,0.2) (1.6,1024,0.2/128) (1.6,1024,0.2/128)
MC Var 107.8 96.6 96.0
Sample β̂ VRF19 EIF19 β̂ VRF19 EIF19 β̂ VRF19 EIF19
MC 1.00 1 1 1.00 1 1 1.00 1 1
RQMC 1.03 629 1,493 1.08 79 83 1.01 46 68
Lat+s 1.81 27,864 14,835 1.82 17,163 5,315 1.64 6,918 2,098
Lat+s+b 1.60 14,420 7,636 1.7 46,133 1,838 1.53 1,997 553
Sob+LMS 1.64 18,892 9,819 1.62 8,370 2,785 1.57 3,949 1,386
Sob+NUS 1.70 17,518 6,440 1.60 5,773 1,095 1.65 3,182 667
(T,s,τ) −→ (25.6,128,0.2) (102.4,128,0.8) (819.2,1024,0.8)
MC Var 111.0 166.7 166.6
Sample β̂ VRF19 EIF19 β̂ VRF19 EIF19 β̂ VRF19 EIF19
MC 1.00 1 1 1.00 1 1 1.00 1 1
RQMC 1.06 519 625 1.10 2,294 2,381 1.12 2,887 3,018
Lat+s 1.78 21,084 11,030 1.83 32,538 23,379 1.81 31,909 23,372
Lat+s+b 1.80 26,566 13,666 1.72 45,841 33,229 1.66 47,264 35,627
Sob+LMS 1.62 17,358 9,290 1.66 46,883 32,813 1.49 32,220 23,094
Sob+NUS 1.61 15,624 6,044 1.57 40,161 23,552 1.53 30,970 17,123

(T,s,τ) −→ (1.6,8,0.2), normal
MC Var 107,8
Sample β̂ VRF19 EIF19
MC 1.00 1 1
RQMC 1.14 11 12
Lat+s 1.55 1814 1051
Lat+s+b 1.26 4375 2567
Sob+LMS 1.37 6133 3775
Sob+NUS 1.33 5254 2813

Table 6.1. Estimated rates β̂, VRF19, and EIF19, for the reversible isomerization example,
for various choices of (T,s,τ). MC refers to ordinary MC, RQMC is classical RQMC with
Sobol’ points and LMS randomization, and the other four rows are for Array-RQMC with
different RQMC point sets. "MC Var" is Var[g(Xs)], the variance per run with MC.

6.4.2. Schlögl system

In this second example, also taken from Beentjes and Baker (2019), we have the three
species S1, S2 and S3, and four reaction channels with reaction rates c1 = 3 ·10−7, c2 = 10−4,
c3 = 10−3 and c4 = 3.5, respectively. The model can be depicted as:

2S1 + S2

c1−→←−
c2

3S1,

S3

c3−→←−
c4
S1.
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Figure 6.1. Estimated Var[µ̂n] as a function of n, in log-log scale, for the reversible isomer-
ization system, with T = 1.6 and s = 8.

The propensity functions ak are given by

a1(x) = c1x1(x1 − 1)x2/2, a2(x) = c2x1(x1 − 1)(x1 − 2)/6,

a3(x) = c3x3, a4(x) = c4x1.

We also take x0 = {250, 105, 2 · 105}, T = 4, and τ = T/16, so s = 16 steps. This is the
same model as in Beentjes and Baker (2019), with the same parameters, except that we took
a smaller τ to avoid negative copy numbers. We want to estimate E[X1(T )], the expected
number of molecules of S1 at time T . Here, this expectation does depend on T , and we will
see that Var[X1(T )] also depends very much on T .

Since the total number of molecules remains constant over time, the dimension of the
state here can be taken as ` = 2. We take the state as X = (X(1), X(2))t, and X(3) can be
deduced by X(3) = N0−X(1)−X(2) where N0 is the total number of molecules. With d = 4
possible reactions, the RQMC points must be five-dimensional if we construct an importance
function h that maps the state to one dimension, and must be six-dimensional otherwise.
For comparison, with classical RQMC, the dimension of the RQMC points is ddT/τe = 64.

In the previous example, the state was one-dimensional, so there was no need to define an
importance function for Array-RQMC, but here we have a two-dimensional state. We now
examine how to construct an importance function hj : N2

0 → R as discussed in Section 6.3.2.
To construct an importance function using the OSLAIF, when g(x) is a linear function
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of x, one can compute the conditional expectation exactly by using (6.3.2). This gives a
polynomial of the form:

hj(x1,x2) = θ0 + θ1x1 + θ2x2 + θ3x
2
1 + θ4x1x2 + θ5x

3
1 + θ6x

2
1x2. (6.4.1)

With g(x) = x1 (our case), the coefficients are the following: (θ0, θ1, . . . , θ6) = (300.25τ,1−
3.5τ,− 10−3τ,5× 10−5τ,− 1.5× 10−7τ,− 1.67× 10−5τ,1.5× 10−7τ). When x1 is very large,
we can approximate a1(x) ≈ c1x

2
1x2/2 and a2(x) = c2x

3
1/6, and then remove the two terms

θ3x
2
1 + θ4x1x2 from (6.4.1), but in our example, x1 is not very large.
To obtain a SDIF for a more general j, one possible heuristic is to assume the same

form of polynomial (even if this is not exact) and select the coefficients θi by least-squares
fitting to data obtained n = 219 pilot runs as explained in Section 6.3.2. We did this and we
also tried fitting a more general bivariate polynomial that contains all possible monomials
xε1

1 x
ε2
2 with 0 ≤ ε1, ε2 ≤ 3, but this gave us no improvement over OSLAIF. The other SDIF

approches that we tried also did no better than OSLAIF. A plausible explanation is that the
functions hj in this case are based on data obtained from noisy simulations (large variance
and dependence on j). A possible alternative could be to use automatic learning with a deep
neural network to learn a good h. But this is beyond our scope.

T = 4, s = 16 T = 4, s = 128 T = 32, s = 128
MC Var 27,409 27,471 270

Sort Sample β̂ VRF19 EIF19 β̂ VRF19 EIF19 β̂ VRF19 EIF19
MC 1.00 1 1 1.00 1 1 1.00 1 1
RQMC 1.14 11 12 1.04 7 8 1.29 211 203

OSLAIF

Lat+s 1.55 1814 1051 1.49 2072 1403 1.23 508 541
Lat+s+b 1.26 4375 2567 1.38 1230 861 1.08 471 506
Sob+LMS 1.37 6133 3775 1.46 3112 2285 1.11 556 629
Sob+NUS 1.33 5254 2813 1.49 3258 1556 1.13 461 483

Batch

Lat+s 1.62 2979 2657 1.58 2150 830 1.47 2136 2259
Lat+s+b 1.39 4831 2650 1.39 1123 415 1.34 1682 1791
Sob+LMS 1.54 8147 4880 1.46 2202 1503 1.26 1614 1274
Sob+NUS 1.44 5761 3007 1.42 2024 1102 1.26 1483 989

Hilbert

Lat+s 1.46 509 419 1.41 652 350 1.33 837 614
Lat+s+b 1.49 1468 1213 1.18 375 216 1.28 1159 848
Sob+LMS 1.58 3604 1973 1.29 575 313 1.25 1642 1231
Sob+NUS 1.58 3183 1657 1.28 617 255 1.28 1358 881

Table 6.2. Estimated variance rates β̂, EIF19 and VRF19 for the Schlögl system, with
various types of sorts for Array-RQMC.

For the batch sort, we kept the three coordinates in their natural ordering and we used
. n1 = dn1/2e and n2 = d(n/n1)3/8e. For n = 219, this gives n1 = 725, n2 = 27, and n3 = 2.
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Figure 6.2. Empirical variance of the sorting methods vs n in a log-log scale, T=4, s=128,
for the OSLAIF sort and various point sets (left) and for various sorts with Sobol+LMS
(right).
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Figure 6.3. The mean with n = 219 (left) and the trajectories of X1(t) for n = 16 chains
for t ≤ 32 (right).

Table 6.2 summarizes our experimental results with this example. Array-RQMC performs
much better than RQMC. It reduces the variance by factors in the thousands, and over
8,000 in one case with n = 219. The OSLAIF, Hilbert curve sort, and batch sort all perform
reasonably well, which is not very surprising, because the state space is only two-dimensional.
The OSLAIF is very effective for T = 4, but somewhat less effective for T = 32. Globally, the
batch sort is the best performer; its VRF19 and EIF19 values are both consistently among
the largest ones. The Sobol’ points are generally the best performers for each type of sort.
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The left panel of Figure 6.2 shows Var[µ̂n] under Sob+LMS as a function of n in a log-
log-scale. The right panel shows Var[µ̂n] versus n in log-log scale for the OSLAIF sort, for
various point sets. The estimated convergence rates β̂ are mostly between 1.3 and 1.6, which
clearly beats the usual MC rate of 1 and the classical RQMC rate of 1.15. The right panel
shows Var[µ̂n] as a function of n under Sob+LMS, in a log-log-scale.

One important observation is the large difference in MC variance between T = 4 and
T = 32; it is larger at T = 4 by a factor of about 100. The mean E[µ̂n] also depends on T :
it is about 240 at T = 4 and about 86 at T = 32. It is plotted as a function of T in the left
panel of Figure 6.2. What happens is that the trajectories have roughly two very different
kinds of transient regimes between t = 0 and about t = 10. For some trajectories, X1(t)
goes up to somewhere between 400 and 600 at around t = 4, then goes down to around
the long-term mean, say between 70 and 100. For other trajectories, X1(t) decreases right
away to between 70 and 100 at around t = 5. Figure 6.3 illustrates this behavior, with 16
sample paths. This was already mentioned in Beentjes and Baker (2019), although they say
the system is bistable, whereas what we observe is rather two types of transient paths. This
behavior explains the much larger variance at T = 4 than at T = 32. It also shows why it
is very hard to predictthe state at some larger T from the state at t = 1/4, say, hence the
difficulty to estimate an "optimal" importance function. Despite all of this, Array-RQMC
performs quite well with simple sorts and brings large efficiency improvements compared
with MC and RQMC.

6.4.3. The cyclic adenosine monophosphate activation of protein kinase A model

This example is a model for the cyclic adenosine monophosphate (cAMP) activation of
protein kinase A (PKA), taken from Koh and Blackwell (2012) and Strehl and Ilie (2015).
This model is interesting because it has ` = 6 and d = 6, which are both larger than in the
previous examples. The six molecular species S1 to S6 are (in this order) PKA, cAMP, the
partially saturated PKA-cAMP2, the saturated PKA-cAMP4, the regulatory subunit PKAr,
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and the catalytic subunit PKAc. The d = 6 possible reactions are depicted here:

PKA + 2cAMP
c1−→←−
c2

PKA-cAMP2,

PKA-cAMP2 + 2cAMP
c3−→←−
c4

PKA-cAMP4,

PKA-cAMP4

c5−→←−
c6

PKAr + 2PKAc.

The propensity functions ak are given by

a1(x) = c1x2(x2 − 1)x1/2, a2(x) = c2x3,

a3(x) = c3x2(x2 − 1)x3/2, a4(x) = c4x4,

a5(x) = c5x4, a6(x) = c6x6(x6 − 1)x5/2.

The reaction rates are c1 = 2.6255 × 10−6, c2 = 0.02, c3 = 3.8481 × 10−6, c4 = 0.02,
c5 = 0.016 and c6 = 5.1325 × 10−5. We simulate this system with the same parameters
as Padgett and Ilie (2016), except that we assume that the molecules are homogeneously
distributed in the volume and we choose a fixed τ as opposed to selecting it adaptively after
each step. At time zero there are 33,030 molecules of cAMP, 33,000 molecules of PKA, and
1,100 molecules of each other species. We take T = 0.05 and τ = T/256, so s = 256 steps.
This problem requires RQMC points in 7 or 12 dimensions with array-RQMC, compared
with 1536 dimensions with classical RQMC.

We are reporting experiments with two different objective functions here. The first
one is E[X1(T )], the expected number of molecules of PKA at time T , and the second
one is E[X5(T )], the expected number of molecules of PKAr at time T . In each case, we
implemented and tested the OSLAIF and SDIF methods to select a mapping h to one
dimension. We also tried the multivariate batch and split sorts, the Hilbert curve sort, and
the Hilbert batch sort, from Section 6.3.2. The best performers were the OSLAIF map, the
batch sort, and the Hilbert sort.

We first observe PKA, for which g(x) = x1. The OSLAIF in this case is given by the
polynomial hj(x) = x1 + τ(−c1x1x2(x2 − 1)/2 + c2x3). In this function, the magnitude x1

outweighs that of the −τc1x1x2(x2 − 1)/2 term on average, followed by τc2x3. his suggests
taking x1 as the most important coordinate for the sort, followed by x2 and x3. So for the
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batch sort, we used the three coordinates x1, x2, x3 in this order. We tried a few settings for
the batch sizes and ended up with n1 = dn1/2e, n2 = d(n/n1)3/8e, and n3 = d(n/n1/n2)1/8e.
For n = 219, this gives n1 = 725, n2 = 12, and n3 = 2.

Sort Sample β̂ VRF19 EIF19
MC 1.00 1 1
RQMC 1.08 464 603

OSLAIF

Lat+s 1.50 1420 806
Lat+s+b 1.26 745 423
Sob+LMS 1.29 1295 937
Sob+NUS 1.29 1174 480

Batch

Lat+s 1.43 116 356
Lat+s+b 1.25 1264 604
Sob+LMS 1.15 1699 981
Sob+NUS 1.22 1633 353

Hilbert

Lat+s 1.27 1181 452
Lat+s+b 1.06 821 280
Sob+LMS 1.15 850 327
Sob+NUS 1.24 1217 266

Table 6.3. Estimated rates β̂, VRF19, and EIF19 for PKA with T = 0.05, s = 256.

Sort Sample β̂ VRF19 EIF19
MC 1.03 1 1
RQMC 1.17 39 45

By PKAc

Lat+s 1.33 2470 1585
Lat+s+b 1.36 1364 1248
Sob+LMS 1.45 1856 1580
Sob+NUS 1.50 2053 668

OSLAIF

Lat+s 1.42 3634 1550
Lat+s+b 1.38 1491 627
Sob+LMS 1.47 2062 1059
Sob+NUS 1.51 2184 712

Batch-5

Lat+s 1.48 225 116
Lat+s+b 1.49 406 203
Sob+LMS 1.43 576 366
Sob+NUS 1.37 668 180

Batch-6

Lat+s 1.62 3026 1560
Lat+s+b 1.43 1592 796
Sob+LMS 1.46 2753 1749
Sob+NUS 1.47 2486 670

Hilbert

Lat+s 1.17 135 54
Lat+s+b 1.12 88 27
Sob+LMS 1.24 126 60
Sob+NUS 1.22 161 50

Table 6.4. Estimated rates β̂, VRF19, and EIF19 for PKAr with T = 0.05, s = 256.

Table 6.3 summarizes our results. The estimated mean and variance per run are also
19663 and 1775, respectively. We find that the three sorting methods reported in the table
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offer comparable performance in terms of VRF19, although OSLAIF and the batch sort
dominate when we look at the EIF19. This is because sorting on a single value or a restricted
set of coordinates, as we do for the batch sort, is faster than a full multivariate sort. Classical
RQMC also performs surprisingly well despite the large number of dimensions, but not as
well as Array-RQMC with the best sorts. With Array-RQMC, we also observe empirical
convergence rates β̂ consistently better than the MC rate of 1.0. This indicates that the
VRF should increase further with n.

Table 6.4 gives the results for the PKAr case, for which g(x) = x5. The estimated mean
and variance per run are about 716 and 47, respectively. For this case, the OSLAIF is given
by h(x) = x5 +τ(c5x4−0.5c6x5x6(x6−1)). Given that x4, x5, and x6 remain roughly between
500 and 1000 in this model, and that τ = 1/5120, the dominating term in this function is
(by far) x5, followed by −τc6x5x

2
6 ≈ −2.5 × 10−3x5. Based on this, for the batch sort, we

initially used the coordinates x5, x6, x4 in this order, and took n1 = dn1/2e, n2 = d(n/n1)3/8e,
and n3 = d(n/n1/n2)1/8e for the batch sizes, as in the previous case. This is denoted by
“Batch-5” in the table.

We also tried SDIF with various types of functions, but it did not really perform better.
While doing that, we applied the random forest permutation-based statistical procedure of
Breiman (2001) to detect the most important variables in a noisy function. This procedure
told us that x6 was by far the most important variable for the sort, at all steps. Therefore,
we also tried sorting the states by the number of PKAc molecules only. We call this sorting
method "By PKAc" in Table 6.4.

The OSLAIF, Batch-6, and “By PKAc” sorts perform similarly. They provide large
improvement factors for both the variance and the efficiency, and empirical convergence
rates β̂ that are significantly larger than 1. Their performance is orders of magnitude better
than RQMC. The Batch-5 and Hilbert sorts are not competitive with the other ones in this
case, but they nevertheless reduce the variance by significant factors.

This example illustrates two facts. First, the dimension of the state is not the ultimate
criterion for Array-RQMC to perform well. Secondly, customizing sorting algorithms based
on information on the underlying model can improve results significantly.

158



6.5. Conclusion

We have studied the combination of the fixed-step τ -leap algorithm with array-RQMC for
well-mixed chemical reaction networks and found that in this way, we can reduce the variance
in comparison to MC significantly. In contrast to the simulation with traditional RQMC,
this approach could often also improve the convergence rate of the variance. Array-RQMC
requires to sort the chains by their states at each step of the chain with a multivariate sort,
which can become costly when the state space has large dimensionality. We also showed that
one can construct sorts by mapping the states into the real numbers by an uncomplicated
importance function, where sorting is trivial. A simple variant named OSLAIF performs
comparably as well or better than several standard sorting algorithms, while being naturally
easier and less costly to apply. We have also shown that obtaining additional knowledge of
the model, such as identifying important variable projections, and adapting a sort to this
information can boost the convergence of the variance tremendously, while the standard
multivariate sorts might not capture this information well at all.
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Chapter 7

Conclusion and Future Research Perspectives

This thesis is based on a collection of four articles. The first one was accepted for
publication in a journal, the second one, is currently under revision in an international
journal, the third one was published in international conference and the last one has been
submitted for possible publication. In this chapter we summarize the main results and
directions for future research.

7.1. Conclusion

In this thesis, we first investigated the combination of RQMC and stratification with
two common density estimators, namely histograms and kernel density estimators (KDE)
to estimate a density by simulation. We showed that using RQMC or stratification, the IV
and the MISE can be reduced especially when the dimension is small. The improvement is
generally more limited when the dimension is large. We also found that if the bandwidth
h→ 0, the IV enhancement rapidly degrades as a function of h. In our empirical experiments,
using RQMC or stratification, the IV for both density estimators is never considerably larger
when using MC, and is often much smaller.

Secondly, We examined a novel strategy to estimate by conditioning the density of a
random variable generated by simulation from a stochastic model. The resulting conditional
density estimator (CDE) is unbiased and consequently its MISE converges at a faster rate
than for other common density estimators like the KDE. By combining the CDE with RQMC
sampling, we have also shown how to further decrease the IV and even enhance its conver-
gence rate. Our numerical examples demonstrate that this combination can be very efficient
and it can sometimes reduces the MISE by factors over a million in some examples.



Thirdly, we showed how array-RQMC can be applied for pricing options under stochastic
volatility models, and provided thorough examples with the Variance Gamma, Heston, and
Ornstein-Uhlenbeck models. With these models, the method requires higher-dimensional
RQMC points than with the simpler Geometric Brownian Motion model previously studied,
and when the time has to be discretized to apply Euler’s method, the number of Markov
chain steps is much larger. Our empirical results show that, compared to the crude Monte
Carlo, the variance can be significantly reduced.

Finally, we studied the combination of the fixed-step τ -leap algorithm with array-RQMC
for well-mixed chemical reaction networks and found that in this way, the variance can
be significantly reduced in comparison to MC. This strategy could also often enhance the
convergence rate of the variance as opposed to the simulation with traditional RQMC. At
each step of the chain, array-RQMC requires a multivariate sorting of the chains by their
states, which can become costly when the state space has a large dimension. We also
showed that one can construct sorts by mapping the states into the real numbers by an
uncomplicated importance function and sort the states according to this importance function.
These customized sorts performed comparably well or even better than several standard
sorting algorithms but they are naturally easier to apply and therfore less costly. We have
also shown that acquiring extra model understanding, such as identifying significant variable
projections, and adjusting a sort to this information can extremely enhance the convergence
of the variance, while the standard multivariate sorts may not capture this information well
at all.

7.2. Future Research

In the following we present future work, starting with four ongoing research that have
not been presented in the thesis. The first ongoing research is related to the combination
of RQMC for density estimation with Conditional Monte Carlo. The second ongoing work
concerns the sensitivity estimator which is derived from a simple application of Likelihood
Ratio method, that is typically used for derivative estimation of performance measures in
Discrete Event Systems. The last two future research concern the variance estimation and
density estimation by array-RQMC method.
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Suggested future work includes experimenting the combination of RQMC with the con-
ditional density estimator on larger and more complicated stochastic models, designing and
exploring different types of conditioning, and perhaps adapting the Monte Carlo sampling
strategies (e.g., changing the way X is defined in terms of the basic input random variates)
to make the method more effective. In addition, it will be interesting to investigate the com-
bination of the stratified sampling with this estimator and give proofs for the convergence
rate of the IV and compare it with the ones obtained by the combination with the RQMC
poinst set for each example.

A different (but related) approach called sensitivity estimator (SE), was proposed by
Laub et al. (2019). It combines a clever change of variable with the likelihood ratio method
for derivative estimation, to estimate the density of a sum of dependent random variables.
An interesting direction for future work is to extend their approach to a far more general
setting and applied it in applications where the conditional density estimator cannot be
effective.

For variance estimation by array-RQMC, so far, L’Ecuyer et al. (2008) have provided
some convergence proofs for special cases where the dimension of the state is l = d = 1
and under some conditions on ϕ. It will be interesting to extend these proofs for the case
where l > 1 and d > 1, and apply this method to other examples and applications in a high
dimensionnal space.

We also plan to extend the array-RQMC method to estimate density by using histograms
or kernel density. Furthermore, we are interested in providing convergence proofs for the
empirically-observed rates and investigating other strategies of sorting in order to deal with
multidimensional states and in particular a potential solution would be to use automated
learning strategies to find a good importance function that will be used to sort the states.
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Appendix A

Supplement to Chapter 3

In this appendix, We examine empirically how RQMC estimators can achieve large IV
and MISE reductions and even faster convergence rates than MC by using the histogram
estimator and we give detailed results for the examples presented in Chapter 3.

A.1. A normalized sum of standard normals

Let Z1, . . . ,Zs be s independent standard normal random variables generated by inversion
and put X = (a1Z1 + · · ·+ asZs)/σ, where σ2 = a2

1 + · · ·+ a2
s. We estimate the density over

the interval (a,b) = (−b,b) = (−2,2). In our first experiment, we take a1 = · · · = as = 1, so
all the coordinates have the same importance.

Table A.5 summarizes the results with histogram for b = 2, when B is estimated. For
MC, our estimates given in the first column are based on experiments made with s = 1, but
are valid for all s, because the IV and ISB do not depend on s. The estimated values for MC
agree with the theory: the exact asymptotic values are γ = 0.4 and ν = 2/3 and β = δ = 1.
The other columns give some results for Sobol’+LMS and Sobol’+NUS, for selected values
of s. For all s > 1 that we have tried, LMS and NUS have a similar behavior. The first
rows give the dimension s, the `0 found by pilot runs and used to fit the IV model, the
estimated parameters C, β, and δ of the IV model, the fraction R2 of variance explained by
this model, and the estimated B. Recall that the rates ν̃ and the e19 were obtained from
a second-stage experiment, by using the estimated ĥ∗(n) from the model in the first stage.
All the R2 coefficients are pretty close to 1, which means that the log-log linear model is
reasonably good in the area considered. The estimate of B given in the tables turns out to
be the same for all s and all RQMC methods, up to three decimal digits: it is B ≈ 0.01081.



Thus, the estimator of B has very little variance. The MISE reduction of RQMC vs MC
can be assessed by comparing their e19s given in the last row, for a given s. For example,
for s = 1, the MISE for n = 219 is approximately 2−21 for Sobol’+NUS compared to 2−14

for MC, i.e., about 27 times smaller. For s = 2, for both LMS and NUS, the MISE is about
2−16.3, which is about 4 times smaller than for MC.

MC NUS LMS NUS LMS NUS LMS NUS NUS NUS NUS
s 1 2 2 3 3 5 5 10 20 100
`0 5.0 8.5 6.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
C 0.813 1.316 1.222 1.299 0.769 0.744 0.948 1.057 0.697 0.772 0.741
β 1.000 2.007 1.502 1.504 1.274 1.274 1.058 1.071 1.004 1.007 0.996
δ 1.041 2.012 2.022 2.012 1.893 1.906 1.181 1.196 1.094 1.077 1.051
R2 1.000 1.000 1.000 1.000 0.995 0.995 0.998 0.998 1.000 1.000 1.000
B 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011
κ̂∗ 3.339 3.315 3.249 3.304 2.949 2.918 3.459 3.571 3.162 3.275 3.237
γ̂∗ 0.329 0.500 0.373 0.375 0.327 0.326 0.333 0.335 0.324 0.327 0.326
`∗ 4.507 7.775 5.395 5.398 4.659 4.653 4.529 4.532 4.503 4.509 4.509
K̂∗ 0.352 0.237 0.227 0.235 0.193 0.189 0.348 0.368 0.306 0.331 0.329
ν̂∗ 0.658 1.000 0.747 0.750 0.655 0.652 0.665 0.670 0.649 0.655 0.653
ν̃ 0.667 1.018 0.747 0.752 0.659 0.663 0.678 0.662 0.652 0.661 0.652
e19 13.98 21.10 16.29 16.29 14.64 14.66 14.08 14.07 14.00 13.99 13.99

Table A.1. Parameter estimates for the histogram estimator, for a sum of normals, over
(−2,2).
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Figure A.1. Estimated β, δ, and e19 (= − log2(MISE) for n = 219) for the histogram over
(−2,2), with Monte Carlo, stratification, Sobol’+LMS, and Sobol’+NUS.

Figure A.1 shows the estimated β, δ, and e19 for the histogram density estimator, for
s = 1, . . . ,5. Stratification, shown in these plots and not in the tables, is exactly equivalent
to Sobol’+NUS for s = 1, and somewhat less effective for s > 1.

One important observation from the plots and the last row of the tables (the e19) is
that for all s, the RQMC methods never have a larger MISE than MC. Their MISE is much
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smaller for very small s, and becomes almost the same as for MC when s gets large. In
particular, for b = 2 we have R(f ′) ≈ 0.13456 and B = R(f ′)/12 ≈ 0.01121. The value of
B obtained by estimating the derivative of the density is 0.0108. We repeated the density
estimation experiment by using the exact values of B instead of the estimated ones to choose
h, and the results were very close for all s. In particular, the MISE rates ν̃ and the MISE
values for n = 219 (the e19) were almost the same. For example, for MC with the exact B,
the e19 was 13.91 (compared with 13.97 the estimated B ). This is not surprising, because
the values of B and h do not change much.

We now take decreasing coefficients in the linear combination, namely aj = 2−j for
j = 1, . . . ,s. Table A.2 summarizes our findings for Sobol’+LMS, for s up to 100. The
results with Sobol’+NUS are very similar. For s = 1, the results are obviously the same
as for our previous setting, but they diverge when we increase s. For example, in the
previous setting, the MISE estimate with n = 219 for s = 2, 10, and 100, was 2−16.29, 2−14.00,
and 2−13.99, respectively, whereas with the new weights, it is 2−16.47, 2−14.13, and 2−14.15,
respectively. For all s, the MISE with RQMC and n = 219 was about the same as for MC in
the previous setting and it is not improved, but the constant is improved (empirically). As
expected, when s increases beyond about 10, all the model parameters appear to stabilize
as a function of s. In the previous setting, they were stabilizing around the MC values, but
now they stabilize to different values. For example, in s = 100 dimensions, β was near the
MC value of 1, and now it is about 1.14.

s MC 2 4 10 20 50 100
C 0.843 1.085 0.636 0.304 0.334 0.371 0.346
β 1.008 1.507 1.247 1.133 1.140 1.144 1.143
δ 1.037 2.024 2.077 1.891 1.887 1.857 1.883
K̂∗ 0.361 0.212 0.159 0.120 0.126 0.134 0.128
ν̂∗ 0.664 0.749 0.612 0.582 0.587 0.593 0.589
ν̃ 0.661 0.751 0.627 0.613 0.602 0.610 0.617
e19 14.08 16.47 14.28 14.13 14.14 14.16 14.12

Table A.2. Parameter estimates for the Histogram under Sobol’+LMS, for a weighted sum
of normals with aj = 2−j over [−2,2].
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A.2. Displacement of a cantilevel beam

Here, the exact density is unknown, so we will not be able to compute the ISB and the
MISE, but we will estimate the AISB as we did in the previous example, and then use it to
estimate the optimal h and the MISE. For the experiments reported here, we estimate the
density over the interval (0.407,1.515), which covers about 99% of the density (it excludes
roughly 0.5 % on each side). We also tried the shorter interval (0.590,1.293), which excludes
5% of the density on each side, and the results were very similar, except that the estimated
constant B was about 17% smaller for the histogram.

Table A.9 gives the parameter estimates from our experiment, with the histogram esti-
mator. RQMC increases the rate β significantly. For the KDE with Sobol’ points, it goes
from 1 to about 2. However, δ increases even more, from 1 to about 4. This means that
although the variance decreases much faster than for MC as a function of n for fixed h, we
cannot afford to decrease h very much to decrease the bias, so the MISE reduction is more
limited than the IV reduction. The R2 coefficient is very close to 1, showing that the linear
model for log2(IV) fits very well. It is reassuring to see that the estimate of B is about the
same for all point sets. The estimated convergence rate of the MISE, ν̂∗, is not improved by
RQMC. However, RQMC reduces significantly the constant K in the MISE model.

Figure A.2 shows the estimated MISE as a function of n (with the estimated optimal h),
as well as the estimated IV as a function of n, all in log scale, for the histogram. The results
for Sobol’+LMS and Sobol’+NUS are practically indistinguishable in those plots. We can
see that although the MISE rate (the slope) is not improved much by RQMC, the MISE is
nevertheless reduced by a significant factor. For fixed h, the estimated IV converges at a
faster rate with RQMC than with MC, as shown in the right part of the figure.

A.3. A weighted sum of lognormals

Here, We will estimate the density of X by histogram over the interval [a,b] = [K,K +
27.13]. Approximately 0.5% of the density lies on the right of this interval and 29.05% lies
on the left (this is when the option brings no payoff).

Table A.11 summarizes the results of our experiments. Again, the linear model for the IV
fits quite well in the selected area. With the histogram, RQMC improves β from 1 to about
1.14, but at the same time δ increases (unfortunately) from about 1.2 to nearly 2.13. This
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Figure A.2. Estimated MISE as a function of n for the cantilever example for the histogram
(left) and Estimated IV as a function of n for fixed h; we took h = 2−6 = 1/64 (right).

MC Strat LMS NUS
C 0.831 0.424 0.130 0.119
β 0.992 1.102 1.234 1.232
δ 1.010 1.309 1.733 1.744
R2 1.000 0.997 0.993 0.993
B 1.177 1.178 1.178 1.177
κ̂∗ 0.710 0.646 0.533 0.523
γ̂∗ 0.330 0.333 0.331 0.329
`∗ 6.758 6.962 7.188 7.186
K̂∗ 1.768 1.243 0.721 0.692
ν̂∗ 0.659 0.666 0.661 0.658
e19 11.70 12.34 13.03 13.03

Table A.3. Experimental results for the density estimation of the displacement of a can-
tilever beam, with a histogram, over the interval (0.407,1.515).

MC LMS NUS
C 0.765 0.398 0.429
β 1.015 1.140 1.146
δ 1.168 2.105 2.133
R2 0.998 0.998 0.999
B 1.1E-5 1.1E-5 1.1E-5
κ̂∗ 28.26 12.97 13.03
γ̂∗ 0.320 0.278 0.277
`∗ 1.269 1.581 1.565
K̂∗ 0.024 0.004 0.004
ν̂∗ 0.641 0.556 0.554
e19 17.53 18.63 18.61

Table A.4. Experimental results for the density estimation of the option payoff, with a
histogram, over the interval (0,27.13).

means we are very limited in how much we can decrease h to reduce the bias. The estimate
of B is about the same for all point sets, which is reassuring. Somewhat surprisingly, the
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estimated MISE rate ν̂∗ is a bit worse for RQMC than for MC, due to the large δ. But the
MISE is nevertheless significantly smaller for RQMC than for MC in the range of interest
(about half), as shown in the left panel of Figure A.3, for which h was taken as the estimated
optimal h from our model, as a function of n. That is, RQMC is truly beneficial for estimating
the payoff density in this example. In the right panel, we see that the estimated IV for fixed
h converges faster with RQMC than with MC.
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Figure A.3. Estimated MISE as a function of n for the option payoff example for the
histogram (left) and estimated IV as a function of n for h = 1/2 for the histogram (right).

For comparison, when estimating the mean ofX instead of the density, with Sobol’+LMS,
the variance converges approximately as O(n−1.9) compared with O(n−1) for MC, and the
variance is divided by a factor of about two millions compared with MC for n = 220. See
L’Ecuyer (2018), Table 3.

A.4. Detailed Numerical Results

Here, we provide the detailed parameter estimates for the histogram and KDE estimators,
for the examples described in Chapter 3.
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`0 C β δ R2 B κ̂∗ γ̂∗ `∗ K̂∗ ν̂∗ ν̃ e19

s=1

MC 5.0 0.813 1.000 1.041 1.000 0.015 2.972 0.329 4.677 9.109 0.657 0.669 13.98
Strat 8.5 1.296 2.006 2.012 1.000 0.015 3.047 0.499 7.895 9.708 1.000 0.997 21.04
LMS 8.5 1.330 2.008 2.013 1.000 0.015 3.066 0.500 7.895 9.836 1.001 0.994 21.02
NUS 8.5 1.316 2.007 2.012 1.000 0.015 3.059 0.500 7.895 0.278 1.000 0.992 21.01
Lat+s 8.5 0.522 1.992 2.009 1.000 0.015 2.640 0.497 8.040 0.149 0.994 1.004 21.63
Lat+s+b 8.5 1.342 2.016 2.017 1.000 0.015 3.337 0.502 7.798 0.237 1.004 0.991 21.15

s=2

MC 5.0 0.786 0.997 1.038 1.000 0.015 2.942 0.328 4.680 8.920 0.656 0.664 13.94
Strat 6.0 1.049 1.427 1.875 1.000 0.015 2.947 0.368 5.436 9.040 0.73670.738 16.05
LMS 6.0 1.222 1.502 2.022 1.000 0.015 2.998 0.373 5.513 0.267 0.747 0.757 16.31
NUS 6.0 1.299 1.504 2.012 1.000 0.015 3.049 0.375 5.513 0.276 0.750 0.755 16.29
Lat+s 6.0 1.506 1.526 1.940 0.956 0.015 3.483 0.387 5.561 0.264 0.775 0.743 16.65
Lat+s+b 6.0 1.694 1.515 2.021 0.994 0.015 3.533 0.377 5.338 0.266 0.754 0.773 16.23

s=3

MC 5.0 0.816 0.997 1.030 1.000 0.015 2.976 0.329 4.680 9.133 0.658 0.661 13.96
Strat 5.0 0.818 1.214 1.655 0.998 0.015 2.836 0.332 4.812 8.333 0.664 0.659 14.63
LMS 5.0 0.769 1.274 1.893 0.995 0.015 2.714 0.327 4.780 0.226 0.655 0.670 14.63
NUS 5.0 0.744 1.274 1.906 0.994 0.015 2.687 0.326 4.772 0.221 0.652 0.681 14.67
Lat+s 5.0 8.106 1.513 1.843 0.925 0.015 5.497 0.394 5.025 0.674 0.788 0.759 15.54
Lat+s+b 5.0 3.474 1.291 1.547 0.955 0.015 4.749 0.364 4.665 0.553 0.728 0.674 14.68

s=5

MC 5.0 0.761 0.998 1.052 1.000 0.015 2.910 0.327 4.673 8.730 0.654 0.661 13.96
Strat 5.0 0.612 1.027 1.206 0.999 0.015 2.701 0.320 4.666 7.525 0.641 0.653 14.12
LMS 5.0 0.948 1.058 1.181 0.998 0.015 3.107 0.333 4.684 0.395 0.665 0.677 14.05
NUS 5.0 1.056 1.071 1.196 0.998 0.015 3.209 0.335 4.684 0.418 0.670 0.654 14.05
Lat+s 5.0 0.372 1.140 1.752 0.903 0.015 2.489 0.304 4.461 0.142 0.608 0.604 14.37
Lat+s+b 5.0 0.330 0.997 1.273 0.987 0.015 2.482 0.305 4.476 0.169 0.609 0.589 14.14

s=10

MC 5.0 0.685 0.986 1.042 1.000 0.015 2.813 0.324 4.666 8.155 0.648 0.664 13.98
Strat 5.0 0.741 1.006 1.062 1.000 0.015 3.238 0.328 4.873 0.326 0.657 0.662 14.76
LMS 5.0 0.764 1.012 1.092 1.000 0.015 2.909 0.327 4.680 8.728 0.655 0.655 14.02
NUS 5.0 0.696 1.004 1.094 1.000 0.015 2.822 0.324 4.666 0.346 0.649 0.651 14.00
Lat+s 5.0 1.563 1.113 1.195 0.992 0.015 4.050 0.348 4.603 0.469 0.697 0.709 14.33
Lat+s+b 5.0 0.636 1.006 1.108 0.999 0.015 3.079 0.324 4.526 0.284 0.647 0.666 14.11

s=20

MC 5.0 0.817 1.004 1.056 1.000 0.015 2.975 0.329 4.673 9.124 0.657 0.664 13.95
LMS 5.0 0.706 0.995 1.065 0.999 0.015 2.837 0.325 4.666 8.297 0.649 0.655 13.97
NUS 5.0 0.772 1.007 1.076 1.000 0.015 2.920 0.327 4.673 0.375 0.655 0.653 13.98
Lat+s 5.0 0.739 1.005 1.062 0.997 0.015 3.243 0.328 4.541 0.324 0.657 0.655 14.10
Lat+s+b 5.0 0.723 1.011 1.085 0.999 0.015 3.214 0.328 4.541 0.314 0.655 0.655 14.12

s=100

MC 5.0 0.742 0.998 1.040 0.999 0.015 3.253 0.328 4.535 0.331 0.656 0.659 14.07
LMS 5.0 0.864 1.013 1.063 1.000 0.015 3.125 0.331 4.640 10.04 0.661 0.667 13.99
NUS 5.0 0.741 0.996 1.051 1.000 0.015 2.974 0.326 4.629 9.095 0.653 0.648 13.97
Lat+s 5.0 0.709 1.002 1.066 0.999 0.015 3.197 0.327 4.536 0.315 0.654 0.655 14.09
Lat+s+b 5.0 0.692 1.002 1.067 0.999 0.015 3.173 0.327 4.539 0.310 0.653 0.651 14.10

Table A.5. Parameter estimates for the histogram estimator, for a sum of normals, over
(−2,2).
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s=1

MC 4.5 0.265 1.037 1.134 0.999 0.042 1.121 0.202 3.675 0.299 0.808 0.780 17.01
Strat 8.5 0.280 3.003 3.002 1.000 0.042 1.259 0.429 7.828 2.736 1.715 1.715 34.53
LMS 8.5 0.128 3.093 3.230 0.953 0.042 1.133 0.428 7.966 1.762 1.711 1.710 34.10
NUS 8.5 0.032 2.791 3.004 0.999 0.042 0.925 0.398 7.682 0.071 1.594 1.595 34.06

s=2

MC 4.5 0.135 0.982 1.145 0.999 0.042 0.984 0.191 3.647 1.076 0.763 0.792 16.99
Strat 6.0 0.150 1.674 2.331 1.000 0.042 1.124 0.264 4.853 1.731 1.058 1.064 22.52
LMS 6.0 0.243 2.112 3.196 1.000 0.042 1.238 0.293 5.265 0.221 1.174 1.176 24.39
NUS 6.0 0.212 2.101 3.196 1.000 0.042 1.215 0.292 5.265 0.205 1.168 1.169 24.38
Lat+s 6.0 0.015 1.977 3.242 0.977 0.042 0.840 0.273 5.437 0.047 1.092 1.085 25.17
Lat+s+b 6.0 3.492 2.303 3.193 0.991 0.042 1.793 0.320 5.240 0.974 1.280 1.314 24.37

s=3

MC 4.5 0.165 1.002 1.153 0.999 0.042 1.024 0.194 3.662 1.261 0.778 0.798 17.01
Strat 5.0 0.121 1.380 2.147 0.999 0.042 1.075 0.224 4.166 1.447 0.898 0.899 19.61
LMS 5.0 0.144 1.786 3.383 0.995 0.042 1.156 0.242 4.387 0.163 0.967 0.976 20.79
NUS 5.0 0.180 1.798 3.357 0.995 0.042 1.191 0.244 4.392 0.184 0.978 0.975 20.80
Lat+s 5.0 45.9212.381 3.454 0.954 0.042 2.508 0.319 4.741 3.573 1.277 1.403 22.43
Lat+s+b 5.0 0.407 1.725 3.151 0.959 0.042 1.329 0.241 4.173 0.297 0.965 0.965 20.09

s=5

MC 4.5 0.181 1.010 1.146 0.998 0.042 1.042 0.196 3.667 1.355 0.785 0.757 16.89
Strat 4.5 0.102 1.149 1.777 0.996 0.042 1.014 0.199 3.766 1.157 0.795 0.801 17.71
LMS 4.5 0.140 1.301 2.295 0.979 0.042 1.109 0.207 3.776 0.173 0.826 0.832 17.88
NUS 4.5 0.096 1.270 2.303 0.978 0.042 1.045 0.201 3.764 0.137 0.806 0.806 17.79
Lat+s 4.5 0.094 1.572 3.020 0.974 0.042 1.079 0.224 4.146 0.132 0.896 0.903 19.94
Lat+s+b 4.5 0.014 1.055 2.090 0.981 0.042 0.754 0.173 3.699 0.040 0.693 0.713 17.83

s=10

MC 4.5 0.145 0.977 1.110 0.999 0.042 0.992 0.191 3.644 1.116 0.765 0.752 16.87
Strat 4.0 0.108 1.040 1.464 0.996 0.042 0.986 0.190 3.829 0.151 0.762 0.749 17.96
LMS 4.0 0.039 1.048 1.863 0.990 0.042 0.869 0.179 3.598 0.615 0.715 0.742 17.19
NUS 4.0 0.029 1.011 1.811 0.990 0.042 0.820 0.174 3.591 0.061 0.696 0.744 17.28
Lat+s 4.0 1.927 1.337 1.514 0.977 0.042 1.679 0.243 3.861 1.212 0.970 0.959 18.16
Lat+s+b 4.0 0.041 1.025 1.783 0.987 0.042 0.865 0.177 3.578 0.076 0.709 0.737 17.19

s=20

MC 4.5 0.179 1.003 1.129 0.997 0.042 1.036 0.195 3.664 1.325 0.782 0.769 17.00
LMS 4.0 0.069 1.001 1.471 0.993 0.042 0.913 0.183 3.608 0.772 0.732 0.771 17.10
NUS 4.0 0.078 0.996 1.421 0.991 0.042 0.925 0.184 3.602 0.117 0.735 0.760 17.07
Lat+s 4.0 0.080 1.008 1.448 0.991 0.042 0.935 0.185 3.614 0.121 0.740 0.765 17.12
Lat+s+b 4.0 0.081 1.048 1.629 0.995 0.042 0.957 0.186 3.599 0.122 0.745 0.766 17.18

s=100

MC 4.5 0.164 0.997 1.138 0.998 0.042 1.021 0.194 3.655 0.206 0.776 0.777 17.02
LMS 4.5 0.150 1.024 1.262 0.998 0.042 1.023 0.194 3.664 1.241 0.778 0.794 17.14
NUS 4.5 0.077 0.967 1.264 0.997 0.042 0.901 0.184 3.642 0.745 0.735 0.773 17.03
Lat+s 4.5 0.116 1.005 1.274 0.997 0.042 0.976 0.191 3.657 0.158 0.763 0.774 17.15
Lat+s+b 4.5 0.123 1.023 1.332 0.996 0.042 0.995 0.192 3.650 0.165 0.767 0.756 17.17

Table A.6. Parameter estimates for the KDE, for a sum of normals, over (−2,2).
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s=2

MC 4.0 0.843 1.008 1.037 0.999 0.011 3.392 0.332 4.544 0.361 0.664 0.661 14.08
Strat 5.0 1.158 1.463 1.939 1.000 0.011 3.259 0.371 5.351 0.231 0.743 0.748 16.23
LMS 5.0 1.085 1.507 2.024 1.000 0.011 3.161 0.375 5.457 0.212 0.749 0.751 16.47
NUS 5.0 0.996 1.503 2.036 1.000 0.011 3.089 0.372 5.448 0.202 0.745 0.758 16.46
Lat+s 5.0 1.014 1.562 2.064 0.993 0.011 3.089 0.384 5.674 0.201 0.769 0.788 16.92
Lat+s+b 5.0 1.887 1.559 2.062 0.994 0.011 3.600 0.384 5.444 0.273 0.768 0.760 16.46

s=4

MC 4.0 0.759 1.002 1.053 0.999 0.011 3.273 0.328 4.525 0.333 0.656 0.653 14.06
Strat 3.5 0.738 1.164 1.694 0.999 0.011 3.007 0.315 4.406 0.211 0.630 0.639 14.23
LMS 3.5 0.636 1.247 2.077 0.996 0.011 2.749 0.306 4.353 0.159 0.612 0.627 14.28
NUS 3.5 0.769 1.266 2.085 0.997 0.011 2.877 0.310 4.362 0.173 0.620 0.632 14.30
Lat+s 3.5 0.034 1.045 2.039 0.911 0.011 1.341 0.259 4.492 0.038 0.517 0.559 14.55
Lat+s+b 3.5 4.637 1.421 2.091 0.960 0.011 4.460 0.347 4.443 0.416 0.695 0.775 14.47

s=10

MC 4.0 0.722 0.997 1.052 0.999 0.011 3.221 0.327 4.519 0.322 0.653 0.665 14.05
Strat 4.0 0.736 1.019 1.130 0.999 0.011 3.212 0.326 4.827 0.308 0.651 0.653 14.72
LMS 4.0 0.304 1.133 1.891 0.991 0.011 2.331 0.291 4.311 0.120 0.582 0.613 14.13
NUS 4.0 0.343 1.141 1.876 0.992 0.011 2.407 0.294 4.324 0.128 0.589 0.614 14.15
Lat+s 4.0 0.053 1.042 2.024 0.964 0.011 1.490 0.259 4.345 0.053 0.518 0.539 14.24
Lat+s+b 4.0 1.024 1.212 1.776 0.979 0.011 3.243 0.321 4.400 0.239 0.642 0.713 14.26

s=20

MC 4.0 0.777 1.001 1.042 0.999 0.011 3.301 0.329 4.531 0.340 0.658 0.662 14.06
LMS 4.0 0.334 1.140 1.887 0.991 0.011 2.388 0.293 4.317 0.126 0.587 0.602 14.14
NUS 4.0 0.347 1.143 1.879 0.992 0.011 2.413 0.295 4.328 0.129 0.129 0.601 14.16
Lat+s 4.0 0.059 1.049 2.009 0.964 0.011 1.532 0.262 4.356 0.050 0.523 0.545 14.26
Lat+s+b 4.0 0.932 1.207 1.795 0.975 0.011 3.155 0.318 4.385 0.225 0.636 0.691 14.24

s=50

MC 4.0 0.707 0.995 1.046 0.999 0.011 3.200 0.327 4.530 0.319 0.653 0.658 14.07
LMS 4.0 0.371 1.144 1.857 0.990 0.011 2.460 0.296 4.334 0.134 0.593 0.610 14.16
NUS 4.0 0.278 1.128 1.911 0.991 0.011 2.273 0.289 4.298 0.113 0.577 0.609 14.12
Lat+s 4.0 0.055 1.040 1.999 0.964 0.011 1.504 0.260 4.351 0.048 0.520 0.535 14.25
Lat+s+b 4.0 1.080 1.217 1.780 0.977 0.011 3.287 0.322 4.400 0.245 0.644 0.700 14.26

s=100

MC 4.0 0.751 0.999 1.040 0.999 0.011 3.264 0.328 4.535 0.333 0.657 0.662 14.07
LMS 4.0 0.346 1.143 1.883 0.991 0.011 2.411 0.294 4.322 0.128 0.589 0.617 14.15
NUS 4.0 0.296 1.133 1.902 0.992 0.011 2.312 0.290 4.307 0.117 0.581 0.607 14.12
Lat+s 4.0 0.053 1.038 2.002 0.962 0.011 1.494 0.259 4.348 0.048 0.519 0.548 14.24
Lat+s+b 4.0 0.891 1.198 1.770 0.976 0.011 3.129 0.318 4.394 0.223 0.636 0.686 14.24

Table A.7. Parameter estimates for the histogram, for a weighted sum of normals with
aj = 2−j.
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s=2

MC 4.0 0.162 1.004 1.185 0.998 0.042 1.025 0.194 3.643 0.204 0.774 0.765 17.01
Strat 6.0 0.147 1.708 2.410 1.000 0.042 1.124 0.266 4.893 0.177 1.066 1.063 22.75
LMS 6.0 0.173 2.100 3.189 1.000 0.042 1.181 0.292 5.310 0.183 1.168 1.176 24.65
NUS 6.0 0.173 2.102 3.198 1.000 0.042 1.182 0.292 5.307 0.183 1.168 1.181 24.64
Lat+s 6.0 0.012 1.980 3.163 0.997 0.042 0.809 0.276 5.558 0.041 1.106 1.118 25.63
Lat+s+b 6.0 0.125 2.092 3.282 0.998 0.042 1.131 0.287 5.281 0.152 1.149 1.150 24.55

s=4

MC 4.0 0.147 0.999 1.200 0.998 0.042 1.009 0.192 3.635 0.190 0.768 0.775 16.99
Strat 4.5 0.083 1.254 2.103 0.997 0.042 1.007 0.206 3.898 0.125 0.822 0.833 18.64
LMS 4.5 0.038 1.650 3.745 0.985 0.042 0.980 0.213 4.077 0.079 0.852 0.892 19.85
NUS 4.5 0.046 1.671 3.762 0.983 0.042 1.006 0.215 4.082 0.088 0.861 0.878 19.87
Lat+s 4.5 0.001 1.403 3.601 0.926 0.042 0.610 0.185 4.219 0.012 0.738 0.582 20.37
Lat+s+b 4.5 0.461 1.821 3.650 0.959 0.042 1.352 0.238 4.088 0.293 0.952 1.043 19.86

s=10

MC 4.0 0.149 0.999 1.199 0.998 0.042 1.011 0.192 3.635 0.191 0.769 0.785 17.00
LMS 4.5 0.007 1.420 3.626 0.975 0.042 0.776 0.186 3.903 0.032 0.745 0.750 19.13
NUS 4.5 0.007 1.426 3.610 0.975 0.042 0.784 0.187 3.911 0.033 0.750 0.759 19.16
Lat+s 4.5 0.002 1.303 3.335 0.954 0.042 0.631 0.178 4.039 0.015 0.710 0.606 19.60
Lat+s+b 4.5 0.049 1.521 3.398 0.964 0.042 0.999 0.206 3.907 0.091 0.822 0.849 19.09

s=20

MC 4.0 0.144 0.999 1.216 0.998 0.042 1.008 0.192 3.628 0.186 0.766 0.777 16.98
LMS 4.5 0.008 1.427 3.582 0.977 0.042 0.793 0.188 3.912 0.035 0.753 0.730 19.15
NUS 4.5 0.007 1.424 3.608 0.976 0.04170.783 0.187 3.909 0.033 0.749 0.747 19.14
Lat+s 4.5 0.002 1.311 3.353 0.955 0.042 0.637 0.178 4.037 0.015 0.713 0.607 19.59
Lat+s+b 4.5 0.046 1.515 3.391 0.961 0.042 0.992 0.205 3.907 0.088 0.820 0.840 19.08

s=50

MC 4.0 0.138 0.997 1.212 0.998 0.042 0.999 0.191 3.634 0.180 0.765 0.782 17.01
LMS 4.5 0.007 1.425 3.604 0.977 0.042 0.784 0.187 3.912 0.033 0.750 0.758 19.16
NUS 4.5 0.007 1.415 3.609 0.974 0.042 0.774 0.186 3.903 0.032 0.744 0.747 19.12
Lat+s 4.5 0.002 1.308 3.360 0.954 0.042 0.633 0.178 4.037 0.015 0.711 0.613 19.59
Lat+s+b 4.5 0.045 1.518 3.418 0.965 0.042 0.989 0.205 3.905 0.087 0.819 0.829 19.08

s=100

MC 4.0 0.155 1.004 1.196 0.998 0.042 1.019 0.193 3.642 0.197 0.773 0.785 17.02
LMS 4.5 0.008 1.429 3.603 0.975 0.042 0.792 0.188 3.907 0.035 0.752 0.752 19.14
NUS 4.5 0.007 1.425 3.626 0.976 0.042 0.781 0.187 3.906 0.033 0.747 0.750 19.14
Lat+s 4.5 0.002 1.314 3.362 0.953 0.042 0.638 0.178 4.039 0.015 0.714 0.614 19.60
Lat+s+b 4.5 0.178 1.003 1.130 0.999 0.042 1.036 0.195 3.662 0.219 0.782 0.785 17.04

Table A.8. Parameter estimates for the KDE, for a weighted sum of normals with aj = 2−j.

C β δ R2 B κ̂∗ γ̂∗ `∗ K̂∗ ν̂∗ e19

Histogram
(α=2)

MC 0.831 0.992 1.010 1.000 1.177 0.710 0.330 6.758 1.768 0.659 11.70
Strat 0.424 1.102 1.309 0.997 1.178 0.646 0.333 6.962 1.243 0.666 12.34
LMS 0.130 1.234 1.733 0.993 1.178 0.533 0.331 7.188 0.721 0.661 13.03
NUS 0.119 1.232 1.744 0.993 1.177 0.523 0.329 7.186 0.692 0.658 13.03
Lat+s 0.091 1.250 1.768 0.969 1.181 0.489 0.331 7.333 0.604 0.663 13.33
Lat+s+b 1.380 1.142 1.645 0.990 1.181 0.437 0.313 7.148 0.499 0.627 12.91

KDE
(α=4)

Lat+s 0.054 1.315 2.032 0.979 1.181 0.467 0.326 7.298 0.510 0.652 13.37
Lat+s+b 0.033 1.229 2.004 0.990 1.181 0.409 0.307 7.121 0.396 0.614 13.00

Table A.9. Experimental results for the density estimation of the displacement of a can-
tilever beam, over the interval [0.407,1.515].
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Histogram
(α=2)

MC 0.765 1.015 1.168 0.998 1.1E-5 28.26 0.320 1.269 0.024 0.641 17.53
LMS 0.398 1.140 2.105 0.998 1.1E-5 12.97 0.278 1.581 0.004 0.556 18.63
NUS 0.429 1.146 2.133 0.999 1.1E-5 13.03 0.277 1.565 0.004 0.554 18.61
Lat+s 0.345 0.998 1.435 0.961 1.2E-5 17.94 0.291 1.357 0.009 0.581 17.78
Lat+s+b 0.523 1.031 1.399 0.991 1.2E-5 20.75 0.303 1.385 0.013 0.606 17.81

KDE
(α=4)

MC 0.171 1.005 1.151 0.999 1.1E-6 7.953 0.195 0.715 0.020 0.780 20.45
LMS 0.110 1.671 4.907 0.990 1.1E-6 3.717 0.188 1.670 4E-4 0.750 25.59
NUS 0.097 1.663 4.930 0.990 1.1E-6 3.657 0.186 1.668 4E-4 0.745 25.58
Lat+s 0.102 0.990 1.341 0.965 1.2E-6 6.837 0.185 0.750 0.010 0.742 20.68
Lat+s+b 0.167 1.020 1.240 0.997 1.2E-6 7.677 0.195 0.759 0.017 0.779 20.63

Table A.10. Experimental results for the density estimation of the option payoff over the
interval (0,27.13) with lattice rule.

C β δ R2 B κ̂∗ γ̂∗ `∗ K̂∗ ν̂∗ e19

Histogram
(α=2)

MC 0.765 1.015 1.168 0.998 1.1E-5 28.26 0.320 1.269 0.024 0.641 17.53
LMS 0.398 1.140 2.105 0.998 1.1E-5 12.97 0.278 1.581 0.004 0.556 18.63
NUS 0.429 1.146 2.133 0.999 1.1E-5 13.03 0.277 1.565 0.004 0.554 18.61
Lat+s 0.345 0.998 1.435 0.961 1.2E-5 17.94 0.291 1.357 0.009 0.581 17.78
Lat+s+b 0.523 1.031 1.399 0.991 1.2E-5 20.75 0.303 1.385 0.013 0.606 17.81

KDE
(α=4)

Lat+s 0.102 0.990 1.341 0.965 1.2E-6 6.837 0.185 0.750 0.010 0.742 20.68
Lat+s+b 0.167 1.020 1.240 0.997 1.2E-6 7.677 0.195 0.759 0.017 0.779 20.63

Table A.11. Experimental results for the density estimation of the option payoff over the
interval (0,27.13) with lattice rule.
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Appendix B

Supplement to Chapter 5

In this appendix, we provide additional experiments, by using classical RQMC method,
for the examples presented in Chapter 5, to compare them with array-RQMC method.

B.1. Variance Gamma model

For comparison with array-RQMC, we made an experiment using classical RQMC with
these methods for the same numerical example as provided here, but with c = 8 and c = 16
instead of c = 10, to have powers of 2, and tj = jT/c. Table B.1 reports the estimated
regression slopes β̂ for log2 Var[µ̂arqmc

n ] vs log2(n), and VRF compared with MC for n = 220,
denoted VRF20 for BGSS, BGBS, and DGBS. For all the RQMC points set, the VRF20
values in Table 5.1 are much larger that these in Table B.1, showing that Array-RQMC can
provide much larger variance reductions than the classical RQMC method.

BGSS BGBS DGBS
Point sets β̂ VRF20 β̂ VRF20 β̂ VRF20
MC -1.00 -1.00 1 1 -1.00 -1.00 1 1 -1.00 -1.00 1 1
Sob+LMS -1.18 -1.36 183 85 -1.23 -1.31 1258 895 -1.46 -0.87 3405 550
Sob+NUS -1.33 -1.26 201 84 -1.35 -1.31 1402 1122 -1.41 -0.79 5257 599
Lat+s+b -1.52 -1.55 231 56 -1.47 -1.38 2626 1330 -1.24 -1.07 6535 1340

Table B.1. Regression slopes β̂ and VRF20, c=8 (left) and c=16 (right), for BGSS , BGBS,
and DGBS, for the Asian option under a variance gamma process.

B.2. Heston volatility model

We also made an experiment using only the classical RQMC for the same numerical
example as given here. Table B.2 reports the estimated regression slopes β̂ for log2 Var[µ̂arqmc

n ]



vs log2(n), and VRF compared with MC for n = 220, denoted VRF20. For all the RQMC
points set, the VRF20 values in Table 5.2 are much larger than those in Table B.2 , which
shown that Array-RQMC can provide much larger variance reductions than the classical
RQMC method.

European Asian
Point sets β̂ VRF20 β̂ VRF20
MC -1.00 1 -1.00 1
Sob+LMS -1.24 128 -1.25 173
Sob+NUS -1.08 97 -1.13 194
Lat+s+b -1.32 56 -1.38 50

Table B.2. Regression slopes β̂ and VRF20, for the Asian option under the Heston model
by using the RQMC method.

B.3. Ornstein-Uhlenbeck volatility model

We also made an experiment using only the classical RQMC for the same numerical ex-
ample as given here. Table B.3 reports the estimated regression slopes β̂ for log2 Var[µ̂arqmc

n ]
vs log2(n), and VRF compared with MC for n = 220, denoted VRF20. For all the RQMC
points set, the VRF20 values in Table 5.3 are much larger that these in Table B.3, which
shows that Array-RQMC can provide much larger variance reductions than the classical
RQMC method.

European Asian
Point sets β̂ VRF20 β̂ VRF20
MC -1.00 1 -1.00 1
Sob+LMS -1.20 23739 -1.03 16233
Sob+NUS -1.10 24597 -1.08 15702
Lat+s+b -0.96 5135 -0.96 4463

Table B.3. Regression slopes β̂ and VRF20, for the Asian option under the Ornstein model.
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Appendix C

Supplement to chapter 6

In this appendix, we provide additional experiments on two examples:
(1) Linear Birth-Death Process (` = 1, d = 2),
(2) Enzyme kinetic reaction (` = 4, d = 3),
(3) Mitogen activated protein kinase (MAPK) cascade model (` = 11, d = 14).

C.1. Linear Birth-Death Process

In this example we consider one single substance S1 and two reaction channels with
constant reaction rate c.

S1
c−→ ∅

S1
c−→ 2S1.

This models auto-catalytic production and degradation of S1. Here, the stoichiometric matrix
is defined by ζ = {−1,1} and the propensity functions are a1(x) = cx and a2(x) = cx. For the
mean and the variance of the number of molecules at step t, Xt, it is known that E(Xt) = x0

and Var(Xt) = 2ctx0.
For our experiments we take c = 1, x0 = 1000, τ = 1, d = 2 and T = 8.
Table C.1 reports the VRF as well as the regression slopes of log2Var[µ̂arqmc

n ] as a function
of log2n, estimated from m = 100 independent replications with linear regression using all
values of n considered. We can clearly see that Array-RQMC applied to τ -leap method gives
a strong improvement compared to the standard pseudo random numbers for all the point
set used.



Sample β̂ VRF20
MC 1.04 1
Sob+LMS 1.40 32094
Sob+NUS 1.40 40464
Lat+s 1.73 27158
Lat+s+b 1.25 13415

Table C.1. Regression slopes for log2(n) Var[µ̂arqmc
n ] vs log2 n, VFR for RQMC vs MC for

m = 100, n = 219
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Figure C.1. Estimated Variance as a function of n for the Linear birth-deat hprocess.

Figure C.1 shows our estimate of Var[µ̂arqmc
n ] as a function of log2(n). The slope indicates

a convergence rate of approximately O(n−3/2), and O(n−2) for Sobol and lattice, respectively.

C.2. Enzyme kinetic reaction

This example was taken from Ault (1974). In this model, an enzyme E is used to catalyze
a substrate S into a final product P . This happens via an intermediary reversible reaction
resulting in a fourth chemical species ES. This system can be explained graphically as
follows

E + S
c1−→ ES,

ES
c2−→ E + S

ES
c3−→ E + P.

We fix the rates as c1 = 10−3, c2 = 10−4, c3 = 0.1, as well as the initial values x0 =
(200, 500, 200, 0), and simulate this system for a duration of T = 10 using 7 steps. The state
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dimension is ` = 4 and the number of reactions is d = 3. Consequently, the dimensionality
of this problem is either 4 or 7, depending on the sorting algorithm we use, as opposed to 21
with the traditional approach. We chose to investigate this model, as its number of reactions
is slightly smaller than for the previous example, while the dimension of its state space is
slightly higher.

At first, we chose the product E as the observed variable. We summarize our findings
in Table C.2. For Sob+NUS, the sorting method which showed the smallest variance was
the split sort, yielding a VRF20 of 3165 and a convergence rate of the variance of n−1.33,
although the other sort performed comparably well, i.e. VRF20 = 2523 for the batch sort
with a convergence rate of n−1.32.

Secondly, we chose the final product P as the observed variable. We summarize our
findings in Table C.3. For Sob+NUS, the sorting method which showed the smallest variance
was the split sort, yielding a VRF20 of 4041 and a convergence rate of the variance of n−1.41,
although the other sorts performed comparably well, i.e. VRF20 = 2939 for the batch sort
with a convergence rate of n−1.32 and VRF20 = 1493 for the Hilbert batch sort with a
convergence rate of n−1.09.

Sort Sample β̂ VRF20
MC 1.00 1

Split

Sob+LMS 1.30 2936
Sob+NUS 1.33 3165
Lat+s 1.59 5299
Lat+s+b 1.33 3279

Batch

Sob+LMS 1.20 2387
Sob+NUS 1.31 2523
Lat+s 1.47 4615
Lat+s+b 1.33 4538

Hilbert Batch

Sob+LMS 0.84 597
Sob+NUS 0.80 449
Lat+s 1.41 2319
Lat+s+b 1.29 1863

Table C.2. Enzyme kinetic reaction, E : Estimated variance rates β̂ and VRF20 with
m = 100 and n = 220.

C.3. Mitogen activated protein kinase cascade model

We study the mitogen activated protein kinase (MAPK) cascade model as described in
Padgett and Ilie (2016). Here, the transcription factor MAPK is phosphorylated in two
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Sort Sample β̂ VRF20
MC 1.00 1

Split

Sob+LMS 1.40 3525
Sob+NUS 1.41 4041
Lat+s 1.59 5299
Lat+s+b 1.33 3279

Batch

Sob+LMS 1.21 2749
Sob+NUS 1.32 2939
Lat+s 1.47 4615
Lat+s+b 1.33 4538

Hilbert batch

Sob+LMS 1.16 1773
Sob+NUS 1.09 1493
Lat+s 1.41 2319
Lat+s+b 1.29 1863

Table C.3. Enzyme kinetic reaction, P : Estimated variance rates β̂ and VRF20 with
m = 100 and n = 220.

steps by the upstream kinase MAPKK and dephosphorylated by the phosphatase P. The
latter two species reach an inactive states MAPKK∗ and P∗, respectively, after they released
their product. Their re-activation occurs according to a certain time-scale τrel = 0.1. The
reactions are summarized below

MAPK + MAPKK
c1


c2

MAPK−MAPKK,

MAPK−MAPKK c3−→ MAPKK∗ + MAPKP,

MAPKK∗ c4−→ MAPKK,

MAPKP + MAPKK
c5


c6

MAPKP−MAPKK,

MAPKP−MAPKK c7−→ MAPKK + MAPKPP,

MAPKPP + P∗
c1


c2

MAPKPP−P,

MAPKPP−P c3−→ P∗ + MAPKP,

P∗ c4−→ P,

MAPKP + P
c5


c6

MAPKP−P,

MAPKP−P c7−→ P + MAPK,
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The rate constants are fixed as c1 = 0.027, c2 = 1.35, c2 = 1.35, c3 = 1.5, c4 = log(2)/τrel,
c5 = 0.028, c6 = 1.73, and c7 = 15. Furthermore, we investigate these reactions up to the
final time T = 0.01 and discretize with the step size τ = T/10 = 0.001. This means, we have
` = 11 and d = 14 and, thus, the traditional τ -leaping algorithm is 140-dimensional, while
its dimensionality is either 15 or 25 in combination with array-RQMC.

The initial number of molecules are 2500 for MAPK and MAPKPP, 8000 for MAPK−MAPKK,
7000 for MAPKP and MAPKP−P, 5500 for P∗, and 4500 for all other species.

The first species we observed was MAPK. Here, the performance of all sorts with Sobol+NUS
was roughly the same. The smallest variance was obtained for the split sort (VRF20 = 2254)
followed by the batch sort (VRF20 = 1314) and the hilbert batch sort (VRF20 = 1249).
The convergence rate of the variance was always close to n−1. The results are summarized
in Table C.4

For MAPKPP with Sobol+NUS. Here, the batch and Hilbert batch sort yielded the
smallest variance (VRF20 = 1627), closely followed by the split sort (VRF20 = 1503). The
results are summarized in Table C.5.

For MAPKPP−P with Sobol+NUS, The split sort attained VRF20 = 1981, while we
obtained VRF20 = 1465 for the batch sort and VRF20 = 1349 for the hilbert batch sort .
The results are summarized in Table C.6.

Sort Sample β̂ VRF20
MC 1.00 1

Split

Sob+LMS 0.96 1394
Sob+NUS 1.04 1656
Lat+s 0.99 1990
Lat+s+b 1.02 2055

Batch

Sob+LMS 0.93 1738
Sob+NUS 0.87 1314
Lat+s 1.13 2333
Lat+s+b 0.98 1676

Hilbert batch

Sob+LMS 0.81 1132
Sob+NUS 1.01 1249
Lat+s 1.14 1729
Lat+s+b 1.17 1716

Table C.4. MAPK cascade model, MAPK: Estimated variance rates β̂ for n = 213, . . . ,220

and VRF20 with m = 100.

C-v



Sort Sample β̂ VRF20
MC 1.00 1

Split

Sob+LMS 0.93 1227
Sob+NUS 0.93 1503
Lat+s 1.09 1829
Lat+s+b 1.11 2455

Batch

Sob+LMS 1.09 2337
Sob+NUS 0.98 1627
Lat+s 1.08 1930
Lat+s+b 1.01 1585

Hilbert batch

Sob+LMS 1.05 1377
Sob+NUS 1.02 1626
Lat+s 0.93 1218
Lat+s+b 1.02 1487

Table C.5. MAPK cascade model, MAPKpp: Estimated variance rates β̂ for n =
213, . . . ,220 and VRF20 with m = 100..

Sort Point sets β̂ VRF20
MC 1.00 1

Split

Sob+LMS 1.01 1330
Sob+NUS 1.06 1981
Lat+s 1.22 2301
Lat+s+b 0.99 1627

Batch

Sob+LMS 1.06 1753
Sob+NUS 1.08 1465
Lat+s 1.11 1501
Lat+s+b 1.06 1531

Hilbert batch

Sob+LMS 1.04 1179
Sob+NUS 1.02 1349
Lat+s 1.07 1158
Lat+s+b 0.95 1404

Table C.6. MAPK cascade model, MAPKPP−P: Estimated variance rates β̂ for n =
213, . . . ,220 and VRF20 with m = 100.
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