PLearn 0.1
|
00001 // -*- C++ -*- 00002 00003 // DeepReconstructorNet.h 00004 // 00005 // Copyright (C) 2007 Simon Lemieux, Pascal Vincent 00006 // 00007 // Redistribution and use in source and binary forms, with or without 00008 // modification, are permitted provided that the following conditions are met: 00009 // 00010 // 1. Redistributions of source code must retain the above copyright 00011 // notice, this list of conditions and the following disclaimer. 00012 // 00013 // 2. Redistributions in binary form must reproduce the above copyright 00014 // notice, this list of conditions and the following disclaimer in the 00015 // documentation and/or other materials provided with the distribution. 00016 // 00017 // 3. The name of the authors may not be used to endorse or promote 00018 // products derived from this software without specific prior written 00019 // permission. 00020 // 00021 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00022 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00023 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00024 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00025 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00026 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00027 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00028 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00029 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00030 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00031 // 00032 // This file is part of the PLearn library. For more information on the PLearn 00033 // library, go to the PLearn Web site at www.plearn.org 00034 00035 // Authors: Simon Lemieux, Pascal Vincent 00036 00040 #ifndef DeepReconstructorNet_INC 00041 #define DeepReconstructorNet_INC 00042 00043 #include <plearn_learners/generic/PLearner.h> 00044 #include <plearn/var/Variable.h> 00045 #include <plearn/opt/Optimizer.h> 00046 #include <plearn/var/SumOfVariable.h> 00047 #include <plearn/vmat/FileVMatrix.h> 00048 #include <plearn/var/SourceVariable.h> 00049 00050 namespace PLearn { 00051 00062 class DeepReconstructorNet : public PLearner 00063 { 00064 typedef PLearner inherited; 00065 00066 public: 00067 //##### Public Build Options ############################################ 00068 00071 00072 TVec< pair<int,int> > unsupervised_nepochs; 00073 Vec unsupervised_min_improvement_rate; 00074 00075 pair<int,int> supervised_nepochs; 00076 real supervised_min_improvement_rate; 00077 00078 // layers[0] is the input variable 00079 // last layer is final output layer 00080 VarArray layers; 00081 00082 // reconstruction_costs[k] is the reconstruction cost for layers[k] 00083 VarArray reconstruction_costs; 00084 00085 // The names to be given to each of the elements of a vector cost 00086 TVec<string> reconstruction_costs_names; 00087 00088 // reconstructed_layers[k] is the reconstruction of layer k from layers[k+1] 00089 VarArray reconstructed_layers; 00090 00091 // hidden_for_reconstruction[k] is the hidden representation used to reconstruct reconstructed_layers[k] 00092 // i.e. it is the representation at layer k+1 but possibly obtained from a corrupted input (contrary to layers[k+1]). 00093 VarArray hidden_for_reconstruction; 00094 00095 // optimizers if we use different ones for each layer 00096 TVec< PP<Optimizer> > reconstruction_optimizers; 00097 00098 // if we use always the same optimizer 00099 PP<Optimizer> reconstruction_optimizer; 00100 00101 00102 Var target; 00103 //TVec<Var> supervised_costs; 00104 VarArray supervised_costs; 00105 Var supervised_costvec; // hconcat(supervised_costs) 00106 00107 TVec<string> supervised_costs_names; 00108 00109 Var fullcost; 00110 00111 VarArray parameters; 00112 00113 int minibatch_size; 00114 00115 00116 PP<Optimizer> supervised_optimizer; 00117 00118 PP<Optimizer> fine_tuning_optimizer; 00119 00120 00121 TVec<int> group_sizes; 00122 00123 protected: 00124 // protected members (not options) 00125 00126 TVec<Func> compute_layer; 00127 Func compute_output; 00128 Func output_and_target_to_cost; 00129 TVec<VMat> outmat; 00130 00131 00132 public: 00133 //##### Public Member Functions ######################################### 00134 00136 // ### Make sure the implementation in the .cc 00137 // ### initializes all fields to reasonable default values. 00138 DeepReconstructorNet(); 00139 00140 00141 //##### PLearner Member Functions ####################################### 00142 00145 // (PLEASE IMPLEMENT IN .cc) 00146 virtual int outputsize() const; 00147 00151 // (PLEASE IMPLEMENT IN .cc) 00152 virtual void forget(); 00153 00157 // (PLEASE IMPLEMENT IN .cc) 00158 virtual void train(); 00159 00161 // (PLEASE IMPLEMENT IN .cc) 00162 virtual void computeOutput(const Vec& input, Vec& output) const; 00163 00165 // (PLEASE IMPLEMENT IN .cc) 00166 virtual void computeCostsFromOutputs(const Vec& input, const Vec& output, 00167 const Vec& target, Vec& costs) const; 00168 00171 // (PLEASE IMPLEMENT IN .cc) 00172 virtual TVec<std::string> getTestCostNames() const; 00173 00176 // (PLEASE IMPLEMENT IN .cc) 00177 virtual TVec<std::string> getTrainCostNames() const; 00178 00179 00180 virtual void initializeParams(bool set_seed=true); 00181 00183 Mat getParameterValue(const string& varname); 00184 00186 Vec getParameterRow(const string& varname, int n); 00187 00189 TVec<string> listParameterNames(); 00190 00192 TVec<Mat> listParameter(); 00193 00194 void prepareForFineTuning(); 00195 void fineTuningFor1Epoch(); 00196 // void fineTuningFullOld(); 00197 00198 void trainSupervisedLayer(VMat inputs, VMat targets); 00199 00200 TVec<Mat> computeRepresentations(Mat input); 00201 void reconstructInputFromLayer(int layer); 00202 TVec<Mat> computeReconstructions(Mat input); 00203 00204 Mat getMatValue(int layer); 00205 void setMatValue(int layer, Mat values); 00206 Mat fpropOneLayer(int layer); 00207 Mat reconstructOneLayer(int layer); 00208 00209 void computeAndSaveLayerActivationStats(VMat dataset, int which_layer, const string& filebasename, int nfirstunits=10, int notherunits=10); 00210 00211 // *** SUBCLASS WRITING: *** 00212 // While in general not necessary, in case of particular needs 00213 // (efficiency concerns for ex) you may also want to overload 00214 // some of the following methods: 00215 // virtual void computeOutputAndCosts(const Vec& input, const Vec& target, 00216 // Vec& output, Vec& costs) const; 00217 // virtual void computeCostsOnly(const Vec& input, const Vec& target, 00218 // Vec& costs) const; 00219 // virtual void test(VMat testset, PP<VecStatsCollector> test_stats, 00220 // VMat testoutputs=0, VMat testcosts=0) const; 00221 // virtual int nTestCosts() const; 00222 // virtual int nTrainCosts() const; 00223 // virtual void resetInternalState(); 00224 // virtual bool isStatefulLearner() const; 00225 00226 00227 //##### PLearn::Object Protocol ######################################### 00228 00229 // Declares other standard object methods. 00230 // ### If your class is not instantiatable (it has pure virtual methods) 00231 // ### you should replace this by PLEARN_DECLARE_ABSTRACT_OBJECT_METHODS 00232 PLEARN_DECLARE_OBJECT(DeepReconstructorNet); 00233 00234 // Simply calls inherited::build() then build_() 00235 virtual void build(); 00236 00238 // (PLEASE IMPLEMENT IN .cc) 00239 virtual void makeDeepCopyFromShallowCopy(CopiesMap& copies); 00240 00241 protected: 00242 //##### Protected Options ############################################### 00243 00244 // ### Declare protected option fields (such as learned parameters) here 00245 // ... 00246 00247 protected: 00248 //##### Protected Member Functions ###################################### 00249 00251 // (PLEASE IMPLEMENT IN .cc) 00252 static void declareOptions(OptionList& ol); 00253 static void declareMethods(RemoteMethodMap& rmm); 00254 00255 void trainHiddenLayer(int which_input_layer, VMat inputs); 00256 void buildHiddenLayerOutputs(int which_input_layer, VMat inputs, VMat outputs); 00257 00258 private: 00259 //##### Private Member Functions ######################################## 00260 00262 // (PLEASE IMPLEMENT IN .cc) 00263 void build_(); 00264 00265 private: 00266 //##### Private Data Members ############################################ 00267 00268 // The rest of the private stuff goes here 00269 int nout; 00270 00271 }; 00272 00273 // Declares a few other classes and functions related to this class 00274 DECLARE_OBJECT_PTR(DeepReconstructorNet); 00275 00276 } // end of namespace PLearn 00277 00278 #endif 00279 00280 00281 /* 00282 Local Variables: 00283 mode:c++ 00284 c-basic-offset:4 00285 c-file-style:"stroustrup" 00286 c-file-offsets:((innamespace . 0)(inline-open . 0)) 00287 indent-tabs-mode:nil 00288 fill-column:79 00289 End: 00290 */ 00291 // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=79 :