PLearn 0.1
|
00001 // -*- C++ -*- 00002 00003 // Supersampling2DModule.h 00004 // 00005 // Copyright (C) 2006 Pascal Lamblin 00006 // 00007 // Redistribution and use in source and binary forms, with or without 00008 // modification, are permitted provided that the following conditions are met: 00009 // 00010 // 1. Redistributions of source code must retain the above copyright 00011 // notice, this list of conditions and the following disclaimer. 00012 // 00013 // 2. Redistributions in binary form must reproduce the above copyright 00014 // notice, this list of conditions and the following disclaimer in the 00015 // documentation and/or other materials provided with the distribution. 00016 // 00017 // 3. The name of the authors may not be used to endorse or promote 00018 // products derived from this software without specific prior written 00019 // permission. 00020 // 00021 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00022 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00023 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00024 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00025 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00026 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00027 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00028 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00029 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00030 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00031 // 00032 // This file is part of the PLearn library. For more information on the PLearn 00033 // library, go to the PLearn Web site at www.plearn.org 00034 00035 // Authors: Pascal Lamblin 00036 00040 #ifndef Supersampling2DModule_INC 00041 #define Supersampling2DModule_INC 00042 00043 #include <plearn_learners/online/OnlineLearningModule.h> 00044 00045 namespace PLearn { 00046 00051 class Supersampling2DModule : public OnlineLearningModule 00052 { 00053 typedef OnlineLearningModule inherited; 00054 00055 public: 00056 //##### Public Build Options ############################################ 00057 00060 00062 int n_input_images; 00063 00065 int input_images_length; 00066 00068 int input_images_width; 00069 00071 int kernel_length; 00072 00074 int kernel_width; 00075 00077 real start_learning_rate; 00078 00081 real decrease_constant; 00082 00083 00084 //##### Learnt options, that we would want to access #################### 00086 Vec scale; 00087 00089 Vec bias; 00090 00091 //##### Not options ##################################################### 00093 int output_images_length; 00094 00096 int output_images_width; 00097 00099 int input_images_size; 00100 00102 int output_images_size; 00103 00105 int kernel_size; 00106 00107 00108 public: 00109 //##### Public Member Functions ######################################### 00110 00112 // ### Make sure the implementation in the .cc 00113 // ### initializes all fields to reasonable default values. 00114 Supersampling2DModule(); 00115 00116 // Your other public member functions go here 00117 00119 virtual void fprop(const Vec& input, Vec& output) const; 00120 00131 // virtual void bpropUpdate(const Vec& input, const Vec& output, 00132 // const Vec& output_gradient); 00133 00136 virtual void bpropUpdate(const Vec& input, const Vec& output, 00137 Vec& input_gradient, 00138 const Vec& output_gradient, 00139 bool accumulate=false); 00140 00150 // virtual void bbpropUpdate(const Vec& input, const Vec& output, 00151 // const Vec& output_gradient, 00152 // const Vec& output_diag_hessian); 00153 00155 virtual void bbpropUpdate(const Vec& input, const Vec& output, 00156 Vec& input_gradient, 00157 const Vec& output_gradient, 00158 Vec& input_diag_hessian, 00159 const Vec& output_diag_hessian, 00160 bool accumulate=false); 00161 00165 virtual void forget(); 00166 00167 00172 // virtual void finalize(); 00173 00176 // virtual bool bpropDoesNothing(); 00177 00178 //##### PLearn::Object Protocol ######################################### 00179 00180 // Declares other standard object methods. 00181 // ### If your class is not instantiatable (it has pure virtual methods) 00182 // ### you should replace this by PLEARN_DECLARE_ABSTRACT_OBJECT 00183 PLEARN_DECLARE_OBJECT(Supersampling2DModule); 00184 00185 // Simply calls inherited::build() then build_() 00186 virtual void build(); 00187 00189 virtual void makeDeepCopyFromShallowCopy(CopiesMap& copies); 00190 00191 00192 protected: 00193 //##### Protected Member Functions ###################################### 00194 00196 static void declareOptions(OptionList& ol); 00197 00198 private: 00199 //##### Private Member Functions ######################################## 00200 00202 void build_(); 00203 00204 private: 00205 //##### Private Data Members ############################################ 00206 00207 // The rest of the private stuff goes here 00208 real learning_rate; 00209 int step_number; 00210 00211 // The Mat they contain will point to sub-parts of input and output vectors 00212 // and gradients, for more convenience 00213 TVec<Mat> input_images; 00214 TVec<Mat> output_images; 00215 TVec<Mat> input_gradients; 00216 TVec<Mat> output_gradients; 00217 TVec<Mat> input_diag_hessians; 00218 TVec<Mat> output_diag_hessians; 00219 00220 // Will store the temporary kernels 00221 mutable Mat kernel; 00222 // Will store the temporary squared kernels 00223 mutable Mat squared_kernel; 00224 // Will store gradients wrt kernels 00225 mutable Mat kernel_gradient; 00226 }; 00227 00228 // Declares a few other classes and functions related to this class 00229 DECLARE_OBJECT_PTR(Supersampling2DModule); 00230 00231 } // end of namespace PLearn 00232 00233 #endif 00234 00235 00236 /* 00237 Local Variables: 00238 mode:c++ 00239 c-basic-offset:4 00240 c-file-style:"stroustrup" 00241 c-file-offsets:((innamespace . 0)(inline-open . 0)) 00242 indent-tabs-mode:nil 00243 fill-column:79 00244 End: 00245 */ 00246 // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=79 :