PLearn 0.1
|
00001 // -*- C++ -*- 00002 00003 // PLearn (A C++ Machine Learning Library) 00004 // Copyright (C) 1998 Pascal Vincent 00005 // Copyright (C) 1999-2002 Pascal Vincent, Yoshua Bengio, Rejean Ducharme and University of Montreal 00006 // Copyright (C) 2001-2002 Nicolas Chapados, Ichiro Takeuchi, Jean-Sebastien Senecal 00007 // Copyright (C) 2002 Xiangdong Wang, Christian Dorion 00008 00009 // Redistribution and use in source and binary forms, with or without 00010 // modification, are permitted provided that the following conditions are met: 00011 // 00012 // 1. Redistributions of source code must retain the above copyright 00013 // notice, this list of conditions and the following disclaimer. 00014 // 00015 // 2. Redistributions in binary form must reproduce the above copyright 00016 // notice, this list of conditions and the following disclaimer in the 00017 // documentation and/or other materials provided with the distribution. 00018 // 00019 // 3. The name of the authors may not be used to endorse or promote 00020 // products derived from this software without specific prior written 00021 // permission. 00022 // 00023 // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 00024 // IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 00025 // OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 00026 // NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 00027 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 00028 // TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00029 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00030 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00031 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00032 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00033 // 00034 // This file is part of the PLearn library. For more information on the PLearn 00035 // library, go to the PLearn Web site at www.plearn.org 00036 00037 00038 /* ******************************************************* 00039 * $Id: NegLogPoissonVariable.h 3994 2005-08-25 13:35:03Z chapados $ 00040 * This file is part of the PLearn library. 00041 ******************************************************* */ 00042 00043 #ifndef NegLogPoissonVariable_INC 00044 #define NegLogPoissonVariable_INC 00045 00046 #include "NaryVariable.h" 00047 #include <plearn/math/pl_erf.h> 00048 00049 namespace PLearn { 00050 using namespace std; 00051 00052 class NegLogPoissonVariable: public NaryVariable 00053 { 00054 typedef NaryVariable inherited; 00055 00056 public: 00058 NegLogPoissonVariable() {} 00059 NegLogPoissonVariable(VarArray& the_varray); 00060 00061 PLEARN_DECLARE_OBJECT(NegLogPoissonVariable); 00062 00063 virtual void build(); 00064 00065 virtual void recomputeSize(int& l, int& w) const; 00066 virtual void fprop(); 00067 virtual void bprop(); 00068 00069 // This flag is set to *true* in cases of weighted 00070 // datasets where the target represents the proportion of 00071 // events among a certain number of observations. The number 00072 // of observations is assumed to be fed as the weight. 00073 // Default value is *false*. 00074 bool scaled_targets; 00075 00076 protected: 00077 void build_(); 00078 bool has_weight; 00079 }; 00080 00081 DECLARE_OBJECT_PTR(NegLogPoissonVariable); 00082 00083 inline Var neglogpoissonvariable(VarArray& the_varray) 00084 { 00085 return new NegLogPoissonVariable(the_varray); 00086 } 00087 00088 } // end of namespace PLearn 00089 00090 #endif 00091 00092 00093 /* 00094 Local Variables: 00095 mode:c++ 00096 c-basic-offset:4 00097 c-file-style:"stroustrup" 00098 c-file-offsets:((innamespace . 0)(inline-open . 0)) 00099 indent-tabs-mode:nil 00100 fill-column:79 00101 End: 00102 */ 00103 // vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=79 :