
Adaptive Importance Sampling to Accelerate Training

of a Neural Probabilistic Language Model

Yoshua Bengio and Jean-Sébastien Senécal

Dept. IRO, Université de Montréal

C.P. 6128, Montreal, Qc, H3C 3J7, Canada

{bengioy}@iro.umontreal.ca

http://www.iro.umontreal.ca/∼lisa

September 24, 2007

Abstract

Previous work on statistical language modeling has shown that it is possi-

ble to train a feed-forward neural network to approximate probabilities over

sequences of words, resulting in significant error reduction when compared

to standard baseline models based on n-grams. However, training the neural

network model with the maximum likelihood criterion requires computations

proportional to the number of words in the vocabulary. We introduce adap-

tive importance sampling as a way to accelerate training of the model. The

idea is to use an adaptive n-gram model to track the conditional distributions

produced by the neural network. We show that a very significant speed-up

can be obtained on standard problems.

1

1 Introduction

Statistical machine learning often involves a difficult compromise between compu-

tational costs and statistical qualities of the model. From a statistical perspective

a major challenge is the high dimensionality of the data and the curse of dimen-

sionality, and this is a very serious issue in statistical language modeling. In recent

years, a particular class of neural-network based statistical language models has

been proposed (Bengio, Ducharme, Vincent, & Jauvin, 2003) to help deal with

high dimensionality and data sparsity, and it has been successfully applied and ex-

tended for speech recognition by smoothing n-gram language models (Schwenk &

Gauvain, 2002; Schwenk, 2004) and stochastic grammars (Xu, Emami, & Jelinek,

2003). These models have a parametrization that remains compact when the size

of the vocabulary increases and when the number of words of context increases.

They rely on learning a continuous-valued representation for words and word sub-

sequences that could help to efficiently represent context. Even though the com-

putations required for training and probability prediction only scale linearly with

vocabulary size and context size, these computations are much greater than those

required with classical statistical language models such as n-grams (Manning &

Schütze, 1999), because of the need to normalize conditional probabilities overall

all the words in the vocabulary, at each prediction step. To make these neural

network approaches more applicable, it is thus important to find ways to speed

up these algorithms. This paper proposes a novel method to decrease training

time, based on adaptive importance sampling, that has allowed speeding up train-

ing by a factor of 150 in the experiments reported here1. The idea of adaptive

1We reported a negligible change in perplexity with respect to the standard method

2

importance sampling is to train a model from which learning and sampling are

very efficient (n-gram based) to track the neural network. During training of the

neural network, when a word is presented in its context, instead of increasing its

conditional likelihood and decreasing the conditional likelihood of all other words,

it is sufficient to decrease the conditional likelihood of a few negative examples.

These negative examples are sampled from the efficient n-gram based model that

tracks the relative conditional probabilities of the neural network language model.

Statistical language modeling focuses on trying to estimate the underlying distri-

bution P (wT
1) that generated an observed sequence of words w1, . . . , wT (in this

paper, we refer to the sub-sequence wi, . . . , wj as wj
i , for simplicity).

The distribution can be represented by the conditional probability of the next

word given all the previous ones:

P (wT
1) =

T
∏

t=1

P (wt|w
t−1
1). (1)

In order to reduce the difficulty of the modeling problem, one usually compresses

the information brought by the last words by considering only the last n−1 words,

thus yielding the approximation

P (wT
1) ≈

T
∏

t=1

P (wt|w
t−1
t−n+1). (2)

The conditional probabilities P (wt|w
t−1
t−n+1) can be easily modeled by considering

sub-sequences of length n, usually referred to as windows, and computing the

estimated joint probabilities P (wt
t−n+1) and P (wt−1

t−n+1); the model’s conditional

probabilities can then be computed as

P (wt|w
t−1
t−n+1) =

P (wt
t−n+1)

P (wt−1
t−n+1)

. (3)

3

Successful traditional approaches, called n-grams (Jelinek & Mercer, 1980; Katz,

1987; Kneser & Ney, 1995), are based on simple counting of frequency of appear-

ance of the various windows of words in a training corpus, i.e. on the empirical

conditional probabilities Pn(wt|w
t−1
t−n+1) =

|wt
t−n+1|

|wt−1
t−n+1|

where |wj
i | is just the frequency

of subsequence wj
i in the training corpus. The main problem with Pn is that it

quickly overfits as n becomes large, and also quickly requires storing almost all of

the data set in memory. In order to smooth Pn, it is usually combined with lower-

order n-grams (Pn′ with n′ < n) in order to redistribute some of the probability

mass to sequences of n words that have never been seen in the data but whose

n′-long suffix has been seen (Jelinek & Mercer, 1980; Katz, 1987).

1.1 Fighting the Curse of Dimensionality with Word Similarity

The problem faced by n-grams is just a special case of the curse of dimensionality.

Word vocabularies being usually large, i.e. in the order of ten to hundred thousand

words, modeling the joint distribution of, say, 10 consecutive words potentially

requires 1040 to 1050 free parameters. Since these models do not take advantage of

the similarity between words (but see class-based models, discussed and compared

in (Bengio et al., 2003)), we believe that they tend to redistribute probability mass

too blindly, mostly to sentences with a very low probability. This can be seen by

looking at text generated by such models, which is often non-sensical except for

short sentences.

A way to approach that problem, first proposed in Bengio, Ducharme, and Vincent

(2001) (but see Bengio et al. (2003) for more details), and inspired by previous

work on symbolic representation with neural networks, such as Hinton (1986)

and Xu and Rudnicky (2000), is to map the words in vocabulary V into a feature

4

space IR
m in which the notion of similarity between words corresponds to the

Euclidean distance between their feature vectors. The learning algorithm finds a

mapping C from the discrete set of words in V to a continuous semantic space2.

In the proposed approach, this mapping is achieved by simply assigning a feature

vector Cw ∈ IR
m to each word w of the vocabulary. The vectors are considered as

parameters of the model and are thus learned during training, by gradient descent.

The idea of exploiting a continuous representation for words was succesfully ex-

ploited in Bellegarda (1997) in the context of an n-gram based model. That of a

vector-space representation for symbols in the context of neural networks was also

used in terms of a parameter sharing layer (Riis & Krogh, 1996; Jensen & Riis,

2000).

1.2 An Energy-based Neural Network for Language Modeling

Many variants of this neural network language model exist, as presented in Bengio

et al. (2003). Here we formalize a particular one, on which the proposed resampling

method will be applied, but the same idea can be extended to other variants, such

as those used in Schwenk and Gauvain (2002), Schwenk (2004), Xu et al. (2003).

The probabilistic neural network architecture is illustrated in figure 1. This looks

like a time-delay neural network (Lang & Hinton, 1988) since it has local shared

weights (the matrix of feature vectors C) in its first layer.

The output of the neural network depends on the next word wt and the history

ht which is a shorthand notation for wt−1
t−n+1 as follows. In the features layer, one

2There has been some concern about whether the learned space is actually that continuous; in

some way, it might still act as a discrete space if it is largely constituted of small neighborhoods

within which variations don’t affect the result at all. That question is still an open issue.

5

maps each word symbol wt−i in string wt
t−n+1 to a d-dimensional vector zi (with

d � |V|). In the framework considered here, the target (next) word is mapped

to a different feature space than the context (last) words, i.e. a different set of

feature vectors is used for the next word, whereas the context words share the

same feature vector map 3:

zi = Cwt−i
, i = 1, . . . , n− 1,

z0 = Dwt ,

z = (z0, . . . , zn−1) (4)

where Cj is the j-th column of the word features d×|V|matrix C of free parameters

for the context words and Dj is the j-th column of the word features d×|V| matrix

D for the next word wt. The resulting dn-vector z (the concatenation of the n

projections zi) is the input vector for the next layer, the hidden layer:

a = tanh(d + Wz) (5)

where d is a vector of h free parameters (hidden units biases), W is a h × dn

matrix of free parameters (hidden layer weights) and a is a vector of h hidden

units activations. Finally the output is a scalar energy function

E(wt, ht) = bwt + Vwt · a (6)

where b is a vector of |V| free parameters (called biases), V (hidden to output

layer weights) is a h×|V| matrix of free parameters with one column Vi per word.

Note that wt and the history (context) ht = wt−1
t−n+1 are used in computing a.

3We chose to use a different set of features for the next word in order to add more parameters

to the model; preliminary experiments also showed that it yielded better results than sharing the

feature vectors.

6

To obtain the joint probability of (wt, ht), we normalize the exponentiated energy

e−E(wt,ht) by dividing it by the normalizing function Z =
∑

(w,h)∈Vn e−E(w,h):

P (wt, ht) =
e−E(wt,ht)

Z
. (7)

The normalization Z is extremely hard to compute, since it requires a number

of passes (computations of E(·)) exponential in the number of context words.

However, the conditional probability P (wt|ht) is easier to normalize:

P (wt|ht) =
e−E(wt,ht)

Z(ht)
(8)

where Z(ht) =
∑

w∈V e−E(w,ht) is tractable, though still hard to compute because

the number of vocabulary words |V| is usually large and the activation E(·) requires

many multiplications and additions (approximately the number of hidden units

times d + 1, for each value of w).

The above architecture can be seen as an energy-based model (Teh, Welling, Osin-

dero, & Hinton, 2003), that is a probabilistic model based on the Boltzmann

energy distribution. In an energy-based model, the probability distribution of a

random variable X over some set X is expressed as

P (X = x) =
e−E(x)

Z
(9)

where E(·) is a parametrized energy function which is low for plausible config-

urations of x, and high for improbable ones, and where Z =
∑

x∈X e−E(x) (or

Z =
∫

x∈X e−E(x)dx in the continuous case), is called the partition function. In the

case that interests us, the partition function depends on the context ht, as seen

in (8). X will therefore represent a possible next-word, i.e. X=V, and probabilities

are conditional on the context ht.

7

.

.

index for

. . .

look−up
Table

in across words
shared parameters

Matrix

index for index for

. . .

Matrix

computations redone

Table
look−up
in

only some of the

for each

tanh

wt−1wt−2wt−n+1

C

C

Cwt−2
Dw

E(w,wt−1
t−n+1)

index for w ∈ V

D

D

P (wt|w
t−1
t−n+1) = e−E(wt,w

t−1
t−n+1)/

∑

w∈V e−E(w,wt−1
t−n+1)

Cwt−1

w

Cwt−n+1

z-layer

a-layer

Figure 1: Architecture of the neural language model. The first layer has is linear,

with local connections and temporally shared parameters (the matrix C and D

whose columns are word features).

8

The main step in a gradient-based approach to train such models involves com-

puting the gradient of the log-likelihood log P (X = x) with respect to parame-

ters θ. The gradient can be decomposed in two parts: positive reinforcement for

the observed value X = x and negative reinforcement for every x′, weighted by

P (X = x′), as follows (by differentiating the negative logarithm of (9) with respect

to θ):

∇θ (− log P (x)) = ∇θ (E(x)) −
∑

x′∈X

P (x′)∇θ

(

E(x′)
)

. (10)

Clearly, the difficulty here is to compute the negative reinforcement when |X | is

large (as is the case in a language modeling application). However, as is easily

seen as a fundamental property of exponential family models (Brown, 1986), the

negative part of the gradient is nothing more than the average

EP [∇θ (E(X))] . (11)

In Hinton and Sejnowski (1986), it is proposed to estimate this average with

a Gibbs sampling method, using a Markov Chain Monte-Carlo process. This

technique relies on the particular form of the energy function in the case of the

Boltzmann machine, which lends itself naturally to Gibbs sampling. The idea of

applying sampling techniques to speed-up language models, e.g., of the exponential

family is not new. See for example Rosenfeld, Chen, and Zhu (2001).

Note that the energy-based architecture and the products of experts formula-

tion can be seen as extensions of the very successful Maximum Entropy mod-

els (Berger, Della Pietra, & Della Pietra, 1996), but where the basis functions

(or “features”, here the hidden units activations) are learned by penalized maxi-

mum likelihood at the same time as the convex combination parameters, instead

of being learned in an outer loop, with greedy feature subset selection methods.

9

2 Approximation of the Log-Likelihood Gradient by

Biased Importance Sampling

If one could sample from P (·), a simple way to estimate (11) would consist in

sampling m points x1, . . . , xm from the network’s distribution P (·) and to approx-

imate (11) by the average

1

m

m
∑

i=1

∇θ (E(xi)) . (12)

This method, known as classical Monte-Carlo, yields Algorithm 1 for estimating

the gradient of the log-likelihood (10). The maximum speed-up that could be

achieved with such a procedure would be |X |/m. In the case of the language

modeling application we are considering, that means a potential for a huge speed-

up, since |X | is typically in the tens of thousands and m could be quite small; in

fact.

Algorithm 1 Classical Monte-Carlo Approximation of the Gradient

∇θ (− log P (x)) ← ∇θ (E(x)) {Add positive contribution}

for k ← 1 to m do {Estimate negative contribution}

x′ ∼ P (·) {Sample negative example}

∇θ (− log P (x)) ← ∇θ (− log P (x)) − 1
m
∇θ (E(x′)) {Add negative contribu-

tion}

end for

However, this method requires to sample from distribution P (·), which we can’t

do without having to compute P (x) explicitly. That means we have to compute

the partition function Z, which is still hard because we have to compute E(x) for

each x ∈ X .

Fortunately, in many applications, such as language modeling, we can use an

10

alternative, proposal distribution Q from which it is cheap to sample. In the case

of language modeling, for instance, we can use n-gram models. There exist several

Monte-Carlo algorithms that can take advantage of such a distribution to give an

estimate of (11).

2.1 Classical Importance Sampling

One well-known statistical method that can make use of a proposal distribution

Q in order to approximate the average EP [∇θ (E(X))] is based on a simple obser-

vation. In the discrete case

EP [∇θ (E(x))] =
∑

x∈X

P (x)∇θ (E(x)) =
∑

x∈X

Q(x)
P (x)

Q(x)
∇θ (E(x)) = EQ

[

P (X)

Q(X)
∇θ (E(X))

]

.

(13)

Thus, if we take m independent samples y1, . . . , ym from Q and apply classical

Monte-Carlo to estimate EQ

[

P (X)
Q(X)∇θ (E(X))

]

, we obtain the following estimator

known as importance sampling (Robert & Casella, 2000):

1

m

m
∑

i=1

P (yi)

Q(yi)
∇θ (E(yi)) . (14)

Clearly, that does not solve the problem: although we do not need to sample from

P anymore, the P (yi)’s still need to be computed, which cannot be done without

explicitly computing the partition function. Back to square one.

2.2 Biased Importance Sampling

Fortunately, there is a way to estimate (11) without sampling from P nor having

to compute the partition function. The proposed estimator is a biased version of

classical importance sampling (Kong, Liu, & Wong, 1994). It can be used when

P (x) can be computed explicitly up to a multiplicative constant: in the case of

11

energy-based models, this is clearly the case since P (x) = Z−1e−E(x). The idea is

to use 1
W

w(yi) to weight the ∇θ (E(yi)), with w(x) = e−E(x)

Q(x) and W =
∑m

j=1 w(yi),

thus yielding the estimator (Liu, 2001)

1

W

m
∑

i=1

w(yi)∇θ (E(yi)) . (15)

Though this estimator is biased, its bias decreases as m increases. It can be shown

to converge to the true average (11) as m→∞ 4.

The advantage of using this estimator over classical importance sampling is that

we need not compute the partition function: we just need to compute the energy

function for the sampled points. The procedure is summarized in Algorithm 2.

Algorithm 2 Biased Importance Sampling Approximation of the Gradient

∇θ (− log P (x)) ← ∇θ (E(x)) {Add positive contribution}

vector g ← 0

W ← 0

for k ← 1 to m do {Estimate negative contribution}

y′ ∼ Q(·) {Sample negative example}

w ← e−E(y′)

Q(y′)

g ← g + w∇θ (E(y′))

W ← W + w

end for

∇θ (− log P (x)) ← ∇θ (− log P (x))− 1
W

g {Add negative contributions}

4However, this does not guarantee that the variance of the estimator remains bounded. We

have not dealt with the problem yet, but maybe some insights could be found in Luis and Leslie

(2000)

12

3 Adapting the Sample Size

Preliminary experiments with Algorithm 2 using the unigram distribution showed

that whereas a small sample size was appropriate in the initial training epochs,

a larger sample size was necessary later to avoid divergence (increases in training

error). This may be explained by a too large bias – because the network’s dis-

tribution diverges from that of the unigram, as training progresses – and/or by a

too large variance in the gradient estimator.

In Bengio and Senécal (2003), we presented an improved version of Algorithm 2

that makes use of a diagnostic, called effective sample size (Kong, 1992; Kong

et al., 1994). For a sample y1, . . . , ym taken from proposal distribution Q, the

effective sample size is given by

ESS =
(
∑m

j=1 w(yj))
2

∑m
j=1 w2(yj)

. (16)

Basically, this measure approximates the number of samples from the target dis-

tribution P that would have yielded, with classical Monte-Carlo, the same vari-

ance as the one yielded by the biased importance sampling estimator with sample

y1, . . . , ym.

We can use this measure to diagnose whether we have sampled enough points. In

order to do that, we fix a baseline sample size l. This baseline is the number of

samples we would sample in a classical Monte-Carlo scheme, were we able to do it.

We then sample points from Q by “blocks” of size mb ≥ 1 until the effective sample

size becomes larger than the target l. If the number of samples becomes too large,

we switch back to a full back-propagation (i.e. we compute the true negative

gradient). This happens when the importance sampling approximation is not

accurate enough and we might as well use the exact gradient. This safeguarding

13

condition ensures that convergence does not get slower than the one obtained

when computing the exact gradient.

4 Adapting the Proposal Distribution

The method was used with a simple unigram proposal distribution to yield sig-

nificant speed-up on the Brown corpus (Bengio & Senécal, 2003). However, the

required number of samples was found to increase quite drastically as training

progresses. This is because the unigram distribution stays fixed while the net-

work’s distribution changes over time and becomes more and more complex, thus

diverging from the unigram.

An early idea we tried was to start with a unigram distribution and switching

to an interpolated bigram, and then to an interpolated trigram during training.

After each epoch, we compared the model’s perplexity with that of, namely, the

unigram, the bigram and the trigram. For example, once the model’s perplexity

would become lower than that of the interpolated bigram, we would switch to

the interpolated bigram as our proposal distribution. Once the perplexity would

become lower than the interpolated trigram’s, we would switch to the interpolated

trigram.

This procedure provided even poorer results than just using a simple unigram,

requiring larger samples to get a good approximation. We think that this is due

to the fact that, as was pointed out in Goodman (2003), the bigram and trigram

have distributions that are much different from neural network language models.

Bengio et al. (2003) also showed that learning a simple linear interpolation with a

smoothed trigram helps achieve an even lower perplexity, confirming that the two

14

models give quite different distributions.

Clearly, using a proposal distribution that stays “close” to the target distribution

would yield even greater speed-ups, as we would need less samples to approximate

the gradient. We propose to use a n-gram model that is adapted during training

to fit to the target (neural network) distribution P 5. In order to do that, we

propose to redistribute the probability mass of the sampled points in the n-gram

to track P . This will be achieved with k-gram tables Qk which will be estimated

with the goal of matching the order k conditional probabilities of samples from

our model P when the history context is sampled from the empirical distribution.

The tables corresponding to different orders k will be interpolated in the usual

way to form a predictive model, from which it is easy to sample. Hence we try to

combine ease of sampling (Qk is a k-gram model, which can be sampled from very

quickly) with approximating of the model distribution (represented implicitly by

the neural network).

Let us thus define the adaptive n-gram as follows:

Q(wt|ht) =

n
∑

k=1

αk(ht)Qk(wt|w
t−1
t−k+1) (17)

where the Qk are the sub-models that we wish to estimate, and αk(ht) is a mixture

function such that
∑n

k=1 αk(ht) = 1. Usually, for obvious reasons of memory

constraints, the probabilities given by a n-gram will be non-null only for those

sequences that are observed. Mixing with lower-order models allows to give some

probability mass to unseen word sequences.

LetW be the set of m words sampled from Q. The number m is chosen by using the

effective sample size approximation (see Section 3). Let q̄k =
∑

w∈W Qk(w|w
t−1
t−k+1)

5A similar approach was proposed in Cheng and Druzdzel (2000) for Bayesian networks.

15

be the total probability mass of the sampled points in k-gram Qk and p̄ =

∑

w∈W e−E(w,ht) the unnormalized probability mass of these points in P . Let

P̃ (w|ht) = e−E(w,ht)

p̄
for each w ∈ W. For each k and for each w ∈ W, the values

in Qk are updated as follows:

Qk(w|w
t−1
t−k+1)← (1− λ)Qk(w|w

t−1
t−k+1) + λq̄kP̃ (w|ht) (18)

where λ is a kind of “learning rate” which needs to be set empirically: it adds an

extra hyper-parameter to the whole system, which can be selected by comparing

the evolution of perplexity on a small dataset for different values of λ. Note that

∑

w∈W

q̄kP̃ (w|ht) = q̄k =
∑

w∈W

Qk(w|w
t−1
t−k+1)

so the update only redistributes probability mass within W. Since the other

probabilities in Qk are not changed, this shows that
∑

w Qk(w|w
t−1
t−k+1) = 1 after

the update.

Note that we would like to match the model probability Qk(w|w
t−1
t−k+1) with

the target probability pw = e−E(w,ht)
P

w∈V
e−E(w,ht)

, but we can only compute the con-

ditional probabilities within the sample W, so we try to match
Qk(w|wt−1

t−k+1)

q̄k
with

pw
P

w∈W
pw

= P̃ (w|ht). The proposed update rule actually moves q̄k around and

tries to equate Qk(w|w
t−1
t−k+1) with q̄kP̃ (w|ht). More precisely, equation 18 can be

seen as gradient descent in a quadratic criterion whose corresponding first order

conditions give rise to conditional probabilities that are in average correct (condi-

tional on ht = wt−1
t−n+1 and on the sampled set W). This criterion is the expected

value (over contexts ht and sample sets W) of Qk(w|w
t−1
t−k+1)

2 − q̄2
kP̃ (w|ht). The

first-order condition is that the average over ht andW of Qk(w|w
t−1
t−k+1) equals the

average of the renormalized target probability, q̄kP̃ (w|ht). Performing a stochastic

16

gradient step with learning rate λ gives exactly rise to equation 18. Hence if the

learning rate λ is reduced appropriately, one would get convergence to the global

minimum of this criterion.

The parameters of functions αk(·) are updated so as to minimize the Kullback-

Leibler divergence
∑

w∈W P̃ (w|ht) log P̃ (w|ht)
Q(w|ht)

by gradient descent.

We describe here the method we used to train the αk’s in the case of a bigram

interpolated with a unigram, i.e. n = 2 above. Rather than having the αk’s be a

function of all possible histories ht, we instead clustered the ht’s into equivalent

classes and the αk’s were a function only of the class of ht. Specifically, in our

experiments, the αk’s were a function of the frequency of the last word wt−1. The

words were thus first clustered in C frequency bins Bc, c = 1, . . . , C. Those bins

were built so as to group words with similar frequencies in the same bin while

keeping the bins balanced6. Algorithm 3 describes the process by which those

frequency bins were built.

Then, an “energy” value a(c) was assigned for c = 1, . . . , C. We set α1(ht) =

σ(a(ht)) and α2(ht) = 1−α1(ht) where σ(z) = 1/(1+e−z) is the sigmoid function

and a(ht) = a(wt−1) = a(c), c being the class (bin) of wt−1. The energy a(ht) is

thus updated with the following rule, trying again to match our target distribution

P̃ (·|ht):

a(ht)← a(ht)− ηα1(ht)α2(ht)
∑

w∈W

P̃ (w|ht)
Q(w|ht)

Q2(w|wt−1)−Q1(w)
(19)

where η is a learning rate.

6By balanced, we mean that the sum of word frequencies does not vary a lot between two

bins. That is, let |w| be the frequency of word w in the training set, then we wish that

∀i, j,
P

w∈Bi
|w| ≈

P

w∈Bj
|w|.

17

Algorithm 3 Building Balanced Frequency Bins
(1) c ← 1

(2) B1 ← ∅

(3) nb ← 0

(4) n̄b ←
1
C

∑

w∈V |w| {Target frequency sum per bin}

(5) V ′ ← V

(6) while V ′ 6= ∅ do

(7) wmax ← argmaxw∈V ′ |w| {wmax is the next maximum frequency word}

(8) V ′ ← V ′ \ {wmax}

(9) Bc ← Bc ∪ {wmax}

(10) nb ← nb + |wmax|

(11) if nb > n̄b then

(12) nb ← 0

(13) c ← c + 1

(14) end if

(15) end while

18

Algorithm 4 Adaptive Algorithm

(1) ∇θ (− log P (x)) ← ∇θ (E(x)) {Add positive contribution}

(2) vector g ← 0, W ← ∅

(3) W ← 0, S ← 0, ESS ← 0, m ← mb

(4) while ESS < n and m ≤ threshold do

(5) for k ← 1 to mb do {Estimate negative contribution}

(6) y′ ∼ Q(·) {Sample negative example}

(7) w ← e−E(y′)

Q(y′)

(8) g ← g + w∇θ (E(y′))

(9) W ←W + w,S ← S + w2

(10) W ← W
⋃

{y′}

(11) end for

(12) ESS ← W 2

S

(13) m ← m + mb

(14) end while

(15) if m > threshold then

(16) {Compute the gradient on all words}

(17) W ← V

(18) ∇θ (− log P (x)) ← ∇θ (− log P (x))−
∑

x∈X P (x)∇θ (E(x))

(19) else

(20) ∇θ (− log P (x)) ← ∇θ (− log P (x))− 1
W

g {Add negative contributions}

(21) end if

(22) {Update proposal distribution according to Eq. (18) and Eq. (19)}

(23) updateProposal(Q,W, λ, η)

19

5 Experimental Results

We ran some experiments on the Brown corpus, with different configurations.

The Brown corpus consists of 1,181,041 words from various American English

documents. The corpus was divided in train (800K words), validation (200K

words) and test (the remaining ≈ 180K words) sets. The vocabulary was truncated

by mapping all “rare” words (words that appear 3 times or less in the corpus) into

a single special word. The resulting vocabulary contains 14,847 words.

On this dataset, a simple interpolated trigram, serving as our baseline, achieves a

perplexity of 253.8 on the test set. The weights of the interpolation are obtained

by maximizing likelihood on the validation set. Better results can be achieved

with a Kneser-Ney back-off trigram, but it has been shown in Bengio et al. (2003)

that a neural network converges to a lower perplexity on Brown, and that the

neural network can be interpolated with the trigram for even larger perplexity

reductions. Kneser-Ney is simple but more sophisticated and better perform-

ing smoothing techniques have been proposed: see for example Rosenfeld (2000),

Goodman (2001), Wang and Harper (2002).

In all settings, we used 30 word features for both context and target words, and

80 hidden neurons. The number of context words was 3. The learning rate for

the neural network was gradually decreased using 3×10−3

1+10−8t
, with t the number of

updates performed since the beginning of training. We used a weight decay of

10−4 to regularize the parameters. The output biases bwt in (6) were manually

initialized so that the neural network’s initial distribution is equal to the unigram

(see Bengio et al. (2003) for details). This setting is the same as that of the

neural network that achieved the best results on Brown, as described in Bengio

20

et al. (2003). In this setting, a classical neural network – one that doesn’t make a

sampling approximation of the gradient – converges to a perplexity of 204 in test,

after 18 training epochs. In the adaptive bigram algorithm, the parameters λ in

(18) and η in (19) were both set to 1e−3, as preliminary experiments had showed

it to be a fair value for the model to converge. The a(ht) were initially set to

σ−1(0.9) so that α1(ht) = 0.9 and α2(ht) = 0.1 for all ht; this way, at the start

of training, the target (neural network) and the proposal distribution are close to

each other (both are close to the unigram).

Figure 2(a) plots the training error at every epoch for the network trained without

sampling and a network trained by importance sampling, using an adaptive bigram

with a target effective sample size of 50. The number of frequency bins used for

the mixing variables was 10. It shows that the convergence of both networks is

similar. The same holds for validation and test errors, as is shown in figure 2(b). In

this figure, the errors are plotted with respect to computation time on a Pentium

4 2 GHz. As can be seen, the network trained with the sampling approximation

converges before the network trained classically even completes one full epoch.

Quite interestingly, the network trained by sampling converges to an even lower

perplexity than the ordinary one (trained with the exact gradient). After 9 epochs

(26 hours), its perplexity over the test set is equivalent to that of the one trained

with exact gradient at its overfitting point (18 epochs, 113 days). The sampling ap-

proximation thus allowed more than 100-fold speed-up (104.3, more precisely).

Both algorithms were implemented in C++ using shared code that attempted to

be efficient.

Surprisingly enough, if we let the sampling-trained model converge, it starts to

21

100

200

300

400

500

600

700

0 2 4 6 8 10

E
rr

or
 (

pe
rp

le
xi

ty
)

Epoch

Classical algorithm
Sampling algorithm

(a) Training error with respect to number of

epochs

180

200

220

240

260

280

300

320

340

360

380

1000 10000 100000 1e+06 1e+07 1e+08

P
er

pl
ex

ity

Time (secs)

Classical algorithm (validation)
Sampling algorithm (validation)

Classical algorithm (test)
Sampling algorithm (test)

(b) Validation and test errors with respect to

CPU time

Figure 2: Comparison of errors between a model trained with the classical algo-

rithm and a model trained by adaptive importance sampling.

overfit at epoch 18 – as for classical training – but with a lower test perplexity of

196.6, a 3.8% improvement. Total improvement in test perplexity with respect to

the trigram baseline is 29%.

Apart from the speed-up, the other interesting point to note if we compare the

results with those obtained by using a non-adaptive proposal distribution (Bengio

& Senécal, 2003), which yielded a speed-up factor of 18, is that the mean number

of samples required in order to ensure convergence seems to grow almost linearly

with time (as shown in figure 3) whereas the required number of samples with the

non-adaptive unigram was growing exponentially.

An important detail is worth mentioning here. Since |V| is large, we first thought

that there was too small a chance to sample the same word w twice from the

proposal Q at each step to really worry about it. However, we found out the

chance of picking twice the same w to be quite high in practice (with an adaptive

bigram proposal distribution). This may be simply due to Zipf’s law concentrating

mass on a few words. It may also be due to the particular form of our proposal

22

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 2 4 6 8 10 12 14 16 18 20

M
ea

n
nu

m
be

r
of

 s
am

pl
es

Epoch

Sampling algorithm, adaptive bigram

Figure 3: Comparison between the mean number of samples (for each stochastic

gradient estimation) and the number of epochs shows an almost linear relation

between them.

23

distribution (17). The bigram part Q2(w|wt−1) of that distribution being non-null

for only those words w for which |wt−1w| > 0, there are contexts wt−1 in which

the number of candidate words w for which Q2(w|wt−1) > 0 is small, thus there

are actually good chances to pick twice the same word. Knowing this, one can

save much computation time by avoiding to compute the energy function E(w, ht)

many times for the same word w. Instead, the values of the energy functions

for sampled words is kept in memory. When a word is first picked, its energy

E(w, ht) is computed in order to calculate the sampling weights (see Algorithm 4).

The value of the sampling weight is kept in memory so that, whenever the same

word is picked during the same iteration, all that needs to be done is to use the

copied weight, thus saving one full propagation of the energy function. This trick

increases the speed-up from a factor of 100 to a factor of 150.

Since the adaptive bigram is, supposedly, a close approximation of the neural

network’s distribution, we thought of evaluating it on the test corpus. Clearly,

if the bigram was close enough, it would yield a comfortable perplexity, with the

advantage of being a lot quicker. However, experiments showed a larger perplexity

than a simple interpolated trigram.

6 Future Work

Previous work (Bengio et al., 2003) used a parallel implementation in order to

speed-up training and testing. Although our sampling algorithm works very well

on a single machine, we had much trouble making an efficient parallel implementa-

tion of it. The reason is that the parallelization has to be done on the hidden layer;

thus for each back-propagation, we have to accumulate the gradient with respect

24

to the feature parameters (the zi’s) for each processor and then share the gradi-

ents. The process of sharing the gradient necessitates huge resources in terms of

data transmission, which we have found to take up to 60% of the back-propagation

time. One way to deal with the problem is to desynchronize the sharing of the

parameters on the feature vectors i.e. allowing the computations to continue while

the messages are transmitted. Since the changes in the feature vectors are quite

small, this should affect convergence only slightly.

The other problem we face is that of choosing the target effective sample size.

Currently, we have to choose it conservatively enough to guarantee convergence.

In fact, we could achieve the same convergence by adapting it to the gradient’s

variance: as training progresses, the gradient is likely to become noisier, thus

necessitating a greater number of samples for even the classical Monte-Carlo esti-

mate to yield a good approximation. We could thus save even more computations

by targeting a smaller effective sample size at the start of training and increasing

it afterwards.

Finally, although accelerating the gradient’s calculation is an important matter,

an accelerated method for estimating the probabilities is left unaddressed by our

work. Interesting methods that use the network only for the most frequent words

have yielded impressive results (Schwenk & Gauvain, 2002). These authors rely

mostly on the idea of restricting the vocabulary predicted by the neural network in

order to reduce computation time, and that technique yields savings both during

training and testing. On the other hand, what we propose is here only helps

during training. If one wants to compute the actual conditional probabilities of

the next word given the context using the neural network model, one still has to

25

compute the sum over all the words in the vocabulary. Other techniques such as

those discussed in Schwenk and Gauvain (2002), Schwenk (2004) may be used to

speed-up computation during testing.

One issue that should be looked at are the factors that would make the proposed

adaptive importance sampling method work better or worse. Based on the ex-

periments we have performed, an important factor is that the approximation of

the target model by the n-gram used for sampling should be sufficiently good,

otherwise the importance sampling becomes inefficient (that explains why most

of the speed-up is obtained initially when the neural network has a model that is

not too different from what an n-gram can capture). For this reason, exploring

higher order n-grams for the proposal distribution might become necessary for

more modeling more complex data. In particular, experiments on much larger

datasets are required to evaluate how this method scales.

7 Conclusion

In this paper, we describe a method to efficiently train a probabilistic energy-based

neural network. Though the application was to language modeling with a neural

network, the method could in fact be used to train arbitrary energy-based models

as well.

The method is based on the observation that the gradient of the log-likelihood can

be decomposed in two parts: positive and negative contributions. The negative

contribution is usually hard to compute because it involves a number of passes

through the network equivalent to the size of the vocabulary. Luckily, it can be

estimated efficiently by importance sampling.

26

We had already argued for such a method in Bengio and Senécal (2003), achieving

a significant 19-fold speed-up on a standard problem (Brown). Here we show that

an even greater speed-up can be obtained by adapting the proposal distribution as

training progresses so that it stays as close as possible to the network’s distribution.

We have found that it is possible to do it efficiently by reusing the sampled words

to re-weight the probabilities given by a n-gram. With the new method, we were

able to achieve a 150-fold speed-up on the same problem, with a negligible change

in perplexity. Analysis of the required sample size through time also suggests that

the algorithm will scale with more difficult problems, since the mean sample size

remains approximately proportional to the number of epochs.

Acknowledgements

The authors would like to thank Geoffrey Hinton for fruitful discussions, and the

following funding organizations: NSERC, MITACS, and the Canada Research

Chairs.

References

Bellegarda, J. (1997). A latent semantic analysis framework for large–span lan-

guage modeling. In Proceedings of Eurospeech 97, pp. 1451–1454 Rhodes,

Greece.

Bengio, Y. (2002). New distributed probabilistic language models. Tech. rep. 1215,

Dept. IRO, Université de Montréal.

Bengio, Y., Ducharme, R., & Vincent, P. (2001). A neural probabilistic language

model. In Leen, T. K., Dietterich, T. G., & Tresp, V. (Eds.), Advances in

27

Neural Information Processing Systems 13, pp. 932–938. MIT Press.

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic

language model. Journal of Machine Learning Research.

Bengio, Y., & Senécal, J.-S. (2003). Quick training of probabilistic neural nets by

sampling. In Proceedings of the Ninth International Workshop on Artificial

Intelligence and Statistics, Vol. 9 Key West, Florida. AI and Statistics.

Berger, A., Della Pietra, S., & Della Pietra, V. (1996). A maximum entropy

approach to natural language processing. Computational Linguistics, 22,

39–71.

Brown, L. D. (1986). Fundamentals of Statistical Exponential Families, Vol. 9.

Inst. of Math. Statist. Lecture Notes Monograph Series.

Cheng, J., & Druzdzel, M. J. (2000). Ais-bn: An adaptive importance sampling

algorithm for evidential reasoning in large bayesian networks. Journal of

Artificial Intelligence Research, 13, 155–188.

Goodman, J. (2001). A bit of progress in language modeling. Tech. rep. MSR-

TR-2001-72, Microsoft Research.

Goodman, J. (2003). A bit of progress in language modeling – extended ver-

sion. Tech. rep. MSR-TR-2001-72, Machine Learning and Applied Statistics

Group, Microsoft Research.

Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann

machines. In Rumelhart, D. E., & McClelland, J. L. (Eds.), Parallel Dis-

tributed Processing: Explorations in the Microstructure of Cognition. Volume

1: Foundations. MIT Press, Cambridge, MA.

28

Hinton, G. (1986). Learning distributed representations of concepts. In Proceedings

of the Eighth Annual Conference of the Cognitive Science Society, pp. 1–12

Amherst. Lawrence Erlbaum, Hillsdale.

Hinton, G. (1999). Products of experts. In Proceedings of the Ninth International

Conference on Artificial Neural Networks (ICANN99), pp. 1–6 Edinburgh,

Scotland.

Jelinek, F., & Mercer, R. L. (1980). Interpolated estimation of Markov source

parameters from sparse data. In Gelsema, E. S., & Kanal, L. N. (Eds.),

Pattern Recognition in Practice. North-Holland, Amsterdam.

Jensen, K., & Riis, S. (2000). Self-organizing letter code-book for text-to-phoneme

neural network model. In Proceedings ICSLP.

Katz, S. M. (1987). Estimation of probabilities from sparse data for the language

model component of a speech recognizer. IEEE Transactions on Acoustics,

Speech, and Signal Processing, ASSP-35 (3), 400–401.

Kneser, R., & Ney, H. (1995). Improved backing-off for m-gram language modeling.

In International Conference on Acoustics, Speech and Signal Processing, pp.

181–184.

Kong, A. (1992). A note on importance sampling using standardized weights.

Tech. rep. 348, Department of Statistics, University of Chicago.

Kong, A., Liu, J. S., & Wong, W. H. (1994). Sequential imputations and bayesian

missing data problems. Journal of the American Statistical Association, 89,

278–288.

29

Lang, K. J., & Hinton, G. E. (1988). The development of the time-delay neural

network architecture for speech recognition. Tech. rep. CMU-CS-88-152,

Carnegie-Mellon University.

Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing. Springer.

Luis, O., & Leslie, K. (2000). Adaptive importance sampling for estimation in

structured domains. In Proceedings of the 16th Annual Conference on Un-

certainty in Artificial Intelligence (UAI-00), pp. 446–454.

Manning, C. D., & Schütze, H. (1999). Foundations of Statistical Natural Language

Processing. MIT Press.

Riis, S., & Krogh, A. (1996). Improving protein secondary structure prediction

using structured neural networks and multiple sequence profiles. Journal of

Computational Biology, 163–183.

Robert, C. P., & Casella, G. (2000). Monte Carlo Statistical Methods. Springer.

Springer texts in statistics.

Rosenfeld, R. (2000). Two decades of statistical language modeling: Where do we

go from here?. Proceedings of the IEEE, 88 (8).

Rosenfeld, R., Chen, S. F., & Zhu, X. (2001). Whole-sentence exponential language

models: A vehicle for linguistic-statistical integration. Computers Speech and

Language, 15 (1).

Schwenk, H., & Gauvain, J.-L. (2002). Connectionist language modeling for large

vocabulary continuous speech recognition. In International Conference on

Acoustics, Speech and Signal Processing, pp. 765–768 Orlando, Florida.

30

Schwenk, H. (2004). Efficient training of large neural networks for language model-

ing. In IEEE International Joint Conference on Neural Networks (IJCNN).

to appear July 2004.

Schwenk, H., & Gauvain, J.-L. (2002). Connectionist language modeling for large

vocabulary continuous speech recognition. In Proceedings of ICASSP, pp.

765–768 Orlando.

Teh, Y.-W., Welling, M., Osindero, S., & Hinton, G. E. (2003). Energy-based

models for sparse overcomplete representations. Journal of Machine Learn-

ing Research, 4, 1235–1260.

Wang, W., & Harper, M. P. (2002). The superARV language model: investigat-

ing the effectiveness of tightly integrating multiple knowledge sources. In

EMNLP ’02: Proceedings of the ACL-02 conference on Empirical methods

in natural language processing, pp. 238–247 Morristown, NJ, USA. Associa-

tion for Computational Linguistics.

Xu, P., Emami, A., & Jelinek, F. (2003). Training connectionist models for the

structured language model. In Empirical Methods in Natural Language Pro-

cessing, EMNLP’2003.

Xu, W., & Rudnicky, A. (2000). Can artificial neural network learn language

models. In International Conference on Statistical Language Processing, pp.

M1–13 Beijing, China.

31

