
Recurrent Neural Networks for Missing or
Asynchronous Data

Yoshua Bengio �

Dept� Informatique et
Recherche Op�erationnelle
Universit�e de Montr�eal
Montreal� Qc H�C��J�

bengioy�iro�umontreal�ca

Francois Gingras
Dept� Informatique et

Recherche Op�erationnelle
Universit�e de Montr�eal
Montreal� Qc H�C��J�

gingras�iro�umontreal�ca

Abstract
In this paper we propose recurrent neural networks with feedback into the input
units for handling two types of data analysis problems� On the one hand� this
scheme can be used for static data when some of the input variables are missing�
On the other hand� it can also be used for sequential data� when some of the
input variables are missing or are available at di�erent frequencies� Unlike in the
case of probabilistic models �e�g� Gaussian� of the missing variables� the network
does not attempt to model the distribution of the missing variables given the
observed variables� Instead it is a more 	discriminant
 approach that �lls in the
missing variables for the sole purpose of minimizing a learning criterion �e�g�� to
minimize an output error��

� Introduction

Learning from examples implies discovering certain relations between variables of interest� The
most general form of learning requires to essentially capture the joint distribution between these
variables� However� for many speci�c problems� we are only interested in predicting the value
of certain variables when the others �or some of the others� are given� A distinction is therefore
made between input variables and output variables� Such a task requires less information �and
less parameters� in the case of a parameterized model� than that of estimating the full joint
distribution� For example in the case of classi�cation problems� a traditional statistical approach
is based on estimating the conditional distribution of the inputs for each class� as well as the
class prior probabilities �thus yielding the full joint distribution of inputs and classes�� A more
discriminant approach concentrates on estimating the class boundaries �and therefore requires
less parameters�� as for example with a feedforward neural network trained to estimate the output
class probabilities given the observed variables�

However� for many learning problems� only some of the input variables are given for each partic�
ular training case� and the missing variables di�er from case to case� The simplest way to deal
with this missing data problem consists in replacing the missing values by their unconditional
mean� It can be used with 	discriminant
 training algorithms such as those used with feed�
forward neural networks� However� in some problems� one can obtain better results by taking
advantage of the dependencies between the input variables� A simple idea therefore consists

�also� AT�T Bell Labs� Holmdel� NJ �����



1

1

1

(90)

(3)

(4)

1

2

4

1(6)

(3)

(2)

(1)

Figure � Architectures of the recurrent networks in the experiments� On the left a ������
architecture for static data with missing values� on the right a ������� architecture with multiple
time�scales for asynchronous sequential data� Small squares represent a unit delay� The number
of units in each layer is inside the rectangles� The time scale at which each layer operates is on
the right of each rectangle�

in replacing the missing input variables by their conditional expected value� when the observed
input variables are given� An even better scheme is to compute the expected output given the
observed inputs� e�g� with a mixture of Gaussian� Unfortunately� this amounts to estimating the
full joint distribution of all the variables� For example� with ni inputs� capturing the possible
e�ect of each observed variable on each missing variable would require O�n�i � parameters �at least
one parameter to capture some co�occurrence statistic on each pair of input variables�� Many
related approaches have been proposed to deal with missing inputs using a Gaussian �or Gaussian
mixture� model �Ahmad and Tresp� ����� Tresp� Ahmad and Neuneier� ����� Ghahramani and
Jordan� ������ In the experiments presented here� the proposed recurrent network is compared
with a Gaussian mixture model trained with EM to handle missing values �Ghahramani and
Jordan� ������

The approach proposed in section � is more economical than the traditional Gaussian�based
approaches for two reasons� Firstly� we take advantage of hidden units in a recurrent network�
which might be less numerous than the inputs� The number of parameters depends on the
product of the number of hidden units and the number of inputs� The hidden units only need to
capture the dependencies between input variables which have some dependencies� and which are
useful to reducing the output error� The second advantage is indeed that training is based on
optimizing the desired criterion �e�g�� reducing an output error�� rather than predicting as well
as possible the values of the missing inputs� The recurrent network is allowed to relax for a few
iterations �typically as few as � or �� in order to �ll�in some values for the missing inputs and
produce an output� In section � we present experimental results with this approach� comparing
the results with those obtained with a feedforward network�

In section � we propose an extension of this scheme to sequential data� In this case� the network
is not relaxing inputs keep changing with time and the network maps an input sequence �with
possibly missing values� to an output sequence� The main advantage of this extension is that
it allows to deal with sequential data in which the variables occur at di�erent frequencies� This
type of problem is frequent for example with economic or �nancial data� An experiment with
asynchronous data is presented in section ��

� Relaxing Recurrent Network for Missing Inputs

Networks with feedback such as those proposed in �Almeida� ����� Pineda� ����� can be applied
to learning a static input�output mapping when some of the inputs are missing� In both cases�
however� one has to wait for the network to relax either to a �xed point �assuming it does �nd
one� or to a 	stable distribution
 �in the case of the Boltzmann machine�� In the case of �xed�
point recurrent networks� the training algorithm assumes that a �xed point has been reached�
The gradient with respect to the weights is then computed in order to move the �xed point
to a more desirable position� The approach we have preferred here avoids such an assumption�



Instead it uses a more explicit optimization of the whole behavior of the network as it unfolds
in time� �lls�in the missing inputs and produces an output� The network is trained to minimize
some function of its output by back�propagation through time�

Computation of Outputs Given Observed Inputs
Given� input vector u � �u�� u�� � � � � uni

�
Result� output vector y � �y�� y�� � � � � yno

�

�� Initialize for t � ��
For i � � � � �nu� x��i � �
For i � � � � �ni� if ui is missing then x��I�i� � E�i��

Else x��I�i� � ui�
�� Loop over time�

For t � � to T
For i � � � � �nu

If i � I�k� is an input unit and uk is not missing then
xt�i � uk

Else
xt�i � ��� ��xt���i � �f�

P
l�Si

wlxt�dl�pl�
where Si is a set of links from unit pl to unit i�
each with weight wl and a discrete delay dl
�but terms for which t � dl � � were not considered��

�� Collect outputs by averaging at the end of the sequence�

yi �
PT

t�� vt xt�O�i�

Back�Propagation

The back�propagation computation requires an extra set of variables �xt and �w� which will contain
respectively �C

�xt
and �C

�w after this computation�

Given� output gradient vector �C
�y

Result� input gradient �C
�u

and parameter gradient �C
�w

�

�� Initialize unit gradients using outside gradient�
Initialize �xt�i � � for all t and i�
For i � � � � �no� initialize �xt�O�i� � vt

�C
�yi

�� Backward loop over time�
For t � T to �

For i � nu � � ��
If i � I�k� is an input unit and uk is not missing then

no backward propagation
Else

For l � Si
If t� dl � �

�xt�dl�pl � �xt�dl�pl � ��� �� �xt�dl��
� �wl �xt�if ��

P
l�Si

wlxt�dl�pl�
�wl � �wl � �f ��

P
l�Si

wlxt�dl�pl�xt�dl�pl
�� Collect input gradients�

For i � � � � �ni�
If ui is missing� then

�C
�ui

� �
Else

�C
�ui

�
P

t �xt�I�i�

The observed inputs are clamped for the whole duration of the sequence� The missing units
corresponding to missing inputs are initialized to their unconditional expectation and their value
is then updated using the feedback links for the rest of the sequence �just as if they were hidden
units�� To help stability of the network and prevent it from �nding periodic solutions �in which
the outputs have a correct output only periodically�� output supervision is given for several time
steps� A �xed vector v� with vt � � and

P
t vt � � speci�es a weighing scheme that distributes



the responsibility for producing the correct output among di�erent time steps� Its purpose is to
encourage the network to develop stable dynamics which gradually converge toward the correct
output �thus the weights vt were chosen to gradually increase with t��

The neuron transfer function was a hyperbolic tangent in our experiments� The inertial term
weighted by � �in step � of the forward propagation algorithm below� was used to help the
network �nd stable solutions� The parameter � was �xed by hand� In the experiments described
below� a value of ��� was used� but near values yielded similar results�

This module can therefore be combined within a hybrid system composed of several modules by
propagating gradient through the combined system �as in �Bottou and Gallinari� ������� For
example� as in Figure �� there might be another module taking as input the recurrent network�s
output� In this case the recurrent network can be seen as a feature extractor that accepts
data with missing values in input and computes a set of features that are never missing� In
another example of hybrid system the non�missing values in input of the recurrent network are
computed by another� upstream module �such as the preprocessing normalization used in our
experiments�� and the recurrent network would provide gradients to this upstream module �for
example to better tune its normalization parameters��

� Experiments with Static Data

A network with three layers �inputs� hidden� outputs� was trained to classify data with miss�
ing values from the audiology database� This database was made public thanks to Jergen and
Quinlan� was used by �Bareiss and Porter� ������ and was obtained from the UCI Repository of
machine learning databases �ftp�ics�uci�edu�pub�machine�learning�databases�� The orig�
inal database has ��� patterns� with �� attributes� and �� classes� Unfortunately� most of the
classes have only � exemplar� Hence we decided to cluster the classes into four groups� To do
so� the average pattern for each of the �� classes was computed� and the K�Means clustering
algorithm was then applied on those �� prototypical class 	patterns
� to yield the � 	super�
classes
 used in our experiments� The multi�valued input symbolic attributes �with more than
� possible values� where coded with a 	one�out�of�n
 scheme� using n inputs �all zeros except
the one corresponding to the attribute value�� Note that a missing value was represented with a
special numeric value recognized by the neural network module� The inputs which were constant
over the training set were then removed� The remaining �� inputs were �nally standardized
�by computing mean and standard deviation� and transformed by a saturating non�linearity �a
scaled hyperbolic tangent�� The output class is coded with a 	one�out�of��
 scheme� and the
recognized class is the one for which the corresponding output has the largest value�

The architecture of the network is depicted in Figure � �left�� The length of each relaxing sequence
in the experiments was �� Higher values would not bring any measurable improvements� whereas
for shorter sequences performance would degrade� The number of hidden units was varied� with
the best generalization performance obtained using � hidden units�

The recurrent network was compared with feedforward networks as well as with a mixture of
Gaussians� For the feedforward networks� the missing input values were replaced by their un�
conditional expected value� They were trained to minimize the same criterion as the recurrent
networks� i�e�� the sum of squared di�erences between network output and desired output� Sev�
eral feedforward neural networks with varying numbers of hidden units were trained� The best
generalization was obtained with �� hidden units� Experiments were also performed with no
hidden units and two hidden layers �see Table ��� We found that the recurrent network not only
generalized better but also learned much faster �although each pattern required � times more
work because of the relaxation�� as depicted in Figure ��

The recurrent network was also compared with an approach based on a Gaussian and Gaussian
mixture model of the data� We used the algorithm described in �Ghahramani and Jordan�
����� for supervised leaning from incomplete data with the EM algorithm� The whole joint
input�output distribution is modeled using a mixture model with Gaussians �for the inputs� and
multinomial �outputs� components

P �X � x� C � c� �
X

j

P ��j�
�jd

����n��j�jj���
expf�

�

�
�x � �j�

����
j �x � �j�g

where x is the input vector� c the output class� and P ��j� the prior probability of component j of
the mixture� The �jd are the multinomial parameters� �j and �j are the Gaussian mean vector



...

   Upstream
normalization
     modulecost

 down
stream
 static
module

recurrent
network

Figure � Example of hybrid modular system� using the recurrent network �middle� to extract
features from patterns which may have missing values� It can be combined with upstream
modules �e�g�� a normalizingpreprocessor� right� and downstreammodules �e�g�� a static classi�er�
left�� Dotted arrows show the backward �ow of gradients�

0 10 20 30 40
0

5

10

15

20

25

30

35

40

45

50

training epoch

% e
rro

r

training set

recurrent

feedforward

0 10 20 30 40
0

5

10

15

20

25

30

35

40

45

50

training epoch

% e
rro

r

test set

recurrent

feedforward

Figure � Evolution of training and test error for the recurrent network and for the best of
the feedforward networks ��������� average classi�cation error w�r�t� training epoch� �with �
standard deviation error bars� computed over �� trials��

and covariance matrix for component j� Maximum likelihood training is applied as explained
in �Ghahramani and Jordan� ������ taking missing values into account �as additional missing
variables of the EM algorithm��

For each architecture in Table �� �� training trials were run with a di�erent subset of ���
training and �� test patterns �and di�erent initial weights for the neural networks�� The recurrent
network was clearly superior to the other architectures� probably for the reasons discussed in the
conclusion� In addition� we have shown graphically the rate of convergence during training of the
best feedforward network ��������� as well as the best recurrent network ��������� in Figure ��
Clearly� the recurrent network not only performs better at the end of training but also learns
much faster�

� Recurrent Network for Asynchronous Sequential Data

An important problem with many sequential data analysis problems such as those encountered
in �nancial data sets is that di�erent variables are known at di�erent frequencies� at di�erent
times �phase�� or are sometimes missing� For example� some variables are given daily� weekly�
monthly� quarterly� or yearly� Furthermore� some variables may not even be given for some of
the periods or the precise timing may change �for example the date at which a company reports
�nancial performance my vary��

Therefore� we propose to extend the algorithm presented above for static data with missing
values to the general case of sequential data with missing values or asynchronous variables� For
time steps at which a low�frequency variable is not given� a missing value is assumed in input�
Again� the feedback links from the hidden and output units to the input units allow the network



Table � Comparative performances of recurrent network� feedforward network� and Gaussian
mixture density model on audiology data� The average percentage of classi�cation error is shown
after training� for both training and test sets� and the standard deviation in parenthesis� for ��
trials�

Training set error Test set error
������ Recurrent net �������� ��������
������ Recurrent net ���� ������
������� Feedforward net �������� �������
������� Feedforward net �������� �������
��������� Feedforward net ������ �������
������ Feedforward net ������ �������
������ Feedforward net ������� ������
���� Feedforward net ����� �����
� Gaussian ������� �������
� Gaussians Mixture ������� �������
� Gaussians Mixture ������� �������

to 	complete
 the missing data� The main di�erences with the static case are that the inputs
and outputs vary with t �we use ut and yt at each time step instead of u and y�� The training
algorithm is otherwise the same�

� Experiments with Asynchronous Data

To evaluate the algorithm� we have used a recurrent network with random weights� and feedback
links on the input units to generate arti�cial data� The generating network has � inputs� �
hidden and � outputs� The hidden layer is connected to the input layer �� delay�� The hidden
layer receives inputs with delays � and � from the input layer and with delay � from itself� The
output layer receives inputs from the hidden layer� At the initial time step as well as at �� of
the time steps �chosen randomly�� the input units were clamped with random values to introduce
some further variability� The missing values were then completed by the recurrent network� To
generate asynchronous data� half of the inputs were then hidden with missing values � out of every
� time steps� ��� training sequences and �� test sequences were generated� The learning problem
is therefore a sequence regression problem with missing and asynchronous input variables�

Preliminary comparative experiments show a clear advantage to completing the missing values
�due to the the di�erent frequencies of the input variables� with the recurrent network� as shown
in Figure �� The recognition recurrent network is shown on the right of Figure �� It has multiple
time scales �implemented with subsampling and oversampling� as in TDNNs �Lang� Waibel and
Hinton� ����� and reverse�TDNNs �Simard and LeCun� ������� to facilitate the learning of such
asynchronous data� The static network is a time�delay neural network with � input� � hidden�
and � output unit� and connections with delays �� �� and � from the input to hidden and hidden to
output units� The 	missing values
 for slow�varying variables were replaced by the last observed
value in the sequence� Experiments with � and �� hidden units yielded similar results�

� Conclusion

When there are dependencies between input variables� and the output prediction can be im�
proved by taking them into account� we have seen that a recurrent network with input feedback
can perform signi�cantly better than a simpler approach that replaces missing values by their
unconditional expectation� According to us� this explains the signi�cant improvement brought
by using the recurrent network instead of a feedforward network in the experiments�

On the other hand� the large number of input variables �ni � ��� in the experiments� most likely
explains the poor performance of the mixture of Gaussian model in comparison to both the static
networks and the recurrent network� The Gaussian model requires estimating O�n�i � parameters
and inverting large covariance matrices�

The approach to handling missing values presented here can also be extended to sequential data
with missing or asynchronous variables� As our experiments suggest� for such problems� using
recurrence and multiple time scales yields better performance than static or time�delay networks
for which the missing values are �lled using a heuristic�



0 2 4 6 8 10 12 14 16 18 20
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

training epoch

te
st

 s
et

 m
se

recurrent network

time−delay network

Figure � Test set mean squared error on the asynchronous data� Top static network with time
delays� Bottom recurrent network with feedback to input values to complete missing data�

References

Ahmad� S� and Tresp� V� ������� Some solutions to the missing feature problem in vision� In
Hanson� S� J�� Cowan� J� D�� and Giles� C� L�� editors� Advances in Neural Information
Processing Systems �� San Mateo� CA� Morgan Kaufman Publishers�

Almeida� L� ������� A learning rule for asynchronous perceptrons with feedback in a combina�
torial environment� In Caudill� M� and Butler� C�� editors� IEEE International Conference
on Neural Networks� volume �� pages ��� ���� San Diego ����� IEEE� New York�

Bareiss� E� and Porter� B� ������� Protos An exemplar�based learning apprentice� In Proceedings
of the �th International Workshop on Machine Learning� pages �� ��� Irvine� CA� Morgan
Kaufmann�

Bottou� L� and Gallinari� P� ������� A framework for the cooperation of learning algorithms� In
Lippman� R� P�� Moody� R�� and Touretzky� D� S�� editors� Advances in Neural Information
Processing Systems �� pages ��� ���� Denver� CO�

Ghahramani� Z� and Jordan� M� I� ������� Supervised learning from incomplete data via an
EM approach� In Cowan� J�� Tesauro� G�� and Alspector� J�� editors� Advances in Neural
Information Processing Systems �� page � San Mateo� CA� Morgan Kaufmann�

Lang� K� J�� Waibel� A� H�� and Hinton� G� E� ������� A time�delay neural network architecture
for isolated word recognition� Neural Networks� ��� ���

Pineda� F� ������� Recurrent back�propagation and the dynamical approach to adaptive neural
computation� Neural Computation� ���� ����

Simard� P� and LeCun� Y� ������� Reverse TDNN An architecture for trajectory generation� In
Moody� J�� Hanson� S�� and Lipmann� R�� editors� Advances in Neural Information Processing
Systems �� pages ��� ���� Denver� CO� Morgan Kaufmann� San Mateo�

Tresp� V�� Ahmad� S�� and Neuneier� R� ������� Training neural networks with de�cient data�
In Cowan� J�� Tesauro� G�� and Alspector� J�� editors� Advances in Neural Information
Processing Systems �� pages ��� ���� Morgan Kaufman Publishers� San Mateo� CA�


