Algorithmes vectoriels pour la recherche approchée

Nadia El-Mabrouk

Problème

- INPUT:
 - Un mot P de taille m
 - Un texte T de taille $n \gg m$
 - Un nombre d'erreurs autorisées $k \ll m$
- OUTPUT: Toutes les occurrences de P dans T
 à kerreurs près.
- Programmation dynamique: O(mn)
- Différentes améliorations: O(kn)

Méthodes numériques – Algorithmes vectoriels

Basées sur une représentation en bits des états de la recherche.

Dans ce cas, une approche naive est considérée, et rendue rapide grâce à la capacité des langages de programmation à manipuler les mots machine (opérations logiques et arithmétiques simples)

Algorithme vectoriel: Algorithme qui trouve un vecteur de sortie en appliquant un nb d'opérations sur les vecteurs d'entrée, indépendant de la longueur des vecteurs.

Mot machine: Vecteur binaire de 16, 32, 64 bits

0110001101001110

Opérations unitaires sur les mots machine: $x \lor y$, $x \land y$, $\neg x$, x << a (déplacement ver la gauche), x >> a (déplacement vers la droite).

Algorithme Shift-Or pour la recherche exacte

Recherche exacte d'un mot *P* de taille *m* dans un texte *T* de taille *n*.

Pour toute position j dans T, E_j est un vecteur de taille m tel que:

Pour tout
$$i, 1 \le i \le m$$
, $E_j[i] = \begin{cases} 0 & \text{si } P[1:i] = T[j-i+1:j] \\ 1 & \text{sinon} \end{cases}$

Occurrence de P dans T se terminant à la position j ssi $E_i[m] = 0$

Algorithme Shift-Or pour la recherche exacte

Phase de prétraitement: Pour tout $a \in \Sigma$, calculer le vecteur S_a :

Pour tout
$$i, 1 \le i \le m,$$
 $S_a[i] = \begin{cases} 0 & \text{si } a = p_i \\ 1 & \text{sinon} \end{cases}$

Alors:
$$E_{j+1} = (E_j << b) \lor S_{t_{j+1}}$$
 | Ici b=1

Si
$$m \le w$$
 (32 ou 63), complexité $O(n)$ en temps et $O(1)$ en espace.

 $a \quad b \quad d \quad a \quad b \quad b$

1 1 1 0 1

а

a b

a b b

a b b a

a b b a c

a b d a b b

1 1 0 1 0

a 1

a b 0

a 1

a b 0

a 1

a b 0

a b 1

a b b 1

b d b a a b 1 0 1 1 0 a **1** b 0 a b b 0 a b b a 1 a a c 1 b b a 1 1 0 1 1

1 1 0 1 0 V 1 1 0 0 1 = 1 1 0 1 1 Exemple complet;

$$\Sigma = \{a, b, c, d\}, P = abbac, T = abbabbac$$

		•		-	-	
:	_ :	1	: _	:	1	
x	l a	D	C		\mathbf{G}	
						1
·		•	•			
C	10110	11001	01111	11	111	
i) m	1 10110	11001	01111	- I I		
 $\cdots \sim x$						١.
						j

États successifs de la recherche dans T:

T		а	b	b	а	b	b	а	С
E _j	11111	11110	11101	11011	10110	11101	11011	10110	01111

$$E_{j+1} = (E_j << b) \lor S_{t_{j+1}}$$

*

```
Algorithm Shift-Or (t, p)
SI(|p| > WORD)
     Error ("Use pattern size \leq word size");
/* Preprocessing */
POUR (i = 0 \text{ to } |\Sigma|) FAIRE
    T[i] = \neg 0;
lim = 0; j = 1
POUR (chaque carac. p_c de p de d<br/>te. a gch.) FAIRE
     T[p_c] = T[p_c] \land \neg j
    \lim = \lim \vee j;
    j = j \ll B;
FIN POUR
\lim = \neg (\lim >> B); /* \lim: 10000 \text{ Dernier Bit utilise*}/
/* Recherche */
Match = 0;
Init = \neg 0;
Etat = Init;
TANTQUE (pas fin de t)
     T[t_c]: Prochain caractere du texte;
     \mathsf{Etat} = (\mathsf{Etat} << B) \lor T[t_c];
     SI Etat \leq lim, Match = Match+1;
FIN TANT QUE
RETOURNE (Match)
```

Recherche avec mismatchs - Algorithme Shift-Add:

(Baeza-Yates-Gonnet, 1992)

Recherche de P dans T avec au plus k mismatch.

Pour toute pos. j de T, vecteur E_j de taille m tel que $E_j[i]$ contient le nombre d'erreurs entre P[1..i] et T[j-i+1..j].

Occurrence de P finissant à la position j ssi $E_j[m] \leq k$.

Phase de prétraitement: Pour tout $a \in \Sigma$, calculer le vecteur S_a :

Pour tout
$$i, 1 \le i \le m,$$
 $S_a[i] = \begin{cases} 0 & \text{si } a = p_i \\ 1 & \text{sinon} \end{cases}$

Alors,
$$E_{j+1}[i] = E_j[i-1] + S_{t_{j+1}}[i]$$

T:	a	ь	d	a	5 b	6 b	a	b	b	_	T:	a	ь	d	a	5 b	6 b	a	b	b
E[5]:	2	4	2	0	1								4	2	0	1	0			
P:																a				
			a	b	b										a	b				
		a	b	b	a									a	b	b				
P:	a	b	b	a	c								a	b	b	a				
						I												I		
					5	6														

T:	a	b	d	a	5 b	6 b		a	b	b								
		4	2	0	1	0								4	2	0	1	0
		Ĭ	_			a	1						+	1	1	0	0	1
					a	b	0							_	_	_		
				a	b	b	0				E[6J:		5	3	0	1	1
			a	b	b	a	1											
		a	b	b	a	c	1											
							Sb	I										

b : Nombre de bits nécessaires pour représenter chaque état individuel.

Si E_i et S_a codés chacun sur un mot machine:

$$E_{j+1} = (E_j << b) + S_{t_{j+1}}$$

Valeurs possibles de $E_j[i]: 0, \dots, m \Longrightarrow b = \lceil \log_2(m+1) \rceil$

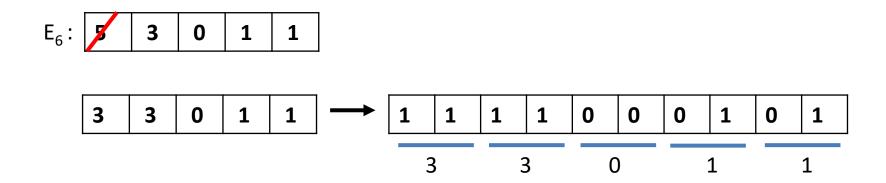
En fait, il suffit de représenter les valeurs de 0 à k+1

Par exemple, pour le vecteur $E_6 = 5 \ 3 \ 0 \ 1 \ 1$ de la page précédente, si k=1, on ne devrait pas avoir à garder la valeur 5. Et 3?

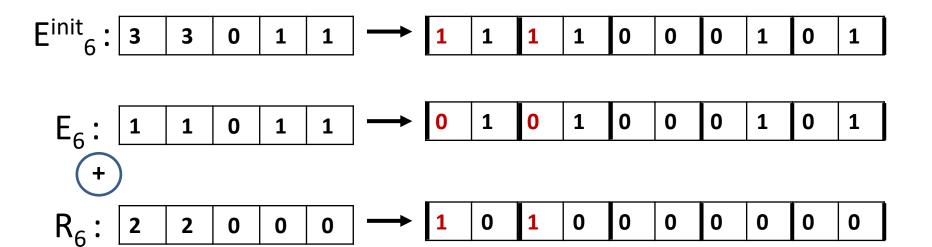
En fait on a besoin de garder $b = \lceil \log_2(k+1) \rceil + 1$

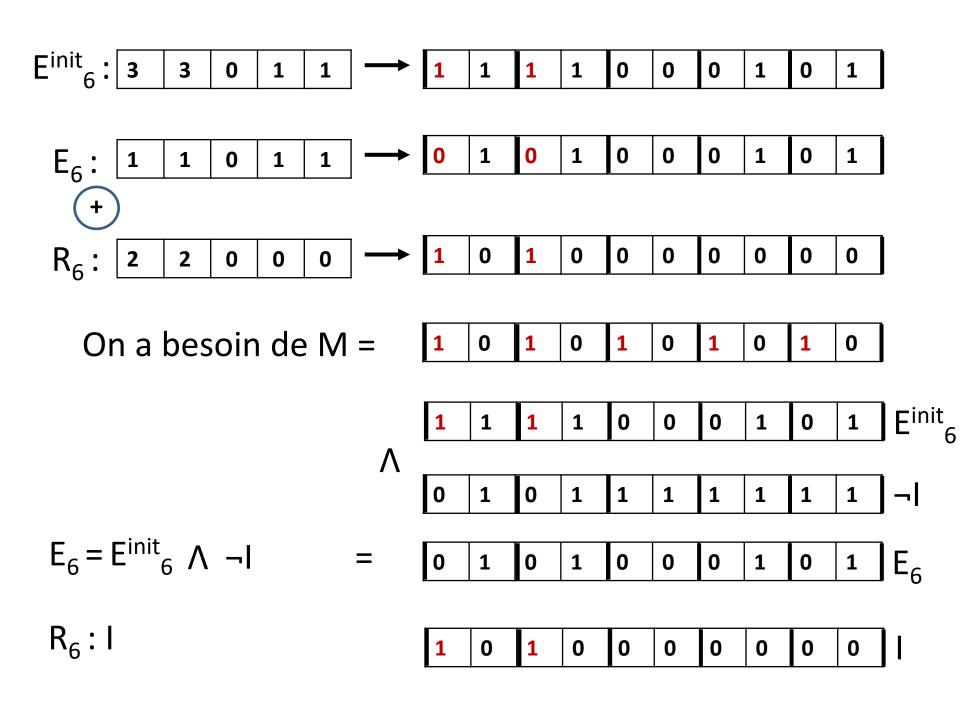
Pour k=1, $b = \lceil \log_2(k+1) \rceil + 1 = 2$ bits : permet de représenter les valeurs de 0 à 3. Si la taille m de P est 5, alors, E_j pour tout j est de taille 5.2=10

Donc pour $E_6 = 5 \ 3 \ 0 \ 1 \ 1$, on a besoin de garder les valeurs de 0 à 3.



En fait on a besoin d'un vecteur « retenue » des additions :





Soit M le vecteur de m.b bits: $2^{b-1}2^{b-1}\cdots 2^{b-1}$

À chaque position j dans T, les vecteurs E_{j+1} et R_{j+1} sont calculés à partir de E_j et R_j de la façon suivante:

- $E_{j+1} = (E_j << b) + S_{t_{j+1}};$
- $I = E_{j+1} \wedge M$;
- $E_{j+1} = E_{j+1} \land \neg I$;
- $\bullet \ R_{j+1} = (R_j << b) \lor I$

Exemple:

 $\Sigma = \{a, b, c, d\}, P = abbac \text{ et } k = 1.$

Alors $b = \lceil \log_2(2) \rceil + 1 = 2$. Table S:

x	a	b	c	d
S_x	10110	11001	01111	11111

États successifs lors de la recherche de P dans le texte

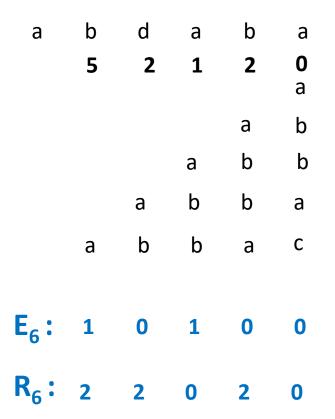
T = abdabbabbac:

Т		а	b	d	а	b	b	а	b	b	а	С
E _j	00000	10110	10101	10101	11100	00001	11011	00000	11001	01011	00000	01111
R _j	22222	22220	22200	22020	20220	22200	22000	20220	02200	22000	20220	02200

*

2 2 2 0

1



Comment les calculer à partir de E₅ et R₅?

a a h

a b b

a b b a

a b b a c

E₅: 0 0 0 0 1

 R_5 : 2 2 2 0 0

$$E_{j+1} = (E_j << b) + S_{t_{j+1}};$$

$$I = E_{j+1} \land M;$$

$$E_{j+1} = E_{j+1} \land \neg I;$$

$$R_{j+1} = (R_j << b) \lor I$$

a b b a c 1

$$E_{j+1} = (E_j << b) + S_{t_{j+1}}; \longleftarrow$$

$$I = E_{j+1} \land M;$$

$$E_{j+1} = E_{j+1} \land \neg I;$$

$$R_{j+1} = (R_j << b) \lor I$$

- a b d a b a
 - a b 1
 - a b b <u>1</u>
 - a b b a O
 - a b b a c 1
- E₅: 0 0 0 1 0 ←
- S₆: 1 0 1 1 0
 - $E_{j+1} = E_{j+1} \wedge \neg I;$ $R_{j+1} = (R_j << b) \vee I$

 $E_{j+1} = (E_j << b) + S_{t_{j+1}};$

 $I = E_{j+1} \wedge M;$

- a b d a b a
 - a b <u>1</u>
 - a b b <u>1</u>
 - a b b a 0
 - a b b a c 1
- E₅: 0 0 0 1 0 ←
- S₆: 1 0 1 1 0
- = E₆: 1 0 1 2 0

$$E_{j+1} = (E_j << b) + S_{t_{j+1}}; \longleftarrow$$

$$I = E_{j+1} \land M;$$

$$E_{j+1} = E_{j+1} \land \neg I;$$

$$R_{j+1} = (R_j << b) \lor I$$

a 0
a b 1
a b b a 0
a 0
a 1

$$E_{j+1} = (E_j << b) + S_{t_{j+1}};$$

$$I = E_{j+1} \land M;$$

$$E_{j+1} = E_{j+1} \land \neg I;$$

$$R_{j+1} = (R_j << b) \lor I$$

$$E_{j+1} = (E_j << b) + S_{t_{j+1}};$$

$$I = E_{j+1} \land M;$$

$$E_{j+1} = E_{j+1} \land \neg I;$$

$$R_{j+1} = (R_j << b) \lor I$$

b b a c 1

а

$$E_{j+1} = (E_j << b) + S_{t_{j+1}};$$

$$I = E_{j+1} \land M;$$

$$E_{j+1} = E_{j+1} \land \neg I;$$

$$R_{j+1} = (R_j << b) \lor I$$

$$a$$
 b b a c 1

$$I = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

$$E_{j+1} = (E_j << b) + S_{t_{j+1}};$$

$$I = E_{j+1} \land M;$$

$$E_{j+1} = E_{j+1} \land \neg I;$$

$$R_{j+1} = (R_j << b) \lor I$$

а

b

b a c 1

$$E_{j+1} = (E_j << b) + S_{t_{j+1}};$$

$$I = E_{j+1} \land M;$$

$$E_{j+1} = E_{j+1} \land \neg I;$$

$$R_{j+1} = (R_j << b) \lor I$$

a b 1
a b 1
a b 1
a b 5
a c 1

E₆: 1 0 1 0 0

R₅: 2 2 2 0 0

$$E_{j+1} = (E_j << b) + S_{t_{j+1}};$$

$$I = E_{j+1} \land M;$$

$$E_{j+1} = E_{j+1} \land \neg I;$$

$$R_{j+1} = (R_j << b) \lor I \blacktriangleleft$$

a 0 a b 1

a b b <u>1</u>

a b b a 0

a b b a c 1

E₆: 1 0 1 0 0

R₆: 2 2 0 0 0

R₆: 1 0 1 0 0 0 1 0 0

$$E_{j+1} = (E_j << b) + S_{t_{j+1}};$$

$$I = E_{j+1} \wedge M;$$

$$E_{j+1} = E_{j+1} \wedge \neg I;$$

$$R_{j+1} = (R_j << b) \lor I \longleftarrow$$

a 0 a b 1

a b b 1

b b a 0

a b b a c 1

E₆: 1 0 1 0 0

R₆: 2 2 0 **2** 0

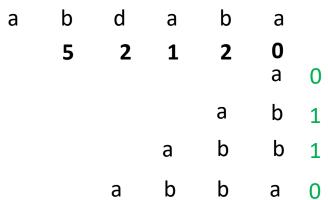
R₆: 1 0 1 0 0 0 1 0 0 0

$$E_{j+1} = (E_j << b) + S_{t_{j+1}};$$

$$I = E_{j+1} \ \land \ M;$$

$$E_{j+1} = E_{j+1} \wedge \neg I;$$

$$R_{j+1} = (R_j << b) \lor I \longleftarrow$$



a b b a c 1

$$E_{j+1} = (E_j << b) + S_{t_{j+1}};$$

$$I = E_{j+1} \land M;$$

$$E_{j+1} = E_{j+1} \land \neg I;$$

$$R_{j+1} = (R_j << b) \lor I \longleftarrow$$

Complexité:

$$|\Sigma| = c$$
.

 $O(\lceil \frac{mb}{\omega} \rceil)$: temps nécessaire pour effectuer un nombre constant d'opérations sur un état de longueur mb représenté sur un mot machine de longueur ω .

- Calcul de S: temps $O\left(\lceil \frac{mb}{\omega} \rceil (m+c)\right)$ et espace $O(\lceil \frac{mb}{\omega} \rceil c)$.
- Phase de recherche: temps dans le pire des cas et en moyenne en $O(\lceil \frac{mb}{\omega} \rceil n)$

Lorsque $mb \leq \omega$, complexité totale en temps en O(n+m+c) et complexité en espace en O(c)

Lorsque le nombre de mots machine utilisé n'est pas trop grand, Shift-Add reste efficace en pratique.

Le cours s'arrête ici.

La suite est juste pour vous, mais ne comptera pas à l'examen

Algorithme Shift-And pour la recherche avec erreurs:

Utilisé dans le programme agrep de UNIX.

Phase de prétraitement: Pour tout $a \in \Sigma$, calculer C_a : inverse (voir Hirschberg) du vecteur caractéristique de a dans P.

Exemple: Si P = abbac, alors $C_a = 01001$, $C_b = 00110$, $C_c = 10000$ et $C_d = 00000$.

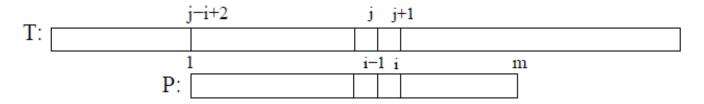
Phase de recherche: Utilise k+1 vecteurs $E_j^0, E_j^1, \cdots E_j^k$:

Pour tout
$$i$$
, $E_j^d[i] = \begin{cases} 1 & \text{si } P[1:i] = T[j-i+1:j] \text{ à } d \text{ erreurs près } \\ 0 & \text{sinon} \end{cases}$

Exemple: Si T = abcbcabba et P = abbac, alors $E_5^1 = 00001$ et $E_5^2 = 10111$

<u>Initialisation</u>: Pour tout $d, E_0^d = 0^{m-d}1^d$

Pour que P[1..i] s'aligne avec T[j-i+2..j+1] à d erreurs près, 4 cas possibles:



- P[1..i-1] s'aligne avec T[j-i+2..j] avec au plus d erreurs, et $P_i = T_{j+1} \longrightarrow E_{j+1}^d = E_j^d << 1 \land C_{T_{j+1}}$
- P[1..i-1] s'aligne avec T[j-i+2..j] avec au plus d-1 erreurs (cas d'un match ou d'un mismatch) $\longrightarrow E_{j+1}^d = E_j^{d-1} << 1$
- Suppression de P_i : P[1..i-1] s'aligne avec T[j-i+2..j+1] avec au plus d-1 erreurs $\longrightarrow E_{j+1}^d = E_{j+1}^{d-1} << 1$
- Insertion de T_{j+1} : P[1..i] s'aligne avec T[j-i+2..j] avec au plus d-1 erreurs $\longrightarrow E_{j+1}^d = E_j^{d-1}$

Et donc, pour tout d > 0:

$$E_{j+1}^{d} = ((E_{j}^{d} << 1) \land C_{t_{j+1}}) \lor (E_{j}^{d-1} << 1) \lor (E_{j+1}^{d-1} << 1) \lor E_{j}^{d-1}$$

$$= ((E_{j}^{d} << 1) \land C_{T_{j+1}}) \lor ((E_{j}^{d-1} \lor E_{j+1}^{d-1}) << 1) \lor E_{j}^{d-1}$$

Pour d=0:

$$E_{j+1}^0 = (E_j^0 << 1) \wedge C_{T_{j+1}}$$

Complexité: La phase de recherche prend un temps en $O(\lceil \frac{m}{\omega} \rceil kn)$

Lorsque $m \leq \omega$, temps total de Shift-And en O(kn + m + c) et complexité en espace en O(c).

Exemple:

On recherche annual dans le texte annealing à k=2 erreurs près.

Au départ: $E^0 = 000000$, $E^1 = 000001$, $E^2 = 000011$.

	T:	a	n	n	е	a	6 1	7 i	n	g		T:	a	n	n	e	a	6 1	7 i		n	g
	E_6^0 :	0	0	0	0	0	0							0	0	0	0	0	1			_
	E_6^1 :	1	0	0	0	1	1							0	0	0	1	1	1			
	E_6^2 :	1	0	0	1	1	1							0	0	1	1	1	1			
							a												a	0		
						a	n											a	n	0		
					a	n	n										a	n	n	0		
				a	n	n	u				_					a	n	n	u	0		
ŀ	?:		a	n	n	u	a				P:				a	n	n	u	a	0		
		a	n	n	u	a	1							a	n	n	u	a	1	0		
																				S_{i}	•	

$$E_7^0 = (000000 << 1) & 000000 = 000000$$

$$E_7^1 = ((100011 << 1) & 000000) | (000000 << 1) | (000000 << 1) | (000000 << 1) | (000000 << 1) | (000000 << 1) | (000000 << 1) | (000000 << 1) | (100011 << 1) | (000001 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) | (100011 << 1) |$$

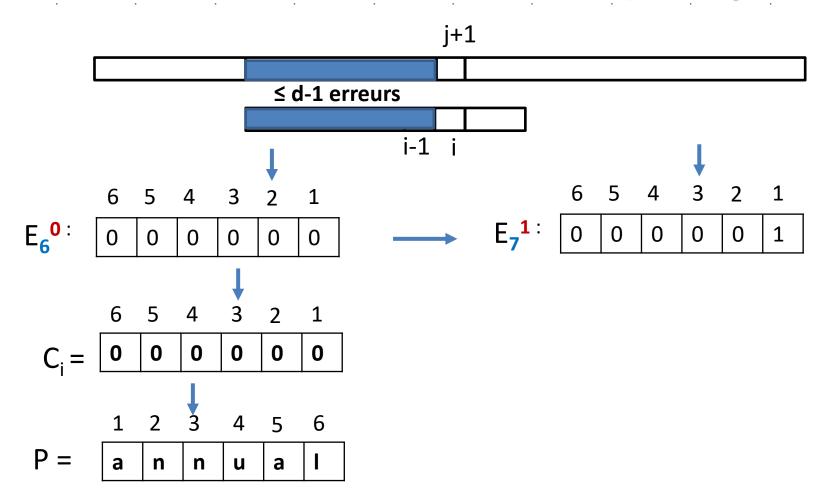
• P[1..i-1] s'aligne avec T[j-i+2..j] avec au plus d erreurs, et $P_i = T_{j+1} \longrightarrow E_{j+1}^d = E_j^d << 1 \land C_{T_{j+1}}$ j+1

$$P = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ a & n & n & u & a & I \end{bmatrix}$$

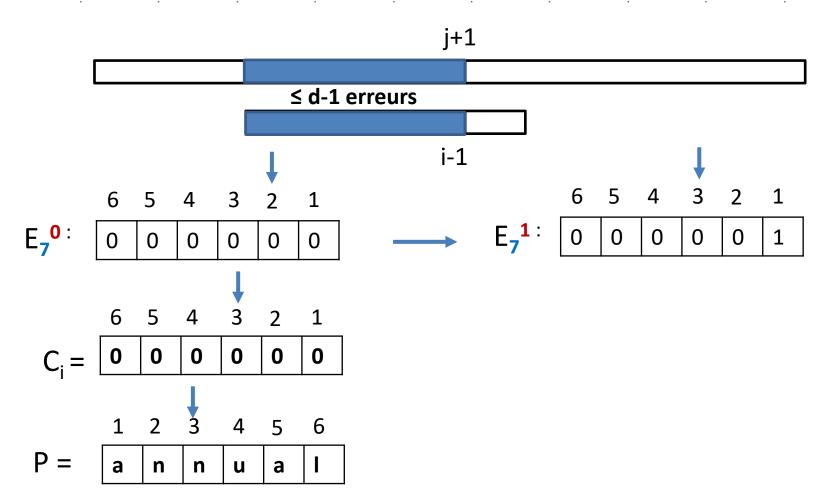
$$T_7 = i \quad C_i = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

• P[1..i-1] s'aligne avec T[j-i+2..j] avec au plus d erreurs, et $P_i = T_{j+1} \longrightarrow E_{j+1}^d = E_j^d << 1 \land C_{T_{j+1}}$ ≤ d erreurs i-1 i E₆1: << 1

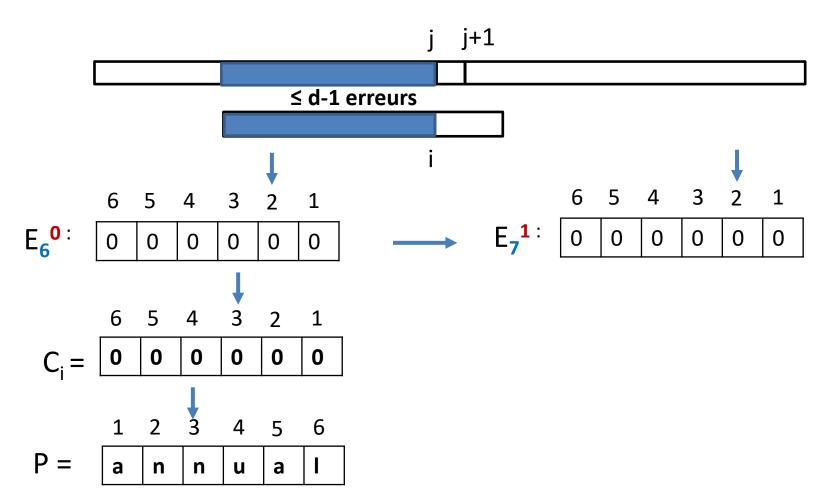
• P[1..i-1] s'aligne avec T[j-i+2..j] avec au plus d-1 erreurs (cas d'un match ou d'un mismatch) $\longrightarrow E_{j+1}^d = E_j^{d-1} << 1$



• Suppression de P_i : P[1..i-1] s'aligne avec T[j-i+2..j+1] avec au plus d-1 erreurs $\longrightarrow E_{j+1}^d = E_{j+1}^{d-1} << 1$



• Insertion de T_{j+1} : P[1..i] s'aligne avec T[j-i+2..j] avec au plus d-1 erreurs $\longrightarrow E_{j+1}^d = E_j^{d-1}$



Exemple:

On recherche annual dans le texte annealing à k=2 erreurs près.

Au départ: $E^0 = 000000$, $E^1 = 000001$, $E^2 = 000011$.

	T:	a	n	n	е	a	6 1	7 i	n	g		T:	a	n	n	е	a	6 1	7 i		n	g
	E ₆ ⁰ :	0	0	0	0	0	0							0	0	0	0	0	1			
	E_6^1 :	1	0	0	0	1	1							0	0	0	1	1	1			
	E_6^2 :	1	0	0	1	1	1							0	0	1	1	1	1			
							a												a	0		
						a	n											a	n	0		
					a	n	n										a	n	n	0		
_				a	n	n	u				_					a	n	n	u	0		
P	:		a	n	n	u	a				P:				a	n	n	u	a	0		
		a	n	n	u	a	1							a	n	n	u	a	1	0		
																				S_{i}	l	

$$E_7^0 = (000000 << 1) & 000000 = 000000$$

$$E_7^1 = ((100011 << 1) & 000000) | (000000 << 1) | (000000 << 1) | (000000 << 1) | (000000 << 1) | (000000 << 1) | (000000 << 1) | (000000 << 1) | (0000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1) | (000001 << 1)$$